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FOL satisfaction (Alfred Tarski 1933)
t ::= x ∈ V | c ∈ C | f (t1, . . . , tn), f ∈ Fn
A ::= P(t1, . . . , tn), P ∈ Rn | t1 ≈ t2 | True | False

| (¬A) | (A ∨ B) | (A ∧ B) | (A ⊃ B) | (A ≡ B) | ∃xA | ∀xA

Definition (Given M = (D, I), assignment s : V → D)

• Assignment r is an x-variant of s if r , s differ at most on the
value assigned to variable x.
• Satisfaction of formula A extends that of ZOL:

M, s |= P(t1, . . . , tn) iff (t I,s
1 , . . . , t I,s

n ) ∈ I(P)
. . .
M, s |= ∀xA iff M, r |= A for all r x-variant of s
M, s |= ∃xA iff M, r |= A for some r x-variant of s

(Thus r ranges over mapping x to all values in D)

Exercise (Coincidence lemma)
Show that if assignments s, r coincide on the free variables of
formula A, then M, s |= A iff M, r |= A.



Prenex normal form algorithm (Thoralf Skolem 1920)

Theorem (Kroening and Strichman, Lemma 9.5)
There is a linear-time algorithm to convert an FOL sentence
into prenex normal form, preserving validity.
Example: {∀x(∃yA(y) ∨ (∃zB(z) ⊃ C(x)))}

1 Eliminate operators other than ¬,∧,∨:
{∀x(∃yA(y) ∨ (¬∃zB(z) ∨ C(x)))}

2 Push negations inside:
{∀x(∃yA(y) ∨ (∀z¬B(z) ∨ C(x)))}

3 Rename to get distinct variables
4 Move quantifiers out:
{∀x∃y∀z(A(y) ∨ (¬B(z) ∨ C(x))}



Axiom systems (Bernays, Hilbert-Ackermann 1928)

t ::= x ∈ V | c ∈ C | f (t1, . . . , tn), f ∈ Fn
A ::= P(t1, . . . , tn), P ∈ Rn | t1 ≈ t2 | True | False

| (¬A) | (A ∨ B) | (A ∧ B) | (A ⊃ B) | (A ≡ B) | ∃xA | ∀xA

Proof system fHB: zHB +
(UInst) ∀xA(x) ⊃ A(t), (EInst) A(t) ⊃ ∃xA(x)
(UGen) If ` A ⊃ B(p), then ` A ⊃ ∀xB(x), for p parameter not
occurring in A, ∀xB
(UGen) If ` A ⊃ ¬B(p), then ` A ⊃ ¬∃xB(x), for p parameter
not occurring in A, ∃xB

One can get derived rules like:
(EGen) If ` A(p) ⊃ B, then ` ∃xA(x) ⊃ B, provided p
parameter not occurring in A,∃xB

Exercise (Witness)
Show that if ∃xA(x) is consistent, so is A(p) where p is a fresh
parameter.



Soundness

• (UInst) easily sound. BD axiom ∀x∀y(x + y ≈ y + x)
implies ∀y(3 + y ≈ y + 3) which implies 3 + 2 ≈ 2 + 3.
• Soundness of (UGen) can also be seen by an example.

Suppose you are trying to show that for every real x ,
x2 + 1 ≥ 2x . Then one way to write this is:
• Let p be a (parametric) real number. Then so is p − 1 and

0 ≤ (p − 1)2 = p2 − 2p + 1 = (p2 + 1)− 2p. The result
follows.

• Since p is arbitrary, its interpretation could be any element
of the domain. The result holds for every real x .



Proofs

Derivation from theory Th = {∀x(P(x) ⊃ Q(x)), ∀xP(x)}:
1 ∀xP(x) Premiss
2 P(p) 1,UInst
3 ∀x(P(x) ⊃ Q(x)) Premiss
4 P(p) ⊃ Q(p) 3,UInst
5 Q(p) 2,4,MP
6 ∀xQ(x) UGen

Derivation from theory {∀yR(p, y)}:
1 ∀yR(p, y) Premiss
2 R(p,q) 1,UInst
3 ∃xR(x ,q) 2,EGen
4 ∀y∃xR(x , y) 3,UGen

By the Deduction theorem, ∀yR(p, y) ⊃ ∀y∃xR(x , y).
By (EGen), ∃x∀yR(x , y) ⊃ ∀y∃xR(x , y).

Exercise
Show that the converse does not hold.
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Conversion to prenex normal form

Derivation from theory {∀x∃y∀z(A(y) ∨ (B(z) ⊃ C(x))}:

1 ∃y∀z(A(y) ∨ (B(z) ⊃ C(p))) Premiss,UInst
2 ∃y(A(y) ∨ (B(t) ⊃ C(p))) 1.1UInst ,EGen
3 ∃yA(y) ∨ (∃zB(z) ⊃ C(p)) 2,EInst ,PC,EGen
4 ∀x(∃yA(y) ∨ (∃zB(z) ⊃ C(x))) 3,UGen

Derivation from theory {∀x(∃yA(y) ∨ (∃zB(z) ⊃ C(x)))}:

1 ∃yA(y) ∨ (∃zB(z) ⊃ C(q)) Premiss,UInst
2 A(p) ` A(p) ∨ (B(u) ⊃ C(q)) PC
3 ∃yA(y) ` A(p) ∨ (B(u) ⊃ C(q)) 2,EGen,Ded
4 ¬B(u) ` B(u) ⊃ C(q) PC
5 ¬∃zB(z) ` A(p) ∨ (B(u) ⊃ C(q)) 4,UInst ,Ded
6 C(q) ` A(p) ∨ B(u) ⊃ C(q) PC
7 A(p) ∨ (B(u) ⊃ C(q)) 3,5,6,Or ,1,MP
8 ∀x∃y∀z(A(y) ∨ (B(z) ⊃ C(x)) 7,UGen,EGen,UGen
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FOL Deduction theorem (Hilbert-Bernays 1934)

Theorem (Deduction, Fitting, Theorem 6.5.1)
For theory Th, formulas A,B and a Hilbert-Bernays proof
system with (Positive paradox), (Self-distribution) and only the
inference rules (MP),(UGen),(EGen),
Th ∪ {A} ` B iff Th ` (A ⊃ B).

Proof.
One of the cases considered in the deduction from Th ∪ {A} will
now be that Zj = Y ⊃ B(p) and a later Zi = Y ⊃ ∀xB(x).

Parameter p cannot occur in Y ,∀xB, and we can assume p
does not occur in A and in the derivation from Th ∪ {A}.

We are trying to construct a new derivation from Th, where we
have A ⊃ (Y ⊃ B(p)) derived by induction in the place of Zj .

By PL (A ∧ Y ) ⊃ B(p). As p does not occur in Y ,∀xB,A,
(UGen) gives (A ∧ Y ) ⊃ ∀xB(x). Again PL derives
A ⊃ (Y ⊃ ∀xB(x)), as required in the place of Zi .
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FOL Hintikka theory (Jaakko Hintikka 1955)

Definition (Fitting, Definition 5.7.1)
An FOL Hintikka theory Th (also called downwards consistent)
has the following conditions in addition to propositional ones.

1 False,¬True /∈ Th; for P in At, {P,¬P} 6⊆ Th
2 . . . and so on for the propositional conditions seen earlier
3 If ∀xA in Th, then {A(t) | t closed term} ⊆ Th
4 If ¬∃xA in Th, then {¬A(t) | t closed term} ⊆ Th

5 If ∃xA in Th, then A(p) ∈ Th for fresh parameter p

6 If ¬∀xA in Th, then ¬A(p) ∈ Th for fresh parameter p

Thus Hintikka closure of single sentence
∀x∀y(E(x , y) ⊃ E(y , x)) will convert a directed graph into an
undirected graph.

Items (5) and (6) of the definition are tricky.


