
Bit Vector Arithmetic

Nabarun Deka Prathamesh Patil

18th May, 2021

Nabarun Deka, Prathamesh Patil Bit Vector Arithmetic 18th May, 2021 1 / 16



Bit Vector Arithmetic

A computer uses bit vectors to store information such as numbers.
When we perform operations on these numbers, the computer does so
on the bit vectors, which can lead to errors.

For example, suppose we are working with 2 bit long bit vectors. We
can represent the integer 3 as 11 and 1 as 01 in bit vector form.
However when we add 3 and 1, we get 00 which is the representation
of 0, since the extra bit is truncated.

To make sense of such inaccuracies, we study bit vector arithmetic.

Nabarun Deka, Prathamesh Patil Bit Vector Arithmetic 18th May, 2021 2 / 16



Syntax

Grammar

formula: formula ∧ formula | ¬ formula | atom
atom: term rel term | Boolean Variable | term[constant]
rel : < | =
term : term op term | Bit Vector | ∼ term | constant Bit Vector |
atom?term:term | term[constant: constant] | ext(term)
op : +| − | · |/| << | >> |&| | | ⊗ |◦

The grammar only mentions ∧ and ¬ as boolean operators. We can
create the rest, like ∨, using these two.

Similarly, the grammar only allows us < and = as relational
operators, but we can have the rest by taking Boolean combinations
of the given operators.

For example, we can have a ≤ b by writing ¬(b < a).

Nabarun Deka, Prathamesh Patil Bit Vector Arithmetic 18th May, 2021 3 / 16



Semantics

Bit Vector: A bit vector b is a sequence of bits, which can have the
value 0 or 1. The sequence has length l . The ith bit of b is denoted
by bi . The set of all bit vectors of length l is denoted by bvecl .

Each bit vector is associated with a type, which is the length of the
bit vector and whether it is signed or unsigned.

Nabarun Deka, Prathamesh Patil Bit Vector Arithmetic 18th May, 2021 4 / 16



Semantics

Binary Encoding (Unsigned): A bit vector b of length l is a binary
encoding of a natural number x iff

x = 〈b〉U =
l−1∑
i=0

bi · 2i

Two’s Complement (Signed): A bit vector b of length l is the
two’s complement of an integer x iff

x = 〈b〉S =
l−2∑
i=0

bi · 2i − bl−1 · 2l−1

The difference is in the interpretation of the bit vector. For example,
if b = 1100, then 〈b〉U = 8 + 4 = 12 and 〈b〉S = −8 + 4 = −4.

Nabarun Deka, Prathamesh Patil Bit Vector Arithmetic 18th May, 2021 5 / 16



Semantics

Observe that, for a given bit vector b of length l , 〈b〉U = 〈b〉S
mod 2l .

This is because, by definition,

〈b〉U =
l−1∑
i=0

bi · 2i − 2l mod 2l

which evaluates to

〈b〉U =
l−2∑
i=0

bi · 2i − bl−1 · 2l−1 mod 2l = 〈b〉S mod 2l

Nabarun Deka, Prathamesh Patil Bit Vector Arithmetic 18th May, 2021 6 / 16



Bitwise Operators

Bitwise operators are operators like & and | which operate on given bit
vectors one bit at a time.

Bitwise And &: Suppose a, b and c are bit vectors of length l . Then
c = a&b iff

ci = ai ∧ bi

Bitwise Or |: Suppose a, b and c are bit vectors of length l . Then
c = a | b iff

ci = ai ∨ bi

Bitwise Negation ∼: Suppose a and b are bit vectors of length l .
Then a =∼ b iff

ai = ¬bi

Bitwise XOR ⊗: Suppose a, b and c are bit vectors of length l .
Then c = a⊗ b iff

ci = (ai ∨ bi ) ∧ (¬ai ∨ ¬bi )

Nabarun Deka, Prathamesh Patil Bit Vector Arithmetic 18th May, 2021 7 / 16



Arithmetic Operators

Arithmetic operators are operators like + and · which operate on the
numbers represented by given bit vectors.

Addition +: Suppose a, b and c are bit vectors of length l . Then

a +U b = c ⇐⇒ 〈a〉U + 〈b〉U = 〈c〉U mod 2l

a +S b = c ⇐⇒ 〈a〉S + 〈b〉S = 〈c〉S mod 2l

Observe that

〈a〉S + 〈b〉S = 〈c〉S mod 2l ⇐⇒ 〈a〉U + 〈b〉U = 〈c〉U mod 2l

Thus, we may drop the subscript on the + symbol.

We define subtraction similarly to addition. Due to above
observation, we need not write the subscript for − symbol either.

Nabarun Deka, Prathamesh Patil Bit Vector Arithmetic 18th May, 2021 8 / 16



Arithmetic Operators

Multiplication ·: Suppose a, b and c are bit vectors of length l . Then

a ·U b = c ⇐⇒ 〈a〉U · 〈b〉U = 〈c〉U mod 2l

a ·S b = c ⇐⇒ 〈a〉S · 〈b〉S = 〈c〉S mod 2l

Again, we may drop the subscript on the · symbol since

〈a〉S · 〈b〉S = 〈c〉S mod 2l ⇐⇒ 〈a〉U · 〈b〉U = 〈c〉U mod 2l

Nabarun Deka, Prathamesh Patil Bit Vector Arithmetic 18th May, 2021 9 / 16



Arithmetic Operators

Division /: Suppose a, b and c are bit vectors of length l . Then

a/Ub = c ⇐⇒ floor(〈a〉U/〈b〉U) = 〈c〉U mod 2l

a/Sb = c ⇐⇒ floor(〈a〉S/〈b〉S) = 〈c〉S mod 2l

This definition runs into trouble when the vector b represents 0, since
there can be no such c if 〈b〉U = 0 or 〈b〉S = 0. A possible solution
may be to fix the quotient, that is c , to a bit vector constant when
〈b〉U = 0 or 〈b〉S = 0.

Nabarun Deka, Prathamesh Patil Bit Vector Arithmetic 18th May, 2021 10 / 16



Relational Operators

Relational operators, like < and =, compare the numbers represented by
given bit vectors.

Equality = : Suppose a and b are bit vectors of length l . Then,
a = b iff

〈a〉U = 〈b〉U
Clearly, 〈a〉U = 〈b〉U is equivalent to 〈a〉S = 〈b〉S
Less than < : Suppose a and b are bit vectors of length l . Then
a < b if the number represented by a (according to the encoding
corresponding to its type) is less than the number represented by b.

For example, the signed bit vector b = 1100 is less than unsigned b
since 〈b〉S = −4 < 12 = 〈b〉U .

The other relational operators, such as ≤, are interpreted similarly.

Nabarun Deka, Prathamesh Patil Bit Vector Arithmetic 18th May, 2021 11 / 16



Shifting Operators

Shifting operators shift the bits in a given bit vector to the left or to the
right.

Left Shift << : Suppose a and c are bit vectors with length l and b
is an unsigned bit vector such that 〈b〉U ≤ l . Then a << b = c iff
ci = ai−〈b〉U when i ≥ 〈b〉U and ci = 0 otherwise.

Right Shift for unsigned bit vectors >> : Suppose a and c are
unsigned bit vectors with length l and b is an unsigned bit vector
such that 〈b〉U ≤ l . Then a >> b = c iff ci = ai+〈b〉U when
i < l − 〈b〉U and ci = 0 otherwise.

Right Shift for signed bit vectors >> : Suppose a and c are
signed bit vectors with length l and b is an unsigned bit vector such
that 〈b〉U ≤ l . Then a >> b = c iff ci = ai+〈b〉U when i < l − 〈b〉U
and ci = al−1 otherwise.

Nabarun Deka, Prathamesh Patil Bit Vector Arithmetic 18th May, 2021 12 / 16



Other Operators

Extension Operator ext() :Suppose a is a bit vector of length l and
b is a bit vector of length m. Let l ≤ m. Then,

ext[m]U(a) = b ⇐⇒ 〈a〉U = 〈b〉U

Here, the subscript [m]U on the operator indicates that the resulting
bit vector has length m and is unsigned. We may switch U with S to
get a signed bit vector.

Concatenation ◦ :Suppose a is a bit vector of length l and b is a bit
vector of length m and c is a bit vector of length l + m, then
c = a ◦ b iff the first l bits of c form the bit vector a and the next m
bits form the bit vector b.

Case Split atom?term:term : Suppose a and b are bit vectors with
some fixed length and c is an atom in bit vector arithmetic. Then
c?a : b evaluates to a if c is true and b otherwise.

Nabarun Deka, Prathamesh Patil Bit Vector Arithmetic 18th May, 2021 13 / 16



Incremental Bit Flattening

Depending on the size of the formula to check, the operators used in
the formula and the length of the terms in the formula, directly
applying bit flattening can end up being resource consuming and
slow. This is due to the sheer number of constraints that need to be
considered.

On top of that, just creating a constraint corresponding to an
arithmetic operation in a given formula can take a very long time,
depending on the length of the bit vectors involved.

Comparitively, constraints corresponding to bitwise and relational
operations are more manageable, both when it comes to creating the
constraints and solving them.

For example, consider a · b = c ∧ b · a 6= c ∧ x < y ∧ x > y . This
formula is clearly unsatisfiable, since we have a · b = c ∧ ¬(a · b = c)
and x < y ∧ x > y . Bit flattening, however, may take a lot of time to
decide this formula, since it will create and check constraints for the
arithmetic operators as well as the relational operators.

Nabarun Deka, Prathamesh Patil Bit Vector Arithmetic 18th May, 2021 14 / 16



Incremental Bit Flattening

Thus, we may only introduce the constraints corresponding to bitwise
and relational operators only, and omit all other operations. We may
then check if these constraints, along with the propositional skeleton
are satisfiable or not using a propositional SAT solver.

If the solver outputs UNSAT, then the original formula itslef must be
unsatisfiable, since adding new constraints to a formula which is
already unsatisfiable will not help.

If the solver outputs SAT, then either the original formula is
satisfiable OR it is unsatisfiable, but some of the omitted constraints
are needed to show this.

Thus, we may check if the satisfying assignment obtained is
consistent with the omitted constraints. If it is, then the formula is
satisfiable. If not, we can add some of the omitted constraints to our
propositional formula and check satisfiability again.

In the worst case, we end up checking satisfiablility of all the
constraints, along with the propositional skeleton.

Nabarun Deka, Prathamesh Patil Bit Vector Arithmetic 18th May, 2021 15 / 16



References

Sections 6.1, 6.2, 6.3 : Bit Vector Arithmetic, Deciding Bit Vector
Arithmetic with Flattening, Incremental Bit Flattening in ’Decision
Procedures An Algorithmic Point of View’ by Daniel Kroening and
Ofer Strichman

Nabarun Deka, Prathamesh Patil Bit Vector Arithmetic 18th May, 2021 16 / 16


