

First-order syntax and proofs

Text: Melvin Fitting, *FOLATP* (2nd ed.), Sections 5.7,6.5,9.3;
Daniel Kroening and Ofer Strichman, *DP*, Section 9.2.1

Kamal Lodaya

March 2021

FOL satisfaction (Alfred Tarski 1933)

$t ::= x \in V \mid c \in C \mid f(t_1, \dots, t_n), f \in F_n$

$A ::= P(t_1, \dots, t_n), P \in R_n \mid t_1 \approx t_2 \mid \text{True} \mid \text{False}$

$\mid (\neg A) \mid (A \vee B) \mid (A \wedge B) \mid (A \supset B) \mid (A \equiv B) \mid \exists x A \mid \forall x A$

Definition (Given $M = (D, I)$, assignment $s : V \rightarrow D$)

- Assignment r is an *x-variant* of s if r, s differ at most on the value assigned to variable x .
- Satisfaction of formula A extends that of ZOL:

$M, s \models P(t_1, \dots, t_n)$ iff $(t_1^{l,s}, \dots, t_n^{l,s}) \in I(P)$

...

$M, s \models \forall x A$ iff $M, r \models A$ for all r *x-variant* of s

$M, s \models \exists x A$ iff $M, r \models A$ for some r *x-variant* of s

(Thus r ranges over mapping x to all values in D)

Exercise (Coincidence lemma)

Show that if assignments s, r coincide on the free variables of formula A , then $M, s \models A$ iff $M, r \models A$.

Prenex normal form algorithm (Thoralf Skolem 1920)

Theorem (Kroening and Strichman, Lemma 9.5)

There is a linear-time algorithm to convert an FOL sentence into prenex normal form, preserving validity.

Example: $\{\forall x(\exists y A(y) \vee (\exists z B(z) \supset C(x)))\}$

- ① Eliminate operators other than \neg, \wedge, \vee :

$$\{\forall x(\exists y A(y) \vee (\neg \exists z B(z) \vee C(x)))\}$$

- ② Push negations inside:

$$\{\forall x(\exists y A(y) \vee (\forall z \neg B(z) \vee C(x)))\}$$

- ③ Rename to get distinct variables

- ④ Move quantifiers out:

$$\{\forall x \exists y \forall z (A(y) \vee (\neg B(z) \vee C(x)))\}$$

Axiom systems (Bernays, Hilbert-Ackermann 1928)

$t ::= x \in V \mid c \in C \mid f(t_1, \dots, t_n), f \in F_n$

$A ::= P(t_1, \dots, t_n), P \in R_n \mid t_1 \approx t_2 \mid \text{True} \mid \text{False}$

$\mid (\neg A) \mid (A \vee B) \mid (A \wedge B) \mid (A \supset B) \mid (A \equiv B) \mid \exists x A \mid \forall x A$

Proof system fHB: zHB +

(UInst) $\forall x A(x) \supset A(t)$, (EInst) $A(t) \supset \exists x A(x)$

(UGen) If $\vdash A \supset B(p)$, then $\vdash A \supset \forall x B(x)$, for p parameter not occurring in $A, \forall x B$

(UGen) If $\vdash A \supset \neg B(p)$, then $\vdash A \supset \neg \exists x B(x)$, for p parameter not occurring in $A, \exists x B$

One can get derived rules like:

(EGen) If $\vdash A(p) \supset B$, then $\vdash \exists x A(x) \supset B$, provided p parameter not occurring in $A, \exists x B$

Exercise (Witness)

Show that if $\exists x A(x)$ is consistent, so is $A(p)$ where p is a fresh parameter.

- (UIInst) easily sound. BD axiom $\forall x \forall y (x + y \approx y + x)$ implies $\forall y (3 + y \approx y + 3)$ which implies $3 + 2 \approx 2 + 3$.
- Soundness of (UGen) can also be seen by an example. Suppose you are trying to show that for every real x , $x^2 + 1 \geq 2x$. Then one way to write this is:
- Let p be a (parametric) real number. Then so is $p - 1$ and $0 \leq (p - 1)^2 = p^2 - 2p + 1 = (p^2 + 1) - 2p$. The result follows.
- Since p is arbitrary, its interpretation could be any element of the domain. The result holds for every real x .

Derivation from theory $Th = \{\forall x(P(x) \supset Q(x)), \forall xP(x)\}$:

- 1 $\forall xP(x)$ *Premiss*
- 2 $P(p)$ *1, UInst*
- 3 $\forall x(P(x) \supset Q(x))$ *Premiss*
- 4 $P(p) \supset Q(p)$ *3, UInst*
- 5 $Q(p)$ *2, 4, MP*
- 6 $\forall xQ(x)$ *UGen*

Derivation from theory $Th = \{\forall x(P(x) \supset Q(x)), \forall xP(x)\}$:

- 1 $\forall xP(x)$ *Premiss*
- 2 $P(p)$ *1, UInst*
- 3 $\forall x(P(x) \supset Q(x))$ *Premiss*
- 4 $P(p) \supset Q(p)$ *3, UInst*
- 5 $Q(p)$ *2, 4, MP*
- 6 $\forall xQ(x)$ *UGen*

Derivation from theory $\{\forall yR(p, y)\}$:

- 1 $\forall yR(p, y)$ *Premiss*
- 2 $R(p, q)$ *1, UInst*
- 3 $\exists xR(x, q)$ *2, EGen*
- 4 $\forall y\exists xR(x, y)$ *3, UGen*

Derivation from theory $Th = \{\forall x(P(x) \supset Q(x)), \forall xP(x)\}$:

1	$\forall xP(x)$	Premiss
2	$P(p)$	1, UInst
3	$\forall x(P(x) \supset Q(x))$	Premiss
4	$P(p) \supset Q(p)$	3, UInst
5	$Q(p)$	2, 4, MP
6	$\forall xQ(x)$	UGen

Derivation from theory $\{\forall yR(p, y)\}$:

1	$\forall yR(p, y)$	Premiss
2	$R(p, q)$	1, UInst
3	$\exists xR(x, q)$	2, EGen
4	$\forall y\exists xR(x, y)$	3, UGen

By the Deduction theorem, $\forall yR(p, y) \supset \forall y\exists xR(x, y)$.

By (EGen), $\exists x\forall yR(x, y) \supset \forall y\exists xR(x, y)$.

Exercise

Show that the converse does not hold.

Conversion to prenex normal form

Derivation from theory $\{\forall x \exists y \forall z (A(y) \vee (B(z) \supset C(x)))\}$:

- 1 $\exists y \forall z (A(y) \vee (B(z) \supset C(p)))$ Premiss, *UInst*
- 2 $\exists y (A(y) \vee (B(t) \supset C(p)))$ 1.1 *UInst, EGen*
- 3 $\exists y A(y) \vee (\exists z B(z) \supset C(p))$ 2, *EInst, PC, EGen*
- 4 $\forall x (\exists y A(y) \vee (\exists z B(z) \supset C(x)))$ 3, *UGen*

Conversion to prenex normal form

Derivation from theory $\{\forall x \exists y \forall z (A(y) \vee (B(z) \supset C(x)))\}$:

- 1 $\exists y \forall z (A(y) \vee (B(z) \supset C(p)))$ Premiss, *UInst*
- 2 $\exists y (A(y) \vee (B(t) \supset C(p)))$ 1.1 *UInst*, *EGen*
- 3 $\exists y A(y) \vee (\exists z B(z) \supset C(p))$ 2, *EInst*, *PC*, *EGen*
- 4 $\forall x (\exists y A(y) \vee (\exists z B(z) \supset C(x)))$ 3, *UGen*

Derivation from theory $\{\forall x (\exists y A(y) \vee (\exists z B(z) \supset C(x)))\}$:

- 1 $\exists y A(y) \vee (\exists z B(z) \supset C(q))$ Premiss, *UInst*
- 2 $A(p) \vdash A(p) \vee (B(u) \supset C(q))$ *PC*
- 3 $\exists y A(y) \vdash A(p) \vee (B(u) \supset C(q))$ 2, *EGen*, *Ded*
- 4 $\neg B(u) \vdash B(u) \supset C(q)$ *PC*
- 5 $\neg \exists z B(z) \vdash A(p) \vee (B(u) \supset C(q))$ 4, *UInst*, *Ded*
- 6 $C(q) \vdash A(p) \vee B(u) \supset C(q)$ *PC*
- 7 $A(p) \vee (B(u) \supset C(q))$ 3, 5, 6, *Or*, 1, *MP*
- 8 $\forall x \exists y \forall z (A(y) \vee (B(z) \supset C(x)))$ 7, *UGen*, *EGen*, *UGen*

FOL Deduction theorem (Hilbert-Bernays 1934)

Theorem (Deduction, Fitting, Theorem 6.5.1)

For theory Th , formulas A, B and a Hilbert-Bernays proof system with (Positive paradox), (Self-distribution) and only the inference rules (MP), (UGen), (EGen),

$Th \cup \{A\} \vdash B$ iff $Th \vdash (A \supset B)$.

Proof.

One of the cases considered in the deduction from $Th \cup \{A\}$ will now be that $Z_j = Y \supset B(p)$ and a later $Z_i = Y \supset \forall x B(x)$.

FOL Deduction theorem (Hilbert-Bernays 1934)

Theorem (Deduction, Fitting, Theorem 6.5.1)

For theory Th , formulas A, B and a Hilbert-Bernays proof system with (Positive paradox), (Self-distribution) and only the inference rules (MP), (UGen), (EGen),

$Th \cup \{A\} \vdash B$ iff $Th \vdash (A \supset B)$.

Proof.

One of the cases considered in the deduction from $Th \cup \{A\}$ will now be that $Z_j = Y \supset B(p)$ and a later $Z_i = Y \supset \forall x B(x)$.

Parameter p cannot occur in $Y, \forall x B$, and we can assume p does not occur in A and in the derivation from $Th \cup \{A\}$.

FOL Deduction theorem (Hilbert-Bernays 1934)

Theorem (Deduction, Fitting, Theorem 6.5.1)

For theory Th , formulas A, B and a Hilbert-Bernays proof system with (Positive paradox), (Self-distribution) and only the inference rules (MP), (UGen), (EGen),

$Th \cup \{A\} \vdash B$ iff $Th \vdash (A \supset B)$.

Proof.

One of the cases considered in the deduction from $Th \cup \{A\}$ will now be that $Z_j = Y \supset B(p)$ and a later $Z_i = Y \supset \forall x B(x)$.

Parameter p cannot occur in $Y, \forall x B$, and we can assume p does not occur in A and in the derivation from $Th \cup \{A\}$.

We are trying to construct a new derivation from Th , where we have $A \supset (Y \supset B(p))$ derived by induction in the place of Z_j .

FOL Deduction theorem (Hilbert-Bernays 1934)

Theorem (Deduction, Fitting, Theorem 6.5.1)

For theory Th , formulas A, B and a Hilbert-Bernays proof system with (Positive paradox), (Self-distribution) and only the inference rules (MP), (UGen), (EGen),

$Th \cup \{A\} \vdash B$ iff $Th \vdash (A \supset B)$.

Proof.

One of the cases considered in the deduction from $Th \cup \{A\}$ will now be that $Z_j = Y \supset B(p)$ and a later $Z_i = Y \supset \forall x B(x)$.

Parameter p cannot occur in $Y, \forall x B$, and we can assume p does not occur in A and in the derivation from $Th \cup \{A\}$.

We are trying to construct a new derivation from Th , where we have $A \supset (Y \supset B(p))$ derived by induction in the place of Z_j .

By PL $(A \wedge Y) \supset B(p)$. As p does not occur in $Y, \forall x B, A$, (UGen) gives $(A \wedge Y) \supset \forall x B(x)$. Again PL derives $A \supset (Y \supset \forall x B(x))$, as required in the place of Z_j .

FOL Hintikka theory (Jaakko Hintikka 1955)

Definition (Fitting, Definition 5.7.1)

An *FOL Hintikka theory Th* (also called *downwards consistent*) has the following conditions in addition to propositional ones.

- ① *False, \neg True \notin Th; for P in At, $\{P, \neg P\} \not\subseteq$ Th*
- ② *... and so on for the propositional conditions seen earlier*
- ③ *If $\forall x A$ in Th, then $\{A(t) \mid t$ closed term $\} \subseteq$ Th*
- ④ *If $\neg \exists x A$ in Th, then $\{\neg A(t) \mid t$ closed term $\} \subseteq$ Th*
- ⑤ *If $\exists x A$ in Th, then $A(p) \in$ Th for fresh parameter p*
- ⑥ *If $\neg \forall x A$ in Th, then $\neg A(p) \in$ Th for fresh parameter p*

Thus Hintikka closure of single sentence

$\forall x \forall y (E(x, y) \supset E(y, x))$ will convert a directed graph into an undirected graph.

Items (5) and (6) of the definition are tricky.