Logic of Equality and Uninterpreted Functions
(EUF)

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

26, 28 Apr and 03 Mar 2021

Outline

@ Motivation

© Solving EUF

© Removing Constants
@ Congruence Closure
© Ackermann’s Reduction
© Equality graphs

@ Bryant’s Approach

© Simplication using Equality Graphs

Motivation
®00

Logic of Equality and Uninterpreted Functions (EUF) (KS
Ch 4)

@ Boolean combinations of equality predicates.

EUF syntax

(Formula) ¢ := Atom | o Ap | oV | mp
(Atom) Atom ::= Term = Term
(Term) Term ::= Var | Const | F(Term)

Example formula ¢3

| 5\

(X1 = X2) N (X2 = X3) VAN (F(Xl) =4 F(X3)).

\

Example formula ¢»

Motivation
oeo

Questions we want to answer

Given an EUF formula ¢:

e Satisfiability: Does there exist (M, v), with M = (D,) and
D = Z (or any infinite domain), such that M, v F .

e Validity: Does M, v E ¢, for every (M, v), with M = (D,)
and D = Z (or any infinite domain).

Exercise:
o Give examples of satisfiable, unsatisfiable, valid EUF formulas.

@ What is the relation between satisfiabililty and validity?

Motivation

ooe

Importance of EUF logic

Many practical applications. Arguing correctness of:
@ Program transformation, compilation.
@ Pipelining in a hardware circuit.

Example: Are these programs equivalent?

S1: z := (x1 + y1) * (x2 + y2); Ti: ul := (x1 + y1);
T2: u2 := (x2 + y2);
T3: z := ul * u2;
We want to check whether:

[t1 = x1+y1Au = xo+yaNz = k] = z = (x1+y1)*(xe+y2).

We could check whether the EUF formula is valid:

[un = F(xt,y1) Ne = F(x2,y2) Nz = G(u1,)] =
z = G(F(x1,y1), F(x2,y2)).

Solving EUF
®00

How do we decide satisfiability of EUF formulas?

How?

Solving EUF
®00

How do we decide satisfiability of EUF formulas?

How?

Strategies we will look at:

EUF (with consts)

EUF
/ \Ackermann / Bryant’s reductions
DNF E

Shostak
(Solving EUF Conjuncts)

Bryant (Equality Graph)

SAT/UNSAT PL

DPLL

SAT/UNSAT

Solving EUF
oeo

A brute-force algorithm

Given EUF formula ¢:

©Q Let V be the variables in ¢, and let k be the number of
distinct terms in .

Q Let U=1{1,...,k}
© For each possible valuation v of V over U, check if uF ¢.
@ If some v satisfies , output SAT; else output UNSAT.

Solving EUF
ooe

Example

(X1 =XV Xo = X3) VAN (F(Xl) ;é F(Xz) V F(Xg) 7& F(X3))

N

N
/\/\

X2 =x3 F(x)# F(e) FOe)# F(xs)

Correctness?

Solving EUF
ooe

Example

(x1=xVx2=x3)A(F(x1) # F(x2) V F(x2) # F(x3))
/\
/\ N\

X2 =x3 F(x)# F(e) FOe)# F(xs)

Correctness? Claim: If M, v satisfies ¢, then we can construct
M’,v' such that M’, v/ = ¢, and v/ is over U.

Removing Constants
°

Getting rid of constants (KS Sec 4.1.3)

Given ¢ in EUF (with consts), replace each constant k in ¢ by a
new variable ¢, and add conjuncts saying that ¢, # ¢, for each
distinct constants k, k’. Example: Replace ¢

(y=zAz#1)V((x#2z)Ax=2)

by equisatisfiable ¢’
[(y=zAz#a)V((x#z)Ax=a)]A(c #).

Claim: ¢ is satisfiable iff ¢’ is.

Congruence Closure

Congruence Closure Algorithm (Shostak 1978) (KS
Sec 4.3)

Given EUF formula ¢ as conjunction of literals:

© Consider all subterms t of .

@ If (t; = tp) is a predicate in @, put t1, tp in the same
equivalence class. All other terms in their own singleton
equivalence classes.

© If two classes share a term, merge them.

@ Apply congruence closure: If t; and ty are in the same
equivalence class, then merge the equivalence classes of F(t1)
and F(t2).

© If there is a disequality t; # t» in ¢, with t; and ¢y in the
same equivalence class, return UNSAT. Else return SAT.

Example:
(x1 =x2) A (x2=x3) A (xa =x5) A (x5 # x1) A (F(x1) # F(x3)).

Correctness?

Congruence Closure

Congruence Closure Algorithm (Shostak 1978) (KS
Sec 4.3)

Given EUF formula ¢ as conjunction of literals:

© Consider all subterms t of .

@ If (t; = tp) is a predicate in @, put t1, tp in the same
equivalence class. All other terms in their own singleton
equivalence classes.

© If two classes share a term, merge them.

@ Apply congruence closure: If t; and ty are in the same
equivalence class, then merge the equivalence classes of F(t1)
and F(t2).

© If there is a disequality t; # t» in ¢, with t; and ¢y in the
same equivalence class, return UNSAT. Else return SAT.

Example:
(x1 =x2) A (x2=x3) A (xa =x5) A (x5 # x1) A (F(x1) # F(x3)).
Correctness? Claim: Algo is correct if it outputs SAT /UNSAT.

Ackermann’s Reduction
[1}

Ackermann’s reduction (KS Sec 11.2.1)

Given EUF formula ¢ output E formula:
©ofiat N FCy,

where g, replaces function applications like F(G(x)) by f(g1)
etc, and FC encodes functional consistency:

x=y = F(x) = F(y).

Claim: ¢ is sat/valid iff pgae A FC,, is sat/valid.

Ackermann’s Reduction
oce

Exercise

Exercise: Give Ackermann’s reduction for this formula

(xi =) = F(F(G(x1))) = F(F(G(x2))).

Equality graphs
®000

Equality graph induced by an E formula (KS Sec 11.3)

Let ¢ be a E formula. Then the equality graph G, induced by ¢ is
an undirected graph with nodes as variables and - - -"edge (x;, xj)
iff the literal x; = x; occurs in ¢, and “—"edge (x;, x;) iff the
literal x; # x; occurs in .

X1 X4
0. @
S PRGN
‘e X3 * i
. o* "
- .
[:
-
"¢ .]
. .]
* * 1
g -
[ol K
X2 X5

e Contradictory cycles (cycle with exactly one disequality edge).
@ Is an abstraction of the original formula.
@ Can be used to simplify an E formula.

Equality graphs
0®00

Contradictory Cycles

A conjunction ¢ of equality constraints is satisfiable iff the equality
graph G, induced by ¢ has no contradictory cycles.

Proof (Exercise).

Equality graphs
fe1eX Yol

Solving E-formulas: DNF approach

e(y): ey N [(eyz A ez) V()2 A)]
Convert e(¢) to DNF and check each disjunct using equality graph.

Equality graphs
oooe

Solving E-formulas: DPLL(T) approach (KS Sec 3.4)

e(i): xy A (e A) V (2 A)]

Check satisfiabilty of e(y) using DPLL:
O If e(y) is SAT, check if satisfying assignment is T-valid;

o If T-valid, then return SAT;
e If not T-valid, add negation of the assignment as conflicting
clause to e(¢p), and go back Step 1.

@ If UNSAT, report UNSAT.

Bryant's Approach
®00

Bryant's Graph-Based reduction of E to PL (KS Sec 11.5)

Given E formula ¢ output PL formula:

e(@) A Bitrans,

where e(¢) replaces each literal x; = x; by a propositional symbol
pij, and Berans encodes transitivity constraints based on the
non-polar graph induced by .

Bryant's Approach
®00

Bryant's Graph-Based reduction of E to PL (KS Sec 11.5)

Given E formula ¢ output PL formula:

e(@) A Bitrans,

where e(¢) replaces each literal x; = x; by a propositional symbol
pij, and Berans encodes transitivity constraints based on the
non-polar graph induced by .

Claim: ¢ is equisatisfiable with e() A Birans-

Bryant's Approach
oceo

Bryant's Graph-Based reduction: Example

x=yAN[y=wAw=zA=(x=2))V(y=wA—(w=2))].

e(y): ey A [(ewy A ewz A —ez) V (eny A —ewz)].

NP.
GIVP.

(exy N euwy N ewz) = ez A

Bours: (ewy Newz Nez) = ey A

rans: (ewz N ez Ney) = ey A
(exz N exy A wy) = ez

Bryant's Approach
ocoe

Bryant's Graph-Based reduction: Using chordal graph

Make GJ,VP chordal (every simple cycle of > 4 vertices has a chord).

Sufficient to check no contradictary triangles [Bryant-Velev CAV
2000):

(e NEy) = e A

(eyz Nez) = ey A
Boare: (ez Ney) = e A
(ewy N ewz) = ey A
(ewz Neyz) = ewy A
(eyz N ewy) = ews.

Using equality graph to simplify E formulas

Given E formula ¢:
@ Construct equality graph G, for ¢.
@ If a literal does not occur as part of a contradictory cycle in
G,, set it to true. Obtain ¢’ in this way.
© Simplify ¢’ and go back to Step 2.
© Ouput ¢’ as equisatisfiable to .

Equality graph: example

(n#aVyn#yrVhi=~06)A
(xi#ExVim#hLVg =g)A
(m=AANwm=hANz=g ANz+#g).

1 y2 z

X1 X2
o—eo o—o o

(u1 # AV true V true) A

(trueVus #hHV gL =g) A

(i=AANwm=hANz=gNz+#g).
Simplifies to:

h — A Als —F N7 — 04 N\ 7 £ o5

Equality graph: example contd.

m=LANw=hANz=g Nz#g.

82

true N true N true N true.

Simplifies to:
true.

	Motivation
	Solving EUF
	Removing Constants
	Congruence Closure
	Ackermann's Reduction
	Equality graphs
	Bryant's Approach
	Simplication using Equality Graphs

