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Logic of Equality and Uninterpreted Functions (EUF) (KS
Ch 4)

Boolean combinations of equality predicates.

EUF syntax

(Formula) ϕ ::= Atom | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ
(Atom) Atom ::= Term = Term
(Term) Term ::= Var | Const | F (Term)

Example formula ϕ1

(x1 = x2) ∧ (x2 = x3) ∧ (F (x1) 6= F (x3)).

Example formula ϕ2

F (x) = F (G (y)) ∨ x = y



Motivation Solving EUF Removing Constants Congruence Closure Ackermann’s Reduction Equality graphs Bryant’s Approach Simplication using Equality Graphs

Questions we want to answer

Given an EUF formula ϕ:

Satisfiability: Does there exist (M, v), with M = (D, I ) and
D = Z (or any infinite domain), such that M, v � ϕ.

Validity: Does M, v � ϕ, for every (M, v), with M = (D, I )
and D = Z (or any infinite domain).

Exercise:

Give examples of satisfiable, unsatisfiable, valid EUF formulas.

What is the relation between satisfiabililty and validity?
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Importance of EUF logic

Many practical applications. Arguing correctness of:

Program transformation, compilation.

Pipelining in a hardware circuit.

Example: Are these programs equivalent?

S1: z := (x1 + y1) * (x2 + y2); T1: u1 := (x1 + y1);

T2: u2 := (x2 + y2);

T3: z := u1 * u2;

We want to check whether:

[u1 = x1+y1∧u2 = x2+y2∧z = u1∗u2] =⇒ z = (x1+y1)∗(x2+y2).

We could check whether the EUF formula is valid:

[u1 = F (x1, y1) ∧ u2 = F (x2, y2) ∧ z = G (u1, u2)] =⇒
z = G (F (x1, y1),F (x2, y2)).
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How do we decide satisfiability of EUF formulas?

How?

Strategies we will look at:

EUF (with consts)

EUF

DNF

SAT/UNSAT

Shostak

E

PL

SAT/UNSAT

Bryant (Equality Graph)

Ackermann / Bryant’s reductions

(Solving EUF Conjuncts)

DPLL
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A brute-force algorithm

Given EUF formula ϕ:

1 Let V be the variables in ϕ, and let k be the number of
distinct terms in ϕ.

2 Let U = {1, . . . , k}
3 For each possible valuation v of V over U, check if u � ϕ.

4 If some v satisfies ϕ, output SAT; else output UNSAT.
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Example

Example

(x1 = x2 ∨ x2 = x3) ∧ (F (x1) 6= F (x2) ∨ F (x2) 6= F (x3))

∧

F (x1) 6= F (x2)

∨ ∨

x1 = x2 x2 = x3 F (x2) 6= F (x3)

Correctness?

Claim: If M, v satisfies ϕ, then we can construct
M ′, v ′ such that M ′, v ′ � ϕ, and v ′ is over U.
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Getting rid of constants (KS Sec 4.1.3)

Given ϕ in EUF (with consts), replace each constant k in ϕ by a
new variable ck and add conjuncts saying that ck 6= ck ′ for each
distinct constants k, k ′. Example: Replace ϕ

(y = z ∧ z 6= 1) ∨ ((x 6= z) ∧ x = 2)

by equisatisfiable ϕ′:

[(y = z ∧ z 6= c1) ∨ ((x 6= z) ∧ x = c2)] ∧ (c1 6= c2).

Claim: ϕ is satisfiable iff ϕ′ is.
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Congruence Closure Algorithm (Shostak 1978) (KS
Sec 4.3)

Given EUF formula ϕ as conjunction of literals:
1 Consider all subterms t of ϕ.
2 If (t1 = t2) is a predicate in ϕ, put t1, t2 in the same

equivalence class. All other terms in their own singleton
equivalence classes.

3 If two classes share a term, merge them.
4 Apply congruence closure: If t1 and t2 are in the same

equivalence class, then merge the equivalence classes of F (t1)
and F (t2).

5 If there is a disequality t1 6= t2 in ϕ, with t1 and t2 in the
same equivalence class, return UNSAT. Else return SAT.

Example:

(x1 = x2) ∧ (x2 = x3) ∧ (x4 = x5) ∧ (x5 6= x1) ∧ (F (x1) 6= F (x3)).

Correctness?

Claim: Algo is correct if it outputs SAT/UNSAT.
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Ackermann’s reduction (KS Sec 11.2.1)

Given EUF formula ϕ output E formula:

ϕflat ∧ FCϕ,

where ϕflat replaces function applications like F (G (x)) by f (g1)
etc, and FC encodes functional consistency:

x = y =⇒ F (x) =⇒ F (y).

Claim: ϕ is sat/valid iff ϕflat ∧ FCϕ is sat/valid.
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Exercise

Exercise: Give Ackermann’s reduction for this formula

(x1 = x2) =⇒ F (F (G (x1))) = F (F (G (x2))).
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Equality graph induced by an E formula (KS Sec 11.3)

Let ϕ be a E formula. Then the equality graph Gϕ induced by ϕ is
an undirected graph with nodes as variables and “- - -”edge (xi , xj)
iff the literal xi = xj occurs in ϕ, and “—”edge (xi , xj) iff the
literal xi 6= xj occurs in ϕ.

x3

x2 x5

x4x1

Contradictory cycles (cycle with exactly one disequality edge).

Is an abstraction of the original formula.

Can be used to simplify an E formula.
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Contradictory Cycles

A conjunction ϕ of equality constraints is satisfiable iff the equality
graph Gϕ induced by ϕ has no contradictory cycles.

x

z w

yx

z w

y

Proof (Exercise).
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Solving E-formulas: DNF approach

Example ϕ

x = y ∧ [(y = z ∧ ¬(x = z)) ∨ (y = z ∧ ¬(x = w))].

e(ϕ): exy ∧ [(eyz ∧ ¬exz) ∨ (eyz ∧ ¬exw )].

Convert e(ϕ) to DNF and check each disjunct using equality graph.
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Solving E-formulas: DPLL(T) approach (KS Sec 3.4)

Example ϕ

x = y ∧ [(y = z ∧ ¬(x = z)) ∨ (y = z ∧ ¬(x = w))].

e(ϕ): exy ∧ [(eyz ∧ ¬exz) ∨ (eyz ∧ ¬exw )].

Check satisfiabilty of e(ϕ) using DPLL:
1 If e(ϕ) is SAT, check if satisfying assignment is T -valid;

If T -valid, then return SAT;
If not T -valid, add negation of the assignment as conflicting
clause to e(ϕ), and go back Step 1.

2 If UNSAT, report UNSAT.
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Bryant’s Graph-Based reduction of E to PL (KS Sec 11.5)

Given E formula ϕ output PL formula:

e(ϕ) ∧ Btrans ,

where e(ϕ) replaces each literal xi = xj by a propositional symbol
pij , and Btrans encodes transitivity constraints based on the
non-polar graph induced by ϕ.

Claim: ϕ is equisatisfiable with e(ϕ) ∧ Btrans .
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Bryant’s Graph-Based reduction: Example

Example ϕ

x = y ∧ [(y = w ∧ w = z ∧ ¬(x = z)) ∨ (y = w ∧ ¬(w = z))].

e(ϕ): exy ∧ [(ewy ∧ ewz ∧ ¬exz) ∨ (ewy ∧ ¬ewz)].

GNP
ϕ :

x

z w

y

Btrans :

(exy ∧ ewy ∧ ewz) =⇒ exz ∧
(ewy ∧ ewz ∧ exz) =⇒ exy ∧
(ewz ∧ exz ∧ exy ) =⇒ ewy ∧
(exz ∧ exy ∧ ewy ) =⇒ ewz
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Bryant’s Graph-Based reduction: Using chordal graph

Make GNP
ϕ chordal (every simple cycle of ≥ 4 vertices has a chord).

x

z w

y

Sufficient to check no contradictary triangles [Bryant-Velev CAV
2000):

Btrans :

(exy ∧ eyz) =⇒ exz ∧
(eyz ∧ exz) =⇒ exy ∧
(exz ∧ exy ) =⇒ eyz ∧
(ewy ∧ ewz) =⇒ eyz ∧
(ewz ∧ eyz) =⇒ ewy ∧
(eyz ∧ ewy ) =⇒ ewz .



Motivation Solving EUF Removing Constants Congruence Closure Ackermann’s Reduction Equality graphs Bryant’s Approach Simplication using Equality Graphs

Using equality graph to simplify E formulas

Given E formula ϕ:

1 Construct equality graph Gϕ for ϕ.

2 If a literal does not occur as part of a contradictory cycle in
Gϕ, set it to true. Obtain ϕ′ in this way.

3 Simplify ϕ′ and go back to Step 2.

4 Ouput ϕ′ as equisatisfiable to ϕ.
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Equality graph: example

Example

(u1 6= f1 ∨ y1 6= y2 ∨ f1 = f2) ∧
(x1 6= x2 ∨ u2 6= f2 ∨ g1 = g2) ∧
(u1 = f1 ∧ u2 = f2 ∧ z = g1 ∧ z 6= g2).

x1 x2 y1 y2

f1 f2 u2 g1 g2

z

u1

(u1 6= f1 ∨ true ∨ true) ∧
(true ∨ u2 6= f2 ∨ g1 = g2) ∧
(u1 = f1 ∧ u2 = f2 ∧ z = g1 ∧ z 6= g2).

Simplifies to:

u1 = f1 ∧ u2 = f2 ∧ z = g1 ∧ z 6= g2.
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Equality graph: example contd.

u1 = f1 ∧ u2 = f2 ∧ z = g1 ∧ z 6= g2.

f1 f2 u2 g1 g2

z

u1

true ∧ true ∧ true ∧ true.

Simplifies to:
true.
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