
Constrained Horn Clauses

Sumanth Prabhu S

May 29, 2021

Motivation: Program Safety Verification
Program and an assert: all the states that reach assert satisfy

the condition in assert?

Motivation: Program Safety Verification
Program and an assert: all the states that reach assert satisfy

the condition in assert?

A bit of history

How different areas of computation are related?

AI vs Databases vs Programming ??

Logic was well understood

Propositional logic < FOL < Higher-order logic etc.

Can logic unify different areas of computation?

Horn Clauses

In Propositional Logic: A clause with at most one positive
literal

A1 ∧ · · · ∧ An =⇒ B (1)

A1 · · ·An (2)

Exercise 1

P ,Q . . . are propositional variables

P =⇒ Q

L ∧M =⇒ P

B ∧ L =⇒ M

A ∧ P =⇒ L

A ∧ B =⇒ L

A

B

Can we conclude Q?
Reference: Figure 7.16, Artificial Intelligence A Modern Approach

Exercise 1

P ,Q . . . are propositional variables

P =⇒ Q

L ∧M =⇒ P

B ∧ L =⇒ M

A ∧ P =⇒ L

A ∧ B =⇒ L

A

B

Forward: A,B → L; L,B → M ; L,M → P ; P → Q

Horn Clauses

∀~x0 . true =⇒ r0(~x0) (3)

∀~x1 . . . ~xn+1 .
∧

1≤i≤n

ri(~xi) =⇒ rn+1(~xn+1) (4)

∀~x1 . . . ~xn+1 .
∧

1≤i≤n

ri(~xi) =⇒ false (5)

Applications

Database: Specify dependencies

Employees of same department should have same
manager: ∀e1, d ,m1, e2, d ,m2 .Row(e1, d ,m1) ∧
Row(e2, d ,me) =⇒ Equal(m1,m2)

Specification of Data-structures

append(X ,Y ,Z)
append(X ,Y ,Z) =⇒
append(cons(U,X),Y , cons(U,Z))

Aritifical Intelligence

Given a knowledge base as Horn Clauses, can we a
sentence?

More details refer: LOGIC PROGRAMMING, Robert Kowalski

Exercise 2

� �
i n t x = 0 , y = 0 ;
whi le (*) {

x = x + 1 ;
y = y + x ;

}
as se r t (y ≥ 0) ;� �
Listing 1: A Program from
Understanding IC3

’*’ denotes non-deterministic
loop (i.e. the loop can run
any number of iterations)
’int’ is mathematical integer
(i.e. no overflow)

Is the assert in program
safe?

Inductive Invariants

int x = y = 0

while (*) {

x = x + 1

y = y + x

}

assert(y >= 0)

Program Reference: Understanding IC3

Safe Inductive Invariants:

(x ≥ 0 ∧ y ≥ 0),

(x ≥ 0 ∧ y − x ≥ 0)

Inductive Invariants

int x = y = 0

while (*) {

x = x + 1

y = y + x

}

assert(y >= 0)

Program Reference: Understanding IC3

Safe Inductive Invariants:

(x ≥ 0 ∧ y ≥ 0),

(x ≥ 0 ∧ y − x ≥ 0)

Inductive Invariants

Inductive Invariants

Given: 〈V ∪ V ′, Init,Tr〉 and Prop

{x , y , x ′, y ′}, x = 0 ∧ y = 0, x ′ = x + 1 ∧ y ′ = y + x ′

and (y ≥ 0)

Find a relation inv such that:

Initiation: ∀V . Init(V)⇒ inv(V)

Consecution: ∀V ,V ′ . inv(V) ∧ Tr(V ,V ′)⇒ inv(V ′)

Safety: ∀V . inv(V)⇒ Prop(V)

How to specify this problem and how to solve it?
Constrained Horn Clauses

Syntax of Constrained Horn Clauses
A CHC over a set of uninterpreted relation symbols R has the
form of one of the following three implications:

∀~x1 . ϕ(~x1) =⇒ r1(~x1) (6)

∀~x0 . . . ~xn+1 .
∧

0≤i≤n

ri(~xi)∧ϕ(~x0, . . . , ~xn+1) =⇒ rn+1(~xn+1)(7)

∀~x0 . . . ~xn .
∧

0≤i≤n

ri(~xi)∧ϕ(~x0, . . . , ~xn) =⇒ false (8)

where:

ri ∈ R, ~xi is a vector of variables of length arity(ri);

for some i and j , such that i 6= j , it could be (though not
necessary) that ri = rj ;

ϕ is a satisfiable quantifier-free formula in a theory T
that does not contain any uninterpreted symbols.

Syntax of Constrained Horn Clauses
A CHC over a set of uninterpreted relation symbols R has the
form of one of the following three implications:

∀~x1 . ϕ(~x1) =⇒ r1(~x1) (6)

∀~x0 . . . ~xn+1 .
∧

0≤i≤n

ri(~xi)∧ϕ(~x0, . . . , ~xn+1) =⇒ rn+1(~xn+1)(7)

∀~x0 . . . ~xn .
∧

0≤i≤n

ri(~xi)∧ϕ(~x0, . . . , ~xn) =⇒ false (8)

where:

body(C) and head(C) denotes the left and right side of
the implication in C , resp.;

A CHC of type (6) is called fact, of type (7) inductive,
and type (8) query

C is linear if |rel(body(C))| ≤ 1; otherwise it is
non-linear.

Semantics

interpretation for r ∈ R is a map
λx1 . . . λxar .ϕ(x1, . . . , xar), where ϕ is a quantifier-free
formula without any symbols from R.

Extended to R by interpreting each symbol r ∈ R
ϕ[M/R] is the formula obtained by replacing each
occurrence of a term of the form r(x1, . . . , xar) by
M(r)(x1, . . . , xar)

A system S of CHCs over R is said to be satisfiable if
there exists an interpretation M for R which makes all
implications in S valid, i.e., for all C ∈ S , it holds that
body(C)[M/R] =⇒ head(C)[M/R].

CHCs - An Example

∀x , y . x = 0 ∧ y = 0 =⇒ inv(x , y)

∀x0, y0, x1, y1 . inv(x0, y0)∧x1 = x0+1∧y1 = y0+x1 =⇒ inv(x1, y1)

∀x , y . inv(x , y) ∧ ¬(y ≥ 0) =⇒ false

CHCs - Inductive Invariants

Given 〈V ∪ V ′, Init,Tr〉 and Prop

{x , y , x ′, y ′}, x = 0 ∧ y = 0, x ′ = x + 1 ∧ y ′ = y + x ′

and (y ≥ 0)

Given M := {inv 7→ λx , y . x ≥ 0 ∧ y ≥ 0}

Initiation: ∀V . Init(V)⇒ inv(V)

∀x , y . (x = 0 ∧ y = 0)⇒ (x ≥ 0 ∧ y ≥ 0)

Consecution: ∀V ,V ′ . inv(V) ∧ Tr(V ,V ′)⇒ inv(V ′)

∀x , y , x ′, y ′ . (x ≥ 0 ∧ y ≥
0) ∧ x ′ = x + 1 ∧ y ′ = y + x ′ ⇒ (x ′ ≥ 0 ∧ y ′ ≥ 0)

Safety: ∀V . inv(V)⇒ Prop(V)

∀x , y . (x ≥ 0 ∧ y ≥ 0)⇒ (y ≥ 0)

CHCs - Inductive Invariants

Universally Quantified! How to check satisfiability?
Negate the formulas and check satisfiability
Is any of these is SAT?

(x = 0 ∧ y = 0) ∧ ¬(x ≥ 0 ∧ y ≥ 0)

(x ≥ 0∧ y ≥ 0)∧ (x ′ = x + 1∧ y ′ = y + x ′)∧ (x ′ ≥ 0∧ y ′ ≥ 0)

(x ≥ 0 ∧ y ≥ 0) ∧ ¬(y ≥ 0)

CHCs - Refutation

Given 〈V ∪ V ′, Init,Tr〉 and Prop
{x , y , x ′, y ′}, x = 0 ∧ y = 0, x ′ = x + 1 ∧ y ′ = y + x ′ and (y = x)

Initiation: ∀V . Init(V)⇒ inv(V)

Consecution: ∀V ,V ′ . inv(V) ∧ Tr(V ,V ′)⇒ inv(V ′)

Safety: ∀V . inv(V)⇒ Prop(V)

→ x = 0 ∧ y = 0

→ inv(0, 0), inv(0, 0) ∧ x ′ = x + 1 ∧ y ′ = y + x ′

→ inv(1, 1)

→ inv(1, 1), inv(0, 0) ∧ x ′ = x + 1 ∧ y ′ = y + x ′

→ inv(2, 3)

Exercise 3
Encode the following program as CHCs

Reference: Solving Constrained Horn Clauses Using Syntax and Data, FMCAD’18

Exercise 3 - Solution

x = 0 ∧ y = 0 ∧m ≥ 0 =⇒ inv1(x , y ,m, n)

inv1(x , y ,m, n)∧¬(n = 0)∧n′ = n−1∧(x ′ = x+1∨y ′ = y+1)

=⇒ inv1(x ′, y ′,m, n)

inv1(x , y ,m, n) ∧ n = 0 =⇒ inv2(x , y ,m, n)

inv2(x , y ,m, n) ∧ ¬(x = 0) ∧m′ = m − 1 ∧ x ′ = x − 1

=⇒ inv2(x ′, y ,m′, n)

Complexity

When T is LIA, LRA finding a solution is undecidable
Reference: The Universal Fragment of Presburger Arithmetic with Unary
Uninterpreted Predicates is Undecidable, Horbach et al.

References for CHCs in Program Verification

Position paper

Encoding rules for various program constructs

So far:

Horn Clauses
Constrained Horn Clauses
Invariant Inference as CHCs

Next:

How to solve CHCs?

Solving Constrained Horn Clauses using Syntax and Semantics
Reference: Fedyukovich, Prabhu, Madhukar, and Gupta, FMCAD 2018

Guess and Check Framework

Iterative learning: inv⇔ l0 ∧ l1 ∧ · · · ∧ ln

A learner using Syntax Guided Synthesis

Syntax Guided Synthesis

int x = y = 0

int m = n = *;

assume(m >= 0);

while (n != 0) {

n--;

if (*) then x++;

else y++;

}

while (x != 0) {

m--; x--;

}

while (y != 0) {

m--; y--;

}

assert(m == 0);

Invariants needed:

for first loop:
(x + y + n = m)

for second loop:
(x + y + n = m) ∧ (n = 0)

for third loop:
(x + y + n = m)∧ (n = 0)∧ (x = 0)

Syntax Guided Synthesis

int x = y = 0

int m = n = *;

assume(m >= 0);

while (n != 0) {

n--;

if (*) then x++;

else y++;

}

while (x != 0) {

m--; x--;

}

while (y != 0) {

m--; y--;

}

assert(m == 0);

x = 0→ x ≥ 0,−x ≥ 0

y = 0→ y ≥ 0,−y ≥ 0

m ≥ 0→ m ≥ 0

m = n→ m ≥ n,−m ≥ n

n 6= 0→ −n > 0 ∨ n > 0

Syntax Guided Synthesis

int x = y = 0

int m = n = *;

assume(m >= 0);

while (n != 0) {

n--;

if (*) then x++;

else y++;

}

while (x != 0) {

m--; x--;

}

while (y != 0) {

m--; y--;

}

assert(m == 0);

{x ≥ 0,−x ≥ 0, y ≥ 0,−y ≥ 0,
m ≥ 0,m ≥ n,−m ≥ n,
− n > 0 ∨ n > 0}

c ::= 0
k ::= 1 | −1
v ::= x | y | m | n
e ::= k · v | k · v + k · v
cand ::= e ≥ c | e > c ∨ e > c

Syntax Guided Synthesis

int x = y = 0

int m = n = *;

assume(m >= 0);

while (n != 0) {

n--;

if (*) then x++;

else y++;

}

while (x != 0) {

m--; x--;

}

while (y != 0) {

m--; y--;

}

assert(m == 0);

{n ≥ 0,−n ≥ 0,−x > 0 ∨ x > 0}

Syntax Guided Synthesis

int x = y = 0

int m = n = *;

assume(m >= 0);

while (n != 0) {

n--;

if (*) then x++;

else y++;

}

while (x != 0) {

m--; x--;

}

while (y != 0) {

m--; y--;

}

assert(m == 0);

{n ≥ 0,−n ≥ 0,−x > 0 ∨ x > 0}

c ::= 0
k ::= 1 | −1
v ::= x | n
e ::= k · v
cand ::= e ≥ c | e > c ∨ e > c

Syntax Guided Synthesis

int x = y = 0

int m = n = *;

assume(m >= 0);

while (n != 0) {

n--;

if (*) then x++;

else y++;

}

while (x != 0) {

m--; x--;

}

while (y != 0) {

m--; y--;

}

assert(m == 0);

{x ≥ 0,−x ≥ 0,−y > 0 ∨ y > 0,
y ≥ 0,−y ≥ 0,m ≥ 0,−m ≥ 0}

Syntax Guided Synthesis

int x = y = 0

int m = n = *;

assume(m >= 0);

while (n != 0) {

n--;

if (*) then x++;

else y++;

}

while (x != 0) {

m--; x--;

}

while (y != 0) {

m--; y--;

}

assert(m == 0);

{x ≥ 0,−x ≥ 0,−y > 0 ∨ y > 0,
y ≥ 0,−y ≥ 0,m ≥ 0,−m ≥ 0}

c ::= 0
k ::= 1 | −1
v ::= x | y | m
e ::= k · v
cand ::= e ≥ c | e > c ∨ e > c

Insufficiency of the grammars

c ::= 0
k ::= 1 | −1
v ::= x | y | m | n
e ::= k · v | k · v + k · v
cand ::= e ≥ c | e >
c ∨ e > c

(x + y + n = m)

c ::= 0
k ::= 1 | −1
v ::= x | n
e ::= k · v
cand ::= e ≥ c | e >
c ∨ e > c

(x + y +n = m) ∧(n = 0)

c ::= 0
k ::= 1 | −1
v ::= x | y | m
e ::= k · v
cand ::= e ≥ c | e >
c ∨ e > c

(x + y +n = m)∧ (n = 0)
∧(x = 0)

Data Candidates

Propagation

Propagation

CHC References

The Science, Art and Magic of Constrained Horn Clauses
Arie, Gurfinkel and Nikolaj Bjørner

Horn Clause Solvers for Program Verification, Bjørner, et
al.

Synthesizing Software Verifier from Proof Rules,
Grebenshchikov, et al.

