

Logic of Equality and Uninterpreted Functions (EUF)

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

26, 28 Apr and 03 Mar 2021

Outline

- 1 Motivation
- 2 Solving EUF
- 3 Removing Constants
- 4 Congruence Closure
- 5 Ackermann's Reduction
- 6 Equality graphs
- 7 Bryant's Approach
- 8 Simplification using Equality Graphs

Logic of Equality and Uninterpreted Functions (EUF) (KS Ch 4)

- Boolean combinations of equality predicates.

EUF syntax

(Formula) $\varphi ::= Atom \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \neg \varphi$

(Atom) $Atom ::= Term = Term$

(Term) $Term ::= Var \mid Const \mid F(Term)$

Example formula φ_1

$$(x_1 = x_2) \wedge (x_2 = x_3) \wedge (F(x_1) \neq F(x_3)).$$

Example formula φ_2

$$F(x) = F(G(y)) \vee x = y$$

Questions we want to answer

Given an EUF formula φ :

- **Satisfiability**: Does there exist (M, v) , with $M = (D, I)$ and $D = \mathbb{Z}$ (or any infinite domain), such that $M, v \models \varphi$.
- **Validity**: Does $M, v \models \varphi$, for *every* (M, v) , with $M = (D, I)$ and $D = \mathbb{Z}$ (or any infinite domain).

Exercise:

- Give examples of satisfiable, unsatisfiable, valid EUF formulas.
- What is the relation between satisfiability and validity?

Importance of EUF logic

Many practical applications. Arguing correctness of

- Program transformation, compilation.
- Pipelining in a hardware circuit.

Example: Are these programs equivalent?

S1: $z := (x_1 + y_1) * (x_2 + y_2);$

T1: u1 := (x1 + y1)

T2: u2 := (x2 + y2)

T3: $z := u1 * u2$

We want to check whether:

$$[u_1 = x_1 + y_1 \wedge u_2 = x_2 + y_2 \wedge z = u_1 * u_2] \implies z = (x_1 + y_1) * (x_2 + y_2).$$

We could check whether the EUF formula is valid

$$[u_1 = F(x_1, y_1) \wedge u_2 = F(x_2, y_2) \wedge z = G(u_1, u_2)] \implies z = G(F(x_1, y_1), F(x_2, y_2)).$$

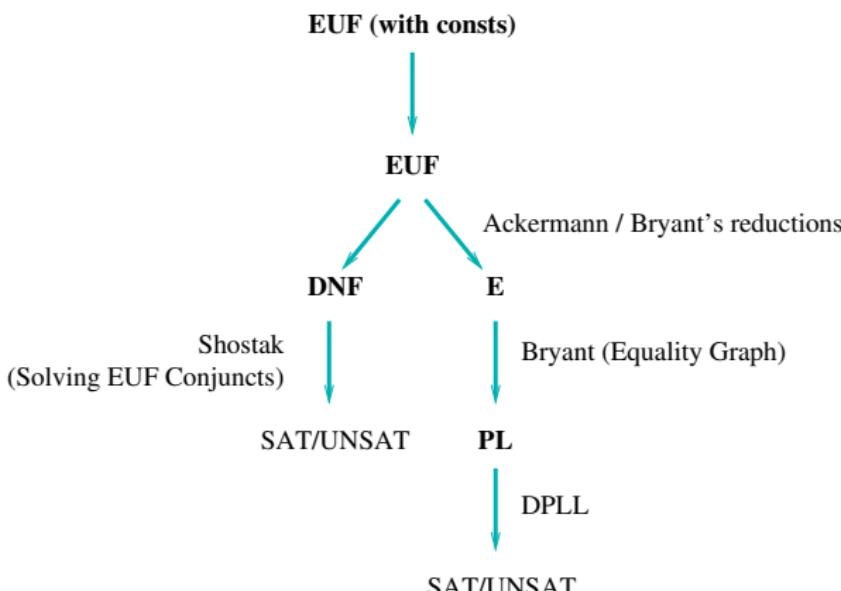
How do we decide satisfiability of EUF formulas?

How?

How do we decide satisfiability of EUF formulas?

How?

Strategies we will look at:



A brute-force algorithm

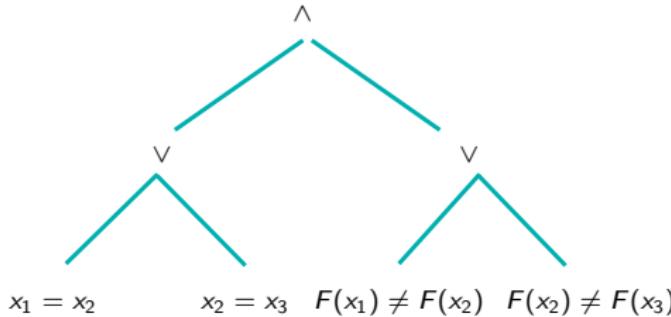
Given EUF formula φ :

- 1 Let V be the variables in φ , and let k be the number of distinct terms in φ .
- 2 Let $U = \{1, \dots, k\}$
- 3 For each possible valuation v of V over U , check if $v \models \varphi$.
- 4 If some v satisfies φ , output SAT; else output UNSAT.

Example

Example

$$(x_1 = x_2 \vee x_2 = x_3) \wedge (F(x_1) \neq F(x_2) \vee F(x_2) \neq F(x_3))$$

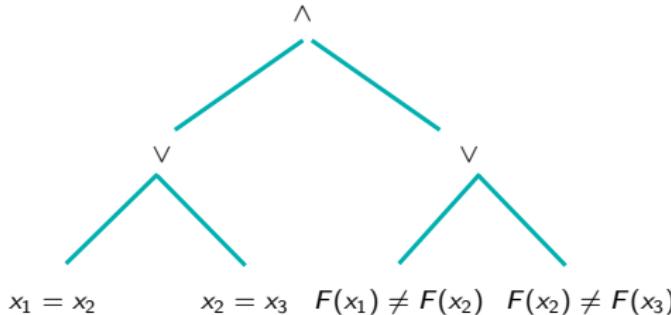


Correctness?

Example

Example

$$(x_1 = x_2 \vee x_2 = x_3) \wedge (F(x_1) \neq F(x_2) \vee F(x_2) \neq F(x_3))$$



Correctness? Claim: If M, v satisfies φ , then we can construct M', v' such that $M', v' \models \varphi$, and v' is over U .

Getting rid of constants (KS Sec 4.1.3)

Given φ in EUF (with consts), replace each constant k in φ by a new variable c_k and add conjuncts saying that $c_k \neq c_{k'}$ for each distinct constants k, k' . Example: Replace φ

$$(y = z \wedge z \neq 1) \vee ((x \neq z) \wedge x = 2)$$

by equisatisfiable φ' :

$$[(y = z \wedge z \neq c_1) \vee ((x \neq z) \wedge x = c_2)] \wedge (c_1 \neq c_2).$$

Claim: φ is satisfiable iff φ' is.

Congruence Closure Algorithm (Shostak 1978) (KS Sec 4.3)

Given EUF formula φ as **conjunction** of literals:

- 1 Consider all subterms t of φ .
- 2 If $(t_1 = t_2)$ is a predicate in φ , put t_1, t_2 in the same equivalence class. All other terms in their own singleton equivalence classes.
- 3 If two classes share a term, merge them.
- 4 Apply congruence closure: If t_1 and t_2 are in the same equivalence class, then merge the equivalence classes of $F(t_1)$ and $F(t_2)$.
- 5 If there is a disequality $t_1 \neq t_2$ in φ , with t_1 and t_2 in the same equivalence class, return UNSAT. Else return SAT.

Example:

$$(x_1 = x_2) \wedge (x_2 = x_3) \wedge (x_4 = x_5) \wedge (x_5 \neq x_1) \wedge (F(x_1) \neq F(x_3)).$$

Correctness?

Congruence Closure Algorithm (Shostak 1978) (KS Sec 4.3)

Given EUF formula φ as **conjunction** of literals:

- 1 Consider all subterms t of φ .
- 2 If $(t_1 = t_2)$ is a predicate in φ , put t_1, t_2 in the same equivalence class. All other terms in their own singleton equivalence classes.
- 3 If two classes share a term, merge them.
- 4 Apply congruence closure: If t_1 and t_2 are in the same equivalence class, then merge the equivalence classes of $F(t_1)$ and $F(t_2)$.
- 5 If there is a disequality $t_1 \neq t_2$ in φ , with t_1 and t_2 in the same equivalence class, return UNSAT. Else return SAT.

Example:

$$(x_1 = x_2) \wedge (x_2 = x_3) \wedge (x_4 = x_5) \wedge (x_5 \neq x_1) \wedge (F(x_1) \neq F(x_3)).$$

Correctness? Claim: Algo is correct if it outputs SAT/UNSAT.

Ackermann's reduction (KS Sec 11.2.1)

Given EUF formula φ output E formula:

$$\varphi_{flat} \wedge FC_\varphi,$$

where φ_{flat} replaces function applications like $F(G(x))$ by $f(g_1)$ etc. and FC encodes **functional consistency**:

$$x = y \implies F(x) \implies F(y).$$

Claim: φ is sat/valid iff $\varphi_{flat} \wedge FC_\varphi$ is sat/valid.

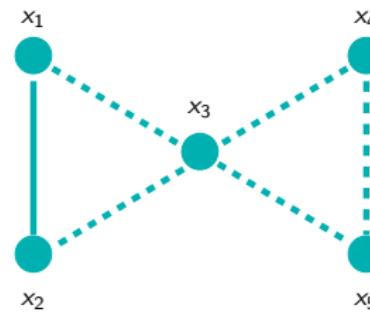
Exercise

Exercise: Give Ackermann's reduction for this formula

$$(x_1 = x_2) \implies F(F(G(x_1))) = F(F(G(x_2))).$$

Equality graph induced by an E formula (KS Sec 11.3)

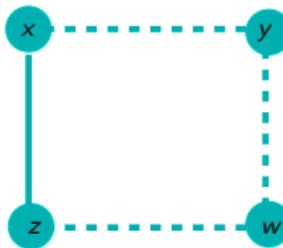
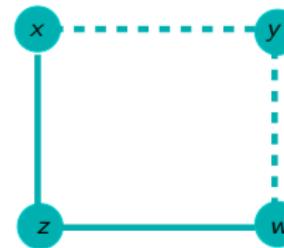
Let φ be a E formula. Then the equality graph G_φ induced by φ is an undirected graph with nodes as variables and “- - -” edge (x_i, x_j) iff the literal $x_i = x_j$ occurs in φ , and “—” edge (x_i, x_j) iff the literal $x_i \neq x_j$ occurs in φ .



- Contradictory cycles (cycle with **exactly one** disequality edge).
- Is an **abstraction** of the original formula.
- Can be used to simplify an E formula.

Contradictory Cycles

A conjunction φ of equality constraints is satisfiable **iff** the equality graph G_φ induced by φ has no contradictory cycles.



Proof (Exercise).

Solving E-formulas: DNF approach

Example φ

$$x = y \wedge [(y = z \wedge \neg(x = z)) \vee (y = z \wedge \neg(x = w))].$$

$$e(\varphi): \quad e_{xy} \wedge [(e_{yz} \wedge \neg e_{xz}) \vee (e_{yz} \wedge \neg e_{xw})].$$

Convert $e(\varphi)$ to DNF and check each disjunct using equality graph.

Solving E-formulas: DPLL(T) approach (KS Sec 3.4)

Example φ

$$x = y \wedge [(y = z \wedge \neg(x = z)) \vee (y = z \wedge \neg(x = w))].$$

$$e(\varphi): \quad e_{xy} \wedge [(e_{yz} \wedge \neg e_{xz}) \vee (e_{yz} \wedge \neg e_{xw})].$$

Check satisfiability of $e(\varphi)$ using DPLL:

- ① If $e(\varphi)$ is SAT, check if satisfying assignment is T -valid;
 - If T -valid, then return SAT;
 - If not T -valid, add negation of the assignment as conflicting clause to $e(\varphi)$, and go back Step 1.
- ② If UNSAT, report UNSAT.

Bryant's Graph-Based reduction of E to PL (KS Sec 11.5)

Given E formula φ output PL formula:

$$e(\varphi) \wedge \mathcal{B}_{trans},$$

where $e(\varphi)$ replaces each literal $x_i = x_j$ by a propositional symbol p_{ij} , and \mathcal{B}_{trans} encodes transitivity constraints based on the non-polar graph induced by φ .

Bryant's Graph-Based reduction of E to PL (KS Sec 11.5)

Given E formula φ output PL formula:

$$e(\varphi) \wedge \mathcal{B}_{trans},$$

where $e(\varphi)$ replaces each literal $x_i = x_j$ by a propositional symbol p_{ij} , and \mathcal{B}_{trans} encodes transitivity constraints based on the non-polar graph induced by φ .

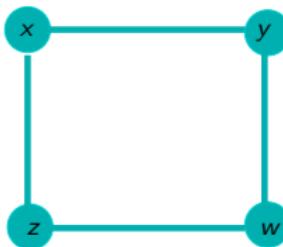
Claim: φ is equisatisfiable with $e(\varphi) \wedge \mathcal{B}_{trans}$.

Bryant's Graph-Based reduction: Example

Example φ

$$x = y \wedge [(y = w \wedge w = z \wedge \neg(x = z)) \vee (y = w \wedge \neg(w = z))].$$

$$e(\varphi): \quad e_{xy} \wedge [(e_{wy} \wedge e_{wz} \wedge \neg e_{xz}) \vee (e_{wy} \wedge \neg e_{wz})].$$



G_φ^{NP} :

\mathcal{B}_{trans} :

$$(e_{xy} \wedge e_{wy} \wedge e_{wz}) \implies e_{xz} \wedge$$

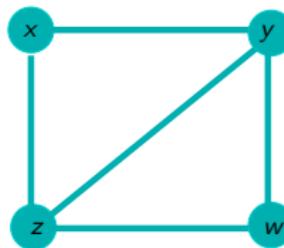
$$(e_{wy} \wedge e_{wz} \wedge e_{xz}) \implies e_{xy} \wedge$$

$$(e_{wz} \wedge e_{xz} \wedge e_{xy}) \implies e_{wy} \wedge$$

$$(e_{xz} \wedge e_{xy} \wedge e_{wy}) \implies e_{wz}$$

Bryant's Graph-Based reduction: Using chordal graphs

Make $G_{\mathcal{C}}^{NP}$ **chordal** (every simple cycle of ≥ 4 vertices has a chord).



Sufficient to check no contradictory triangles [Bryant-Velev CAV 2000]:

$\mathcal{B}_{\text{trans}}$:

$$\begin{aligned}
 (e_{xy} \wedge e_{yz}) &\implies e_{xz} \wedge \\
 (e_{yz} \wedge e_{xz}) &\implies e_{xy} \wedge \\
 (e_{xz} \wedge e_{xy}) &\implies e_{yz} \wedge \\
 (e_{wy} \wedge e_{wz}) &\implies e_{yz} \wedge \\
 (e_{wz} \wedge e_{yz}) &\implies e_{wy} \wedge \\
 (e_{yz} \wedge e_{wy}) &\implies e_{wz}.
 \end{aligned}$$

Using equality graph to simplify E formulas

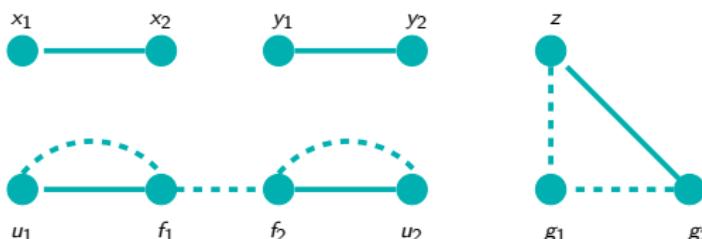
Given E formula φ :

- 1 Construct equality graph G_φ for φ .
- 2 If a literal does **not** occur as part of a contradictory cycle in G_φ , set it to *true*. Obtain φ' in this way.
- 3 Simplify φ' and go back to Step 2.
- 4 Output φ' as equisatisfiable to φ .

Equality graph: example

Example

$$\begin{aligned}
 & (u_1 \neq f_1 \vee y_1 \neq y_2 \vee f_1 = f_2) \wedge \\
 & (x_1 \neq x_2 \vee u_2 \neq f_2 \vee g_1 = g_2) \wedge \\
 & (u_1 = f_1 \wedge u_2 = f_2 \wedge z = g_1 \wedge z \neq g_2).
 \end{aligned}$$



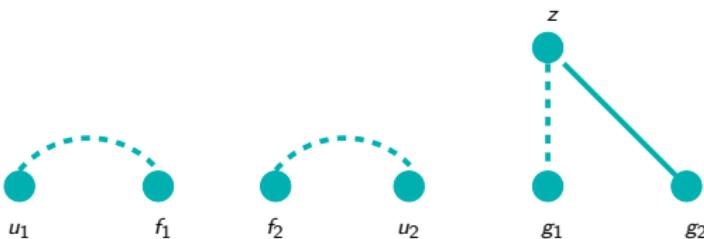
$$\begin{aligned}
 & (u_1 \neq f_1 \vee \text{true} \vee \text{true}) \wedge \\
 & (\text{true} \vee u_2 \neq f_2 \vee g_1 = g_2) \wedge \\
 & (u_1 = f_1 \wedge u_2 = f_2 \wedge z = g_1 \wedge z \neq g_2).
 \end{aligned}$$

Simplifies to:

$$u_1 \equiv f_1 \wedge u_2 \equiv f_2 \wedge z \equiv g_1 \wedge z \neq g_2$$

Equality graph: example contd.

$$u_1 = f_1 \wedge u_2 = f_2 \wedge z = g_1 \wedge z \neq g_2.$$



true \wedge *true* \wedge *true* \wedge *true*.

Simplifies to:

true.