Constrained Horn Clauses

Sumanth Prabhu S

May 29, 2021

Motivation: Program Safety Verification

Program and an assert: all the states that reach assert satisfy
the condition in assert?

®
a
E

Motivation: Program Safety Verification

Program and an assert: all the states that reach assert satisfy
the condition in assert?

®
L
E

A bit of history

m How different areas of computation are related?
Al vs Databases vs Programming 77

m Logic was well understood
Propositional logic < FOL < Higher-order logic etc.

m Can logic unify different areas of computation?

Horn Clauses

In Propositional Logic: A clause with at most one positive
literal

AlN---NA, = B (1)
A - A, (2)

Exercise 1

P, @ ... are propositional variables
P = Q
LANM = P
BAL = M
ANP = L
ANB = L
A

B

Can we conclude Q7
Reference: Figure 7.16, Artificial Intelligence A Modern Approach

Exercise 1

P, Q... are propositional variables
P = Q
LANM = P
BAL — M
AANP = L
AANB = L
A
B
Forward: A,B — L; L,B— M; LM — P, P = Q

Horn Clauses

V)?o.true — ro()_('o)

V)?l e)?,,Jrl . /\ r,-()?,-) — r,,+1(>?,,+1)
1<i<n

V)_(i o)?,,Jrl . /\ I’,'()?,‘) —> false
1<i<n

Applications

m Database: Specify dependencies
Employees of same department should have same
manager: Vei,d, my, e, d, my. Row(er,d, m) A
Row(ez,d, me) = Equal(my, my)
m Specification of Data-structures
append(X,Y,2)
append(X,Y,Z) =
append(cons(U, X), Y, cons(U, Z))
m Aritifical Intelligence
m Given a knowledge base as Horn Clauses, can we a
sentence?

More details refer: LOGIC PROGRAMMING, Robert Kowalski

Exercise 2

int x =0, y=0 s the assert in program
while (%) { cafe?
x =x + 1; :
y =y + x;
}
assert (y > 0);

Listing 1: A Program from
Understanding IC3

"*' denotes non-deterministic
loop (i.e. the loop can run
any number of iterations)
"int" is mathematical integer
(i.e. no overflow)

Inductive Invariants

int x =y
while (%)
X =x +
y=y*

Moo= A

3

assert(y >= 0)

Program Reference: Understanding 1C3

Inductive Invariants

int x =y =0 m Safe Inductive Invariants:
while (x) {

X=X+1 (XZO/\)/ZO),
}

assert(y >= 0)

Program Reference: Understanding 1C3

Inductive Invariants

. Post(lnv) < Inv

Inductive Invariants

Given: (V U V' Init, Tr) and Prop
{x,y, Xy}, x=0Ay=0,x=x+1Ay =y+x
and (y > 0)
Find a relation inv such that:
m Initiation: YV . Init(V) = inv(V)

m Consecution: YV, V' inv(V) A Tr(V, V') = inv(V’)

m Safety: VV .inv(V) = Prop(V)

How to specify this problem and how to solve it?
Constrained Horn Clauses

Syntax of Constrained Horn Clauses

A CHC over a set of uninterpreted relation symbols R has the
form of one of the following three implications:

V)_(‘]_ . (,0()?1) — n ()_(‘1) (6)
V)_(b .. }n+1 . /\ r,-(f(',-)/\(p()_(’o, c. 7}n+1) — r,,+1()?,,+1()7)
0<i<n

Vo .. R0 N\ ri(%)Ae(h,... %) = false (8)
0<i<n

where:

mr; € R, X; is a vector of variables of length arity(r;);

m for some i and j, such that / # j, it could be (though not
necessary) that r; = rj;

m ¢ is a satisfiable quantifier-free formula in a theory T
that does not contain any uninterpreted symbols.

Syntax of Constrained Horn Clauses

A CHC over a set of uninterpreted relation symbols R has the
form of one of the following three implications:

V)_(‘]_ . (,0()?1) — n ()_(‘1) (6)
v;o .. }n+1 . /\ r,-(f(',-)/\(p()_(’o, c. 7}n+1) — r,,+1()?,,+107)
0<i<n

Vo .. R0 N\ ri(%)Ae(h,... %) = false (8)
0<i<n

where:

m body(C) and head(C) denotes the left and right side of
the implication in C, resp.;

m A CHC of type (6) is called fact, of type (7) inductive,
and type (8) query

m C is linear if |rel(body(C))| < 1; otherwise it is
non-linear.

Semantics

m interpretation for r € R is a map
AX1 .o AXg, (X1, . .., Xa,), Where @ is a quantifier-free
formula without any symbols from R.

m Extended to R by interpreting each symbol r € R

m p[M/R] is the formula obtained by replacing each
occurrence of a term of the form r(xy, ..., x,,) by
M(r)(xi, ..., Xa)

m A system S of CHCs over R is said to be satisfiable if
there exists an interpretation M for R which makes all
implications in S valid, i.e., for all C € S, it holds that
body(C)[M/R] = head(C)[M/R].

CHCs - An Example

Vx,y. x=0Ay =0 = inv(x,y)
VX0, Y0, X1, ¥1 - InV(X0, Yo) Ax1 = xo+1Ay1 = yo+tx1 = inv(xq, y1)
Vx,y.inv(x,y) A=(y > 0) = false

CHCs - Inductive Invariants

m Given (V U V/ Init, Tr) and Prop
m{x,y. X,y x=0Ay=0,x=x+1Ay =y+x
and (y > 0)
m Given M :={inv— Ax,y.x > 0Ay >0}
m Initiation: YV . Init(V) = inv(V)
BVx,y.(x=0Ay=0)=(x>0Ay >0)
m Consecution: YV, V' inv(V) A Tr(V. V') = inv(V’)
mVx,y, X,y . (x>0Ay>
A =x+1Ay =y+xX=(X>0Ny >0)
m Safety: VV .inv(V) = Prop(V)

mVx,y. (x>0Ay>0)=(y >0

CHCs - Inductive Invariants

Universally Quantified! How to check satisfiability?
Negate the formulas and check satisfiability
Is any of these is SAT?

(x=0Ay=0A—(x>0Ay >0)

(x>0Ay >0)AX =x+1AYy =y+X)A (X >0Ay >0)
(x>0Ay>0)A—(y >0)

CHCs - Refutation

m Given (V U V', Init, Tr) and Prop

Doy Xy i x=0Ay =0, x" =x+ 1Ay =y+x and (y =

m Initiation: YV . Init(V) = inv(V)

m Consecution: VV, V' .inv(V) A Tr(V, V") = inv(V’)

m Safety: VYV .inv(V) = Prop(V)

x=0Ay=0

inv(0,0), inv(0,0) AX =x+1Ay =y+x

inv(:

v
nv(

’

1,1
2,3

iiiii

1)
), inv(0,0)AX =x+1AYy =y +X
)

Exercise 3
Encode the following program as CHCs

int x =0, vy =0
int m=n = %
assume(m=0)
while (n==0) {

n-=-3
if(*) x++;
else y++;

}

while (x==0){m--;x--;}
while(y=%=0) {m--;y--;}
assert(m=0);

Exercise 3 - Solution

x=0ANy=0Am>0 = invy(x,y,m,n)

invi(x,y, m,n)A=(n = 0)An" = n—1IA(X" = x+1Vy' = y+1)
= invy(x’,y', m, n)
invi(x,y,m,n)An=0 = invy(x,y, m,n)

inva(x,y,mn) A=(x =0)Am =m—1Ax =x—1

— invz(x’,y, m/’ n)

Complexity

When T is LIA, LRA finding a solution is undecidable

Reference: The Universal Fragment of Presburger Arithmetic with Unary
Uninterpreted Predicates is Undecidable, Horbach et al.

References for CHCs in Program Verification

Horn Clause Solvers for Program Verification

Nikolaj Bjorner, Arie Gurfinkel, Ken McMillan and Andrey Rybalchenko

Microsoft Research, Software Engincering Institute

Abstract. Automatic program verification and symbolic model check-
ing tools interface with theorem proving technologies that check satisfi-
ability of formulas. A theme pursued in the past years by the authors of
this paper has been to encode symbolic model problems directly as Horn
clauses and develop dedicated solvers for Horn clauses. Our solvers are
called Duality, HSF, SeaHorn, and ;12 and we have devoted considerable
attention in recent papers to algorithms for solving Horn clay s
paper complements these strides as we summarize main useful propertics
of Hom clauses, illustrate encodings of procedural program verification
into Hom clauses and then highlight a number of uscful simplification
strategies at the level of Horn clauses. Solving Hom clauses amounts to
establishing Existential positive Fixed-point Logic formulas, a perspec-
tive that was promoted by Blass and Gurevich

1 Introduction

We make the overall claim that Constrained Horn Clauses provide a suitable ba-
for automatic program verification, that is, symbolic model checking, To sub-

Position paper

Synthesizing Software Verifiers from Proof Rules

Sergey Grebenshchikov Nuno P. Lopes Comeliu Popeea
Techmische Universiat Minchen INESCID/IST - TU Lisbon echnische Universitt Minchen
Erebenshes m edu nuno lopes st utl pt popeeaCmode intumde

Andrey Rybalchenko
Technische Universcit Minchen
rybalin tum.de

Encoding rules for various program constructs

So far:

m Horn Clauses

m Constrained Horn Clauses

m Invariant Inference as CHCs
Next:

m How to solve CHCs?

Solving Constrained Horn Clauses using Syntax and Semantics
Reference: Fedyukovich, Prabhu, Madhukar, and Gupta, FMCAD 2018

Guess and Check Framework

Success /
Failure (examples)

SMT

Learner
Solver

Q = {init, consec, safety}
Cand

Iterative learning: inv < b AL AN,

A learner using Syntax Guided Synthesis

Syntax Guided Synthesis

intx=y=0 Invariants needed:
int m = n = *;
assume(m >= 0); for first loop:

while (n !'= 0) { (X+y+n:m)

n--;
ii (*);1‘1611 xt+t; for second loop:

i =0 ;
Wh;f. (z__.) for third loop:

} (x+y+n=m)A(n=0)A(x=0)
while (y !'= 0) {

m--; y--;
}

assert(m == 0);

Syntax Guided Synthesis

int x =y =0
int m = n = *;
assume(m >= 0);

while (n !'= 0) {

n--;
if (%) then x++;
else y++;

}

while (x != 0) {
m--; X-—;

}

while (y !'= 0) {
m==3; y==;

}

assert(m == 0);

x=0—-x>0,—x2>0
y=0—-y>0,—y=>0
m>0—-m>0
m=n—-m2>n—m2>n

n#0——-n>0Vn>0

Syntax Guided Synthesis

int x=y =0 {XZO;—XZOJ/ZO,—}’EQ
int m = n = *; m>0,m>n—m2>n,
assume(m >= 0); —n>0VvVn> 0}
while (n !'= 0) {

n——; c:=0

if (%) then x++; k=1 |“l

else y++; V.. =X]y |rn |n
b ex=k-v|k-v+k-v

=e >
while (x 1= 0) { cand :=e>c|le>cVe>c

m-—; X——,;

}

while (y !'= 0) {
m-=; y-—;

}

assert(m == 0);

Syntax Guided Synthesis

int x =y =0 {n>0,—n>0,—x>0Vx>0}
int m = n = *;
assume(m >= 0);

while (n !'= 0) {

n--;
if (%) then x++;
else y++;

}

while (x '= 0) {
m--; X-—;

}

while (y !'= 0) {
m==3; y==;

}

assert(m == 0);

Syntax Guided Synthesis

int x =y =0 {n>0,—n>0,—x>0Vx>0}
int m = n = *;
assume(m >= 0);

c::=0
while (n '= 0) {
e k:=1|-1
if (%) then x++; Vii=X |n
else y++; e:=k-v
+ cand :=e>cl|le>cVe>c

while (x '= 0) {

m-—; X——,;

}

while (y !'= 0) {
m-=; y-—;

}

assert(m == 0);

Syntax Guided Synthesis

int x =y =0 {XZO,—XZO,—}/>0\/)/>O,
int m = n = *; y>0,—y>0,m>0,—m>0}

assume(m >= 0);

while (n !'= 0) {

n--;
if (%) then x++;
else y++;

}

while (x '= 0) {
m--; X-—;

}

while (y !'= 0) {
m==3; y==;

}

assert(m == 0);

Syntax Guided Synthesis

int x =y =0 {XZO,—XZO,—}/>0\/}/>O7
int m = n = *; y>0,—y>0,m>0,—-m>0}

assume(m >= 0);

while (n !'= 0) {

N c:=0

if (%) then x++; k=1 | -1

else y++; vi=xl|y|m
b e=k-v

n=e >
while (x 1= 0) { cand e>cle>cVe>c

m-—; X——,;

}

while (y !'= 0) {
m-=; y-—;

}

assert(m == 0);

Insufficiency of the grammars

cu=0

ku=1|-1
vi=x|y|m|n
ex=k-v|k-v+k-v
cand :=e>cle>
cVe>c

(x+y+n=m)

cu=0
kx=1|-1
vi=x|n
en=k-v

cand :==e>cl|e>
cVe>c

(x+y+n=m)A(n=0)

n=1]-1
s=x|y|m
n=k-v

cand :==e>c|e>
cVe>c

o < X 0

Data Candidates

axx + bxy + cxm + dxn + e = 0

Xy omoon
0 0 5 5
1 0 5 4
2 0 5 3
2 1 5 2
2 2 5 1)

]
()

X+y+n-m

Propagation

inv,(x,y,m,n) A n=0 A
X,=X A Y,=y A m=m A n=n =
inv,(x,,y,,m,n)

No change in variables so candidates of inv,
are likely to be candidates of inv,

Propagation

inv.(X) A ¢(X,X") = invj(X’)

Forward:
Cand; = 3X Cand.(X) A ¢(X,X")

Backward:
Cand, = 3X’ Candj(X') A H(X,X")

CHC References

m The Science, Art and Magic of Constrained Horn Clauses
Arie, Gurfinkel and Nikolaj Bjgrner

m Horn Clause Solvers for Program Verification, Bjgrner, et
al.

m Synthesizing Software Verifier from Proof Rules,
Grebenshchikov, et al.

