
E0 205 Mathematical logic and theorem
proving

Kamal Lodaya and Deepak D’Souza

February 25, 2021

Logics

• Tools are used to verify programs or systems, and they use
logics. Why?
• How did logic get to be used?
• What do logics have to do with programs?

Formal methods

A logic is a formal language equipped with a method for making
inferences in this language.

P1: Side AB = Side DE (a “formula” in the formal
language)

P2: Side AC = Side DF (another formula)
P3: ∠BAC = ∠EDF (another formula)
C: ∴ 4ABC ≡ 4DEF (a formula prefixed by

“therefore”)

Domain of discourse is geometry.

We say “from the finite set of premisses P1, P2, P3, infer that
the conclusion C holds”.
In short, “from P1, P2, P3, infer C”.
In short, P1,P2,P3 ` C.

Formal methods

A logic is a formal language equipped with a method for making
inferences in this language.

P1: Side AB = Side DE (a “formula” in the formal
language)

P2: Side AC = Side DF (another formula)
P3: ∠BAC = ∠EDF (another formula)
C: ∴ 4ABC ≡ 4DEF (a formula prefixed by

“therefore”)

Domain of discourse is geometry.

We say “from the finite set of premisses P1, P2, P3, infer that
the conclusion C holds”.
In short, “from P1, P2, P3, infer C”.
In short, P1,P2,P3 ` C.

Formal methods (continued)

• Why formal? Weird symbols like ∠ and 4 are used, we
have to be told what they mean.
• Words like “Side” in English (or any other natural language)

are used in a technical sense—in the example above, the
word has nothing to do with its use in “left side” and “right
side” which also happens in English—and we have to be
told what this technical meaning is.
• We are also told when from a given set of formulas

(premisses), we can infer a formula (the conclusion). That
is, the inference method (abbreviated above by `) is also
told to us.

Exercises (Ramanujam 2021)

Question
Evaluate x2 − 1/x − 1 at x = 1.

Question
Evaluate limx→1 x2 − 1/x − 1.

Question
Show that sum of two odd numbers is even.
Domain of discourse is integers.

Question
Solve 2 sin x − 2

√
3 cos x −

√
3 tan x + 3 = 0.

Domain of discourse is angles.

Question (by school student)
If substitution had to be done for verification, why not try it first?

Exercises (Ramanujam 2021)

Question
Evaluate x2 − 1/x − 1 at x = 1.

Question
Evaluate limx→1 x2 − 1/x − 1.

Question
Show that sum of two odd numbers is even.
Domain of discourse is integers.

Question
Solve 2 sin x − 2

√
3 cos x −

√
3 tan x + 3 = 0.

Domain of discourse is angles.

Question (by school student)
If substitution had to be done for verification, why not try it first?

Exercises (Ramanujam 2021)

Question
Evaluate x2 − 1/x − 1 at x = 1.

Question
Evaluate limx→1 x2 − 1/x − 1.

Question
Show that sum of two odd numbers is even.
Domain of discourse is integers.

Question
Solve 2 sin x − 2

√
3 cos x −

√
3 tan x + 3 = 0.

Domain of discourse is angles.

Question (by school student)
If substitution had to be done for verification, why not try it first?

Exercises (Ramanujam 2021)

Question
Evaluate x2 − 1/x − 1 at x = 1.

Question
Evaluate limx→1 x2 − 1/x − 1.

Question
Show that sum of two odd numbers is even.
Domain of discourse is integers.

Question
Solve 2 sin x − 2

√
3 cos x −

√
3 tan x + 3 = 0.

Domain of discourse is angles.

Question (by school student)
If substitution had to be done for verification, why not try it first?

Exercises (Ramanujam 2021)

Question
Evaluate x2 − 1/x − 1 at x = 1.

Question
Evaluate limx→1 x2 − 1/x − 1.

Question
Show that sum of two odd numbers is even.
Domain of discourse is integers.

Question
Solve 2 sin x − 2

√
3 cos x −

√
3 tan x + 3 = 0.

Domain of discourse is angles.

Question (by school student)
If substitution had to be done for verification, why not try it first?

School mathematics (Ramanujam 2021)

• In x + 3 = 5, solve.
• In x + y = 5, x can now take many values.
• In x + y = y + x , x can be any number whatsoever.
• In x = k , k a constant. A variable is a constant?

• Is x2 − 2 = 0 true? Depends on what x ranges over.
• Is the angle sum property true? For angles in the plane.
• Is multiplication repeated addition? For integer multipliers.
• In general Th |= C.

• In factoring, polynomials are expressions.
• In graphing, polynomials are functions.
• In finding roots, polynomials are equations.
• In college math, polynomials are elements of a ring.

School mathematics (Ramanujam 2021)

• In x + 3 = 5, solve.
• In x + y = 5, x can now take many values.
• In x + y = y + x , x can be any number whatsoever.
• In x = k , k a constant. A variable is a constant?

• Is x2 − 2 = 0 true? Depends on what x ranges over.
• Is the angle sum property true? For angles in the plane.
• Is multiplication repeated addition? For integer multipliers.
• In general Th |= C.

• In factoring, polynomials are expressions.
• In graphing, polynomials are functions.
• In finding roots, polynomials are equations.
• In college math, polynomials are elements of a ring.

School mathematics (Ramanujam 2021)

• In x + 3 = 5, solve.
• In x + y = 5, x can now take many values.
• In x + y = y + x , x can be any number whatsoever.
• In x = k , k a constant. A variable is a constant?

• Is x2 − 2 = 0 true? Depends on what x ranges over.
• Is the angle sum property true? For angles in the plane.
• Is multiplication repeated addition? For integer multipliers.
• In general Th |= C.

• In factoring, polynomials are expressions.
• In graphing, polynomials are functions.
• In finding roots, polynomials are equations.
• In college math, polynomials are elements of a ring.

Programs

A programming language is a formal language equipped with
rules which specify how a program in this programming
language is to be executed.

(S1) void mergesort(int *A, unsigned i, unsigned j) {
(S2) int m = (i+j)/2;
(S3) if (i < j)
(S4) {mergesort(A,i,m); ‖ (S5) mergesort(A,m+1,j);}
(S6) merge(A,i,m+1,j);
(S7) }

We might say mergesort([987654321],1,9) = [123456789],
where mergesort is an abbreviation for the finite sequence
S1S2 . . .S7.
A program computes a partial function.

Programs

A programming language is a formal language equipped with
rules which specify how a program in this programming
language is to be executed.

(S1) void mergesort(int *A, unsigned i, unsigned j) {
(S2) int m = (i+j)/2;
(S3) if (i < j)
(S4) {mergesort(A,i,m); ‖ (S5) mergesort(A,m+1,j);}
(S6) merge(A,i,m+1,j);
(S7) }
We might say mergesort([987654321],1,9) = [123456789],
where mergesort is an abbreviation for the finite sequence
S1S2 . . .S7.
A program computes a partial function.

Logic programming (Kowalski 1974)

• So logic is not that different from a programming language.
• This can be taken further, and in languages like Prolog,

logic is itself used as a programming language.
• We will not adopt this approach. For us, logic and

programs are different.

Our view of verification

• Logic is a specification language, and programs are written
in an implementation language.
• Verification means checking that a program (or more

generally a system) which is supposed to implement a
specification actually does so or not.
• Verification may lead to finding a counterexample, which

shows some case in which the system does not implement
the specification.
• This may be a bug in the system, and hence the

implementation has to be changed.
• During an interactive process of verification (or debugging),

one may also find that the specification has to be changed
and then verification (debugging) has to be redone.

Tool jargon

• A theorem prover is a procedure for checking whether an
inference of the form P1,P2, . . . ,Pn ` C is valid or not.
P1,P2, . . . ,Pn and C are all formulas.

• A model checker is a procedure for checking whether an
inference of the form Th |= C is valid or not.
Here C is a formula, but Th is a theory, for example, it
could be integer arithmetic, or it could be a program with
statements S1S2 . . .Sn.
• A sat solver is a procedure for checking whether a formula

is satisfiable, 6` ¬C. That is, ¬C is not a theorem, so it finds
a way of assigning to the variables of formula C so that it
evaluates to true.
• These procedures are algorithmic, but they may fail to

terminate, and the user of the tool may have to manually
terminate it.

Tool jargon

• A theorem prover is a procedure for checking whether an
inference of the form P1,P2, . . . ,Pn ` C is valid or not.
P1,P2, . . . ,Pn and C are all formulas.
• A model checker is a procedure for checking whether an

inference of the form Th |= C is valid or not.
Here C is a formula, but Th is a theory, for example, it
could be integer arithmetic, or it could be a program with
statements S1S2 . . .Sn.

• A sat solver is a procedure for checking whether a formula
is satisfiable, 6` ¬C. That is, ¬C is not a theorem, so it finds
a way of assigning to the variables of formula C so that it
evaluates to true.
• These procedures are algorithmic, but they may fail to

terminate, and the user of the tool may have to manually
terminate it.

Tool jargon

• A theorem prover is a procedure for checking whether an
inference of the form P1,P2, . . . ,Pn ` C is valid or not.
P1,P2, . . . ,Pn and C are all formulas.
• A model checker is a procedure for checking whether an

inference of the form Th |= C is valid or not.
Here C is a formula, but Th is a theory, for example, it
could be integer arithmetic, or it could be a program with
statements S1S2 . . .Sn.
• A sat solver is a procedure for checking whether a formula

is satisfiable, 6` ¬C. That is, ¬C is not a theorem, so it finds
a way of assigning to the variables of formula C so that it
evaluates to true.
• These procedures are algorithmic, but they may fail to

terminate, and the user of the tool may have to manually
terminate it.

Direct or indirect

• Why do this in such a convoluted way?
• Why not just take a program and check what is the (partial)

function that it computes?
• Or why not take a program and check whether giving it the

inputs I1, I2, I3 will produce the output O?

Theorem (Turing 1936)
There is no algorithm which can check the two questions stated
above.
We can, of course, start running the program to check this (or
simulate it in some way) but that defeats the very idea of
verification. Also, how do we simulate the program on every
possible input from an infinite set of values?
Note: Alan Turing’s parents lived in Chhatrapur, Odisha, in 1911. He
was born in London in 1912.

Direct or indirect

• Why do this in such a convoluted way?
• Why not just take a program and check what is the (partial)

function that it computes?
• Or why not take a program and check whether giving it the

inputs I1, I2, I3 will produce the output O?

Theorem (Turing 1936)
There is no algorithm which can check the two questions stated
above.
We can, of course, start running the program to check this (or
simulate it in some way) but that defeats the very idea of
verification. Also, how do we simulate the program on every
possible input from an infinite set of values?
Note: Alan Turing’s parents lived in Chhatrapur, Odisha, in 1911. He
was born in London in 1912.

The verification process

• So we need to look at the system (which has a finite
implementation) and reason about whether some
possibilities can happen or not, and from this infer whether
the specification is met. In short, we need to use logic.
• From Turing’s theorem, we know that it is not possible to

always get an answer to the verification question.
• Another more common reason is that the system, although

finite, may be very large and analyzing it might take a very
long time or may require the tool to use a very large
amount of space. So often the tool may crash, or may have
to be crashed!
• Then we build a coarser model of the system and run the

tool on the model. Hopefully that will not crash.

The verification person

• Becoming a verification expert means that you have to
learn different tools, their specification languages, what
kind of things they can do, what kind of things they cannot.
• Becoming a verification expert also means that you have to

learn how to change parts of the implementation, or the
specification, so that you get the tool to give you an answer.
• Then from this answer try to lift the verification from the

“model” to the “real” implementation and from the formula
to the “real” specification.

Can’t we use machine learning?

• As we develop AI more and take decisions based on them,
we need to come up with explanations as to why the AI
program came up with a certain answer.
• Imagine an AI program grading your Board exam and

deciding that you got 85 marks, whereas someone else
whose exam performance was something like yours, got
95 marks.
• That might have made the other person eligible for some

admission whereas you weren’t, or had to undergo another
test. So you would like an explanation of your 85 marks.

• More seriously, if your self-driving car has an accident, the
insurance company will want an explanation that it was not
some flawed reasoning within the AI program before
deciding to pay for your hospital bills.
• It turns out that what AI calls an explanation has strong

parallels with what logic calls a proof.

Can’t we use machine learning?

• As we develop AI more and take decisions based on them,
we need to come up with explanations as to why the AI
program came up with a certain answer.
• Imagine an AI program grading your Board exam and

deciding that you got 85 marks, whereas someone else
whose exam performance was something like yours, got
95 marks.
• That might have made the other person eligible for some

admission whereas you weren’t, or had to undergo another
test. So you would like an explanation of your 85 marks.
• More seriously, if your self-driving car has an accident, the

insurance company will want an explanation that it was not
some flawed reasoning within the AI program before
deciding to pay for your hospital bills.

• It turns out that what AI calls an explanation has strong
parallels with what logic calls a proof.

Can’t we use machine learning?

• As we develop AI more and take decisions based on them,
we need to come up with explanations as to why the AI
program came up with a certain answer.
• Imagine an AI program grading your Board exam and

deciding that you got 85 marks, whereas someone else
whose exam performance was something like yours, got
95 marks.
• That might have made the other person eligible for some

admission whereas you weren’t, or had to undergo another
test. So you would like an explanation of your 85 marks.
• More seriously, if your self-driving car has an accident, the

insurance company will want an explanation that it was not
some flawed reasoning within the AI program before
deciding to pay for your hospital bills.
• It turns out that what AI calls an explanation has strong

parallels with what logic calls a proof.

Logic of programs (Floyd 1968, Hoare 1969)

To verify a structured program, we associate a correctness
triple {p} C {q} with every construct C in the program. The
precondition p and the postcondition q are formulas in a logic.
eg, {x > 0} x = x-1; {x ≥ 0}
Here are some inference rules for Hoare logic.
STRUCTURED PROGRAMS

` {q[e/x]}x = e;{q} assignment
` {p}C1{q}, ` {q}C2{r}

` {p}C1;C2{r}
sequencing

` {p ∧ b}C1{q}, ` {p ∧ ¬b}C2{q}
` {p}if (b) /*then*/C1 else C2{q}

if

` {q ∧ b}C{q}
` {q}while (b) C{q ∧ ¬b}

while

Propositional logic (de Morgan 1847, Boole 1854)

• Atomic formulas are propositions from a set Prop, which
we do not analyze any further.
• Formulas are built up from atomic formulas using the

boolean operations ∧,∨,¬.

SYNTAX (BACKUS-NAUR/CHOMSKY/CONTEXT-FREE GRAMMAR)
p,q ::= a ∈ Prop | (¬p) | (p ∨ q) | (p ∧ q)
We can construct a parse tree for any well-formed formula (wff).
We can also define derived formulas like (p ⊃ q) def

= ((¬p) ∨ q).
(p ↔ q) def

= ((p ⊃ q) ∧ (q ⊃ p)).

Example: Let a be the proposition “Augustus de Morgan was
born in Madura, Madras presidency”.
Let b be the proposition “Augustus de Morgan was born in
1806”.
Examine the formulas (a ∧ b), (¬a), (¬b), ((¬a) ∨ (¬b)).

Propositional logic (de Morgan 1847, Boole 1854)

• Atomic formulas are propositions from a set Prop, which
we do not analyze any further.
• Formulas are built up from atomic formulas using the

boolean operations ∧,∨,¬.

SYNTAX (BACKUS-NAUR/CHOMSKY/CONTEXT-FREE GRAMMAR)
p,q ::= a ∈ Prop | (¬p) | (p ∨ q) | (p ∧ q)
We can construct a parse tree for any well-formed formula (wff).
We can also define derived formulas like (p ⊃ q) def

= ((¬p) ∨ q).
(p ↔ q) def

= ((p ⊃ q) ∧ (q ⊃ p)).
Example: Let a be the proposition “Augustus de Morgan was
born in Madura, Madras presidency”.
Let b be the proposition “Augustus de Morgan was born in
1806”.
Examine the formulas (a ∧ b), (¬a), (¬b), ((¬a) ∨ (¬b)).

Mathematics in logic (Dedekind 1888, Frege 1893)

• The success of de Morgan and Boole led mathematicians
to wonder if all of mathematics could be described using a
finite set of inference rules.
• Richard Dedekind and Giuseppe Peano began modelling

numbers and calculations on them in logic. It was soon
evident that boolean logic was not sufficient. Peano’s
“mathematical induction” required dealing with “terms”
whose values were numbers and not just true and false.
• Ever since the Greeks, mathematicians had used

statements like “every integer is odd or even”.
• Gottlob Frege invented the formal quantifier such as (∀x),

using which one could say this statement as
(∀x)(odd(x) ∨ even(x)), where the variable x in the right
hand parentheses is bound in the left hand parentheses.

Predicate logic with quantifiers

• The names odd and even that we used are called
predicates (in one variable) and serve the same role as
propositions did in our earlier logic. That is, odd(x) has a
truth value if the variable x is given an integer value.
• So now we have two kinds of things.
• Terms are built up from variables and constant symbols

using function symbols (eg, numbers with +,×). The value
of a term is in a domain of discourse such as the integers.

• Atomic formulas are built up from terms by applying an
n-ary predicate symbol to n terms. For example, the binary
relational operators <,≤, >,≥,=, 6= return boolean value.
• Formulas are built up from atomic formulas using the

boolean operations ∧,∨,¬ and quantifiers (∀x), (∃x).
A formula can only take a boolean value true or false.

Predicate logic with quantifiers

• The names odd and even that we used are called
predicates (in one variable) and serve the same role as
propositions did in our earlier logic. That is, odd(x) has a
truth value if the variable x is given an integer value.
• So now we have two kinds of things.
• Terms are built up from variables and constant symbols

using function symbols (eg, numbers with +,×). The value
of a term is in a domain of discourse such as the integers.
• Atomic formulas are built up from terms by applying an

n-ary predicate symbol to n terms. For example, the binary
relational operators <,≤, >,≥,=, 6= return boolean value.
• Formulas are built up from atomic formulas using the

boolean operations ∧,∨,¬ and quantifiers (∀x), (∃x).
A formula can only take a boolean value true or false.

Verification of programs with data structures

• Rod Burstall 1969 pointed out that you need to do
induction on the data type (eg, lists)
• Zohar Manna and Richard Waldinger 1985, 1990 present

theories for inducting over commonly used data types, and
techniques which theorem provers can employ to use
them. For example, in proving programs with lists, we
might use the inductive predicate list taking a sequence of
values (the “data” in the list) and a natural number (an
“index” or “position” in the list):
list ε i def

= i = nil , and
list aV i def

= head(i) = a ∧ list V tail(i)

List program

Let list V i say that i points to a list of items V .
What does this program do?

pre {list V i}
j = null;
while (i != null) {

k = i->next;
i->next = j;
j = i;
i = k;

}

List reversal: program

Let list ε i def
= i = nil ,

and list aV i def
= ((i → val) = a) ∧ (list V (i → next)).

How do we prove this program?

pre {list V i}
j = null;
while (i != null) {

k = i->next;
i->next = j;
j = i;
i = k;

}
post {list V R j}

List reversal: top level proof

? has separation built-in, and we can define precise assertions:
list ε i def

= i = nil and list aV i def
= ∃j(i 7→ (a, j) ? list V j).

pre {list V i}
j = null;
inv {∃W ,X ((list W i ? list X j) ∧ V R = W RX)}
while (i != null) {
{∃a,W ,X ((list aW i ? list X j) ∧ V R = (aW)RX)}
k = i->next;
i->next = j;
j = i;
i = k;

inv {∃W ,X ((list W i ? list X j) ∧ V R = W RX)}
}
post {list V R j}

List reversal: proof of loop body

pre {∃a,W ,X ((list aW i ? list X j) ∧ V R = (aW)RX)}
=⇒{∃a,W ,X , k((i 7→ a, k ? list W k ? list X j)∧V R = (aW)RX)}

k = i->next;

{∃a,W ,X ((i 7→ a, k ? list W k ? list X j) ∧ V R = (aW)RX)}
i->next = j;
{∃a,W ,X ((i 7→ a, j ? list W k ? list X j) ∧ V R = (aW)RX)}

=⇒{∃a,W ,X ((list W k ? list aX i) ∧ V R = W RaX)}
=⇒{∃W ,X ((list W k ? list X i) ∧ V R = W RX)}

j = i; i = k;
post {∃W ,X ((list W i ? list X j) ∧ V R = W RX)}

Theorem (Cook 1978)
Given expressive loop invariants and intermediate assertions,
theorem proving in Floyd-Hoare logic reduces to theorem
proving in first-order logic (in polynomial time).

List reversal: proof of loop body

pre {∃a,W ,X ((list aW i ? list X j) ∧ V R = (aW)RX)}
=⇒{∃a,W ,X , k((i 7→ a, k ? list W k ? list X j)∧V R = (aW)RX)}

k = i->next;
{∃a,W ,X ((i 7→ a, k ? list W k ? list X j) ∧ V R = (aW)RX)}
i->next = j;

{∃a,W ,X ((i 7→ a, j ? list W k ? list X j) ∧ V R = (aW)RX)}
=⇒{∃a,W ,X ((list W k ? list aX i) ∧ V R = W RaX)}
=⇒{∃W ,X ((list W k ? list X i) ∧ V R = W RX)}

j = i; i = k;
post {∃W ,X ((list W i ? list X j) ∧ V R = W RX)}

Theorem (Cook 1978)
Given expressive loop invariants and intermediate assertions,
theorem proving in Floyd-Hoare logic reduces to theorem
proving in first-order logic (in polynomial time).

List reversal: proof of loop body

pre {∃a,W ,X ((list aW i ? list X j) ∧ V R = (aW)RX)}
=⇒{∃a,W ,X , k((i 7→ a, k ? list W k ? list X j)∧V R = (aW)RX)}

k = i->next;
{∃a,W ,X ((i 7→ a, k ? list W k ? list X j) ∧ V R = (aW)RX)}
i->next = j;
{∃a,W ,X ((i 7→ a, j ? list W k ? list X j) ∧ V R = (aW)RX)}

=⇒{∃a,W ,X ((list W k ? list aX i) ∧ V R = W RaX)}
=⇒{∃W ,X ((list W k ? list X i) ∧ V R = W RX)}

j = i; i = k;
post {∃W ,X ((list W i ? list X j) ∧ V R = W RX)}

Theorem (Cook 1978)
Given expressive loop invariants and intermediate assertions,
theorem proving in Floyd-Hoare logic reduces to theorem
proving in first-order logic (in polynomial time).

List reversal: proof of loop body

pre {∃a,W ,X ((list aW i ? list X j) ∧ V R = (aW)RX)}
=⇒{∃a,W ,X , k((i 7→ a, k ? list W k ? list X j)∧V R = (aW)RX)}

k = i->next;
{∃a,W ,X ((i 7→ a, k ? list W k ? list X j) ∧ V R = (aW)RX)}
i->next = j;
{∃a,W ,X ((i 7→ a, j ? list W k ? list X j) ∧ V R = (aW)RX)}

=⇒{∃a,W ,X ((list W k ? list aX i) ∧ V R = W RaX)}

=⇒{∃W ,X ((list W k ? list X i) ∧ V R = W RX)}
j = i; i = k;

post {∃W ,X ((list W i ? list X j) ∧ V R = W RX)}

Theorem (Cook 1978)
Given expressive loop invariants and intermediate assertions,
theorem proving in Floyd-Hoare logic reduces to theorem
proving in first-order logic (in polynomial time).

List reversal: proof of loop body

pre {∃a,W ,X ((list aW i ? list X j) ∧ V R = (aW)RX)}
=⇒{∃a,W ,X , k((i 7→ a, k ? list W k ? list X j)∧V R = (aW)RX)}

k = i->next;
{∃a,W ,X ((i 7→ a, k ? list W k ? list X j) ∧ V R = (aW)RX)}
i->next = j;
{∃a,W ,X ((i 7→ a, j ? list W k ? list X j) ∧ V R = (aW)RX)}

=⇒{∃a,W ,X ((list W k ? list aX i) ∧ V R = W RaX)}
=⇒{∃W ,X ((list W k ? list X i) ∧ V R = W RX)}

j = i; i = k;

post {∃W ,X ((list W i ? list X j) ∧ V R = W RX)}

Theorem (Cook 1978)
Given expressive loop invariants and intermediate assertions,
theorem proving in Floyd-Hoare logic reduces to theorem
proving in first-order logic (in polynomial time).

List reversal: proof of loop body

pre {∃a,W ,X ((list aW i ? list X j) ∧ V R = (aW)RX)}
=⇒{∃a,W ,X , k((i 7→ a, k ? list W k ? list X j)∧V R = (aW)RX)}

k = i->next;
{∃a,W ,X ((i 7→ a, k ? list W k ? list X j) ∧ V R = (aW)RX)}
i->next = j;
{∃a,W ,X ((i 7→ a, j ? list W k ? list X j) ∧ V R = (aW)RX)}

=⇒{∃a,W ,X ((list W k ? list aX i) ∧ V R = W RaX)}
=⇒{∃W ,X ((list W k ? list X i) ∧ V R = W RX)}

j = i; i = k;
post {∃W ,X ((list W i ? list X j) ∧ V R = W RX)}

Theorem (Cook 1978)
Given expressive loop invariants and intermediate assertions,
theorem proving in Floyd-Hoare logic reduces to theorem
proving in first-order logic (in polynomial time).

List reversal: proof of loop body

pre {∃a,W ,X ((list aW i ? list X j) ∧ V R = (aW)RX)}
=⇒{∃a,W ,X , k((i 7→ a, k ? list W k ? list X j)∧V R = (aW)RX)}

k = i->next;
{∃a,W ,X ((i 7→ a, k ? list W k ? list X j) ∧ V R = (aW)RX)}
i->next = j;
{∃a,W ,X ((i 7→ a, j ? list W k ? list X j) ∧ V R = (aW)RX)}

=⇒{∃a,W ,X ((list W k ? list aX i) ∧ V R = W RaX)}
=⇒{∃W ,X ((list W k ? list X i) ∧ V R = W RX)}

j = i; i = k;
post {∃W ,X ((list W i ? list X j) ∧ V R = W RX)}

Theorem (Cook 1978)
Given expressive loop invariants and intermediate assertions,
theorem proving in Floyd-Hoare logic reduces to theorem
proving in first-order logic (in polynomial time).

