Decidability of Real arithmetic

Quantifier elimination in Real arithmetic

Upamanyu and Mohith



Is real arithmetic decidable?

Syntax of real arithmetic
» FO(R,+,—,-,<,0,1), with the usual interpretations of
+7 BRI <707 1.
» More formally:
(Term)t :=x € V|0|l|ti + | t1 —to|t1- B
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Is real arithmetic decidable?

Syntax of real arithmetic
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Decidability
A theory is decidable if there is an algorithm that can decide in
finite time whether a given formula is valid in the theory.



Tarski-Seidenberg theorem

Tarski-Seidenberg theorem

The first-order theory of reals admits quantifier elimination.

» Quantifier-free real arithmetic is decidable.

» Thus, it is sufficient to provide a proof of the above theorem.
We will give a constructive proof, originally by Hérmander
(1983).

Example
dx:ax+b=0
becomes (a = 0) = (b = 0) on quantifier elimination.



Reduction of formula to required form

All terms are polynomials

» If our formula has no variables, then we are done.

» Otherwise, each term has k variables. For any one variable x,
it can be considered as a polynomial in x, with coefficients
being polynomials in the remaining k — 1 variables.

» So each atom is of the form p(x) > 0, where < is one of
S? <, >, Za ) 7é

Lemma
It is sufficient to eliminate 3 from a formula of the form

Ixpr(x) <1 0 A+ A pp(x) >, 0,

where ; is one of <, <, >, > = #.



Reduction of formula to required form

Proof of lemma
Suppose we can eliminate quantifiers from formulae of the given
form. Then for any given formula with n + 1 quantifiers,

» Consider the innermost quantifier along with the subformula ¢
in its body.

> If the quantifier is V, rewrite Vxp(x) as =(3x —p(x)).
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(Bxe1(x)) V-V (xpm(x)).



Reduction of formula to required form

Proof of lemma
Suppose we can eliminate quantifiers from formulae of the given
form. Then for any given formula with n + 1 quantifiers,
» Consider the innermost quantifier along with the subformula ¢
in its body.
> If the quantifier is V, rewrite Vxp(x) as =(3x —p(x)).
» Convert the subformula to DNF (i.e. of the form
©1(x) V-V om(x), where each ¢; is a conjunction of
atoms.)
» Distribute 3 over the ¢;s, to get
(Bxer(x)) V-V (xpm(x)).
» Eliminate quantifiers from each of these m subformulas, to
get a formula with n quantifiers.

By induction, we are done.



Division algorithm (univariate)

Division

Given two polynomials p(x) and q(x) (with g nonzero), containing
no other variables, we can divide p by g, to get polynomials s and
r satisfying the equation

with deg(r) < deg(q).



Sign matrix (univariate)

Sign matrix
Given a set of polynomials {pi(x),...,pn(x)} in one variable x,
with x3 < xo < - -+ < X, being the list of points which are real
roots of atleast one p;, the reduced sign matrix M of these
polynomials is as follows:

P> Rows are indexed by p; s.

» Columns indices are:

(_OO7X1)7 X1, (X17X2)7 X2y ey (Xm—l)xm)v Xm (Xm7 OO)

» On the column indexed by the interval or point j,

+ if pi(x) >0onj
Mij =<0 if p,'(X) =0 on J
— if pi(x) <0onj.



Sign matrix example

p(X) p4(x)

pa:X4+3X3+X2—3X—2

pp=12x> —7x — 10 - A \\o

X1 X2 X3 X4 Xs

pa|+ 0 - 0 - - - 0 + + +
ppl+ + £+ + + 0 - - - 0 +




Sign matrix to quantifier-free formula (univariate)

Quantifier-free formula from sign matrix

The sign matrix for a set of univariate polynomials
p1(x), - .., pn(x) is sufficient to convert any formula of the below
form into a quantifier-free formula

Ix:pr(x) <1 0 Ao A pp(x) <, O

where <; can be one of <, <, >, > = #

Example:

dx : pa(x) <OA pp(x) =0
where

pa = x*+3x3 +x% —3x — 2 and
pp = 12x% — 7x — 10



Sign matrix to quantifier-free formula (univariate)

X1 X2 X3 X4 X5
p»|+ 0 - 0 - - - 0 + + +
pp|+ + + + + 0 - - - 0 +

Original formula: 3x : pa(x) < 0 A pp(x) =0

New formula:
(+1=-1A+1=0) V




X1 X0 X3 Xa X5
pa|+ 0 - 0 - - 0 + + +
pp | + + + 0 - - 0 +

Original formula

New formula:
(+1=-1 A +1

(0=-1 A +1
(-1=-1 A +1

(0=-1 A +1
(-1=-1 A +1
(-1=-1 A0
(-1=-1 A -1

O0=-1 A -1
(+1=-1 A -1
(+1=—-1 A 0
(+1=-1 A +1

2 3x: pa(x) <OApp(x)=0

:0)
:0)
:0)
:0)
:0)
:0)
:0)
:0)
:0)
:0)
:0)

<< <K <K K KKK KKK KL




Sign matrix to quantifier-free formula (univariate)

‘ X1 X2 X3 X4 X5 ‘
pal+ 0 - 0 - - - 0 + + +
pp|+ + + 4+ + 0 - - - 0 +

Another example:

if we instead had
Ix 1 pa(x) > 0A pp(x) <0

the quantifier-free formula would be:

(+1=0V+1 =+1) A +1 =-1) V
(0=0v0 =+1) A +1 =-1) V
(-1=0v—-1 =41) A +1 =-1) V



Building the Sign Matrix

Algorithm: Build from ‘smaller’ one

Given p, p1, p2, .- ., pPn, this algorithm constructs its sign matrix
from the sign matrix of p’, p1,...,Pn, M0, M, s1n

where p’ is the derivative of p and r; is the remainder obtained
when p is divided by p;, in other words p(x) = s(x) - pj(x) + ri(x) .
(Note: ry is the remainder when p is divided by p’. Think of p’ as
Po)

Example:
p=x*4+3x34x?>—-3x—2and
p1 = 12x%2 — 7x — 10



Building the Sign Matrix from a ‘smaller’ one

p=x*+3x34+x%-3x -2

pr=4x3+9x>+2x—3

19, -21 23
=12x*> —7x — 10 =X o=
pr=tex—ix =76 T T8 X 16
3931 1097
n=-——x+—
1728™ " 864
X1 X2 X3 X4 X5 X6 X7
Pl- 0 + + + 0 - - - - 0 + ¥
pl+ + + + + o+ 0 - - - - - 0
n|l- - - 0 + 0 - - - - - - -
nl- - - - - - - - 0 + 4+ +




Building the Sign Matrix from

pzx4+3x3+xzf3xf2

p1 = 12x% — 7x — 10

a ‘smaller’ one

pr=4x3+9x>+2x—3
19 , -21 23

roz—T6X —?X—R

3931 1097

= 1728% T g6a
X1 X2 X3 X4 X5 X6 X7
PFl- 0 + + + 0 - - - - 0 + +
p|l+ + + + + + o - - - - -0
n|l- - - 0 + 0 - - - - - - -
n|l- - - - - - - - 0 4+ 4+ 4+ +

Split the sign matrix into two equally sized parts, one for the p, p, ...
and one for the rg, ry, ..., ry.




Building the Sign Matrix from a ‘smaller’ one

» Split the sign matrix into two equally sized parts, one for the

P, Pi,---,pPn and one for the ry, r,..., 1y

» Add a new row for p

X1 Xo X3 Xq X5 X6 X7
Pl- 0 + + £ 0 - - - - -0 +
pl+ + + + + + 0 - - - - 0
p

X1 X X3 Xg X5 X6 X7
nfl- - - 0 + 0 - - - - - = - -

- - - 0 + + + +

n




Building the Sign Matrix from a ‘smaller’ one

» We can now infer the sign of p(x;) for each point x; that is a
root of one of the polynomials py, as follows:

Recall, p(x) = sk(x) - pe(x) + re(x).

Thus, if pk(x;) =0, then p(x;) = 0+ re(x;).

sign(p(x;)) = sign(rk(xi))

X1 X2 X3 X4 X5 X6 X7
pPl- 0 + 0 - - - 0 + +
pi |+ + + + 0 - - - -0
P - 0 - -
X1 X2 X3 X4 X5 X6 X7
|- - 0 0 - - - - - - -
nl|- - - - - o + + + + +




Building the Sign Matrix from a ‘smaller’ one

» Throw away second sign matrix

> ‘Condense’ the first matrix by removing the points that are

not roots of one of p’, p1,..., pn
X1 X X3 Xq X5 X6 X7
Pl- 0 + + + 0 - - - 0 T
pLl+ + + 4+ + + + 0 - - 0
p - 0 - - +




Building the Sign Matrix from a ‘smaller’ one

» Throw away second sign matrix

> ‘Condense’ the first matrix by removing the points that are

not roots of one of p’, p1, ..

-5 Pn

X1 X X3 Xq X5 X6 X7
Pl- 0 + + + 0 - - 0 +
pp|+ + + + + + 0 - - 0
p - 0 - - +

X1 X2 X3 X4 X5

Pl - 0 0 - 0 +

p1 |+ + + 0 - 0

p - 0 - - +




Building the Sign Matrix from a ‘smaller’ one

» If p(x;) - p(xi+1) < 0, by Intermediate Value theorem, p has a

root in the interval (x;, xj11).

Replace column labeled by (x;, x;1+1) with 3 copies of itself,
where the middle column is labeled by the root of p

X1 X2 X3 X4 X5
FPl- 0 + 0 - - - 0 + + +
pl+ + + + + 0 - - - 0 +
p - 0 - - +
X1 X2 X3 X4 Xnew X5
Pl- 0 + 0 - - - 0 + + + + +
p|+ + + + + 0 - - - - - 0 +
p - 0 - - +




Building the Sign Matrix from a ‘smaller’ one

» If p(x;) - p(xi+1) < 0, by Intermediate Value theorem, p has a

root in the interval (x;, xj11).

Replace column labeled by (x;, x;1+1) with 3 copies of itself,
where the middle column is labeled by the root of p

X1 X2 X3 X4 X5
FPl- 0 + 0 - - - 0 + + +
pl+ + + + + 0 - - - 0 +
p - 0 - - +
X1 X2 X3 X4 Xnew X5
Pl- 0 + 0 - - - 0 + + + + +
p|+ + + + + 0 - - - - - 0 +
p - 0 - - 0 +




Building the Sign Matrix from a ‘smaller’ one

Pause and ponder

e Can p have two roots in (xj, xj+1) ?

X1 X2 X3 X4 X5 X6
o 0 0 - 0 + +
p1 + 0 - - 0
p - 0 - - 0 +




Building the Sign Matrix from a ‘smaller’ one

Pause and ponder

e Can p have two roots in (xj, xj+1) ?
e Can p(x;) = p(xj+1) =07

X1 X2 X3 X4 X5 X6
o 0 0 - 0 + +
p1 + 0 - - 0
p - 0 - - 0 +




Building the Sign Matrix from a ‘smaller’ one

Pause and ponder
e Can p have two roots in (xj, xj+1) ?
e Can p(x;) = p(xj+1) =07
e Given p(x;) > 0 and p(xi+1) =0, can p have a root in

(Xi7 Xf+l) ?
X1 X X3 Xg X5 X
Pl- 0 + 0 - - - 0 + + +
pmn|+ + + + + 0 - - - - -0
p - 0 - - 0 +




Building the Sign Matrix from a ‘smaller’ one

Pause and ponder
e Can p have two roots in (xj, xj+1) ?
e Can p(x;) = p(xj+1) =07
e Given p(x;) > 0 and p(xi+1) =0, can p have a root in

(Xi7Xi+1) ?
e Given p(x;) < 0 and p(xj+1) =0, can p have a root in
(xi, xi+1) 7
X1 X2 X3 X4 X5 X6
Pl- 0 + 0 - - - 0 + + + +
p|+ + + 4+ + 0 - - - - - 0
p - 0 - - 0 +




Building the Sign Matrix from a ‘smaller’ one

» If p(x;) > 0 and p(xj+1) > 0, then add sign of p on (x;, xi+1)

as +
X1 X2 X3 X4 X5 X6
Pl- 0 + 0 - - - 0 4+ 4+ + +
pl+ + + + + 0 - - - - - 0 +
p - 0 - - 0 + +




Building the Sign Matrix from a ‘smaller’ one

» If p(x;) > 0 and p(xj+1) > 0, then add sign of p on (x;, xi+1)
as +

> If p(x;) <0 and p(xi+1) < 0, then add sign of p on (x;, Xj+1)
as —

X1 X X3 X4 X5 X6
Pl- 0 + 0 - - - 0 4+ + + + +
p|+ + + + + 0 - - - - - 0 +
p - -0 - - - - -0 + +




Building the Sign Matrix from a ‘smaller’ one

» Add a new row at either ends of the table and label them as

—o0 and +oo

—00 X1 Xo X3 X4 X5 Xe “+00
ol - 0 0 - 0 + + +
p1| + + 0 - - 0 +
p - 0 - - 0




Building the Sign Matrix from a ‘smaller’ one

» Add a new row at either ends of the table and label them as
—o0 and +oo

» Infer the sign of p at —oco and +oco by looking at the degree
of p and the sign of leading coefficient of p

Recall,
p:x4—|—3x3+x2—3x—2
—00 X1 X2 X3 X4 X5 X +o00
Pl - - 0 4+ 0 - - -0 + + + + + +
p,+ + ++ + + 0 - - - - -0 + +
p| + - -0 - - - - -0 + +




Building the Sign Matrix from a ‘smaller’ one

» Fill in the 2 intervals, (—o0, x1), (xn, +00) as before.

Xnew

X1

X2

Xa

X5

X6

P

o

o




Building the Sign Matrix from a ‘smaller’ one

» Fill in the 2 intervals, (—o0, x1), (xn, +00) as before.

» Throw away the first and last column

X1 X2 X3 X4 X5 X6 X7
Pl - - 0 0 - 0 + +
pr |+ + + + 0 - - 0
p|+ O - 0 - - 0 +




Building the Sign Matrix from a ‘smaller’ one

» Fill in the 2 intervals, (—o0, x1), (xn, +00) as before.
» Throw away the first and last column
» Remove the row labeled by p’
» ‘Condense’ the matrix to remove points that are not roots of
one of p, p1,...,Pn

X1 X2 X3 X4 X5 X6 X7
Pl- - - 0 + 0 - - - 0 + + +
P+ o+ o+ o+ + 0 - - - - -0
p|l+ 0 - - - 0 - - - - - 0 + +




Building the Sign Matrix from a ‘smaller’ one

vvyyy

Throw away the first and last column

Remove the row labeled by p’

one 0fP7P17~--aPn

Fill in the 2 intervals, (—o0, x1), (xn, +00) as before.

‘Condense’ the matrix to remove points that are not roots of

X1 X2 X3 X4 X5
P1 + + + + 0 - - 0 +
p o - 0 - - 0 + +

This completes the construction



Building Sign Matrix

Using the algorithm we just described, we can build the sign matrix

of p1,p2, ..., pn as follows:
o If all p; have degree 0, i.e. p; = ¢; for all i, then the sign
matrix is
p1 | sign(cr)

p2 | sign(c2)

pn | sign(cn)




Building Sign Matrix

Using the algorithm we just described, we can build the sign matrix
of p1,p2, ..., pn as follows:
o If all p; have degree 0, i.e. p; = ¢; for all i, then the sign

matrix is
p1 | sign(cy)
p2 | sign(c2)
pn | sign(cn)

e Else, use recursion to find the sign matrix of

p/ap27p37 «e-sPnyfo, 2,13, ..., In.
Using this and the previous algorithm, find the sign matrix of

P1,P2,---5Pn



Building Sign Matrix

Using the algorithm we just described, we can build the sign matrix
of p1,p2, ..., pn as follows:
o If all p; have degree 0, i.e. p; = ¢; for all i, then the sign

matrix is
p1 | sign(cy)
p2 | sign(c2)
pn | sign(cn)

e Else, use recursion to find the sign matrix of

p/ap27p37 «e-sPnyfo, 2,13, ..., In.
Using this and the previous algorithm, find the sign matrix of
P1,P2,---5Pn

Termination?



Building Sign Matrix-Termination

Termination using Konig's lemma
Given p1,...,p, we set up a finitely branching tree as follows:
» Let the root of the tree be a polynomial which has degree
strictly larger than the degree of all p;
» let p1,...,pn be the children of the root node.
» We build the rest of the tree inductively as follows:
e let s1,...,5s, be the leaves of the current tree.
e If deg(s;) = O for all i, then we stop here and return this
as final tree.
e If deg(s;) > 0 for some i,find s; which has maximum
degree and add sjf, 0, M, s fj—1, j+1, --, 'm as the children
of s; (Finitely branching).

Key observation: degree of child < degree of parent



Building Sign Matrix-Termination

Termination using Konig's lemma

Now after we have built the tree, assume that our algorithm
doesn’t terminate. This means our tree is infinite.

But by Konig's lemma, we will have an infinite branch. But note
that as we go down a branch, the degree of the polynomials are
strictly decreasing

= infinite decent in N

= contradiction

Thus, our algorithm terminates.



Building Sign Matrix-Termination

Termination using Konig's lemma

Now after we have built the tree, assume that our algorithm
doesn’t terminate. This means our tree is infinite.

But by Konig's lemma, we will have an infinite branch. But note
that as we go down a branch, the degree of the polynomials are
strictly decreasing

= infinite decent in N

= contradiction

Thus, our algorithm terminates.

This finishes quantifier elimination for univariate polynomials.

Can we extend this to the case where there are more than 1
variables in the formula? (Multivariate case)



Multivariate case

Issues with multiple variables
In the general case, where we have a formula of the form

Ix (X, y1, s Ym) Ao A an(X Y1,y Ym)

where each «; is of the form p;j(x,y1,...,ym) > 0, and the y; s
are free variables, we cannot use the same procedure.

Example

Consider the formula 3x : yx > 0. We cannot directly construct
the sign matrix here, as the sign of yx depends on the value of y.
In this case, we can solve this by splitting into three cases
(depending on the sign of y), and creating a sign matrix for each
separately.

Let ¢4+ (y), ¢o(y) and ¢_(y) be the resulting quantifier-free
fromulae from each of these matrices (where ¢ corresponds to
the case where y > 0, etc.)



Multivariate case

Example
Then Jx : yx > 0 can be rewritten as:
(y>0Noi(y)) Vv
(y =0 A do(y)) v
(y <0 A d_(y))

Specifically, in this case, we have the following sign matrices:

y >0

X1

p(x)

-1 0

+1

(—1=+1)V
(0=+1)Vv

o+(y) :

(+1=+1)

y=0 y <0
X1
p(x) | 0 p(x)| +1 0 -1
Po(y) : P+(y) -
(0=+1) (+1=+1)Vv
(0=+1)Vv
(-1=+1)




Multivariate case

Example

Then dx : yx > 0 is equivalent to:
(y>0AN((-1=+1) V(0=41) V(+1=+1))) V
(y=0A(0=+1))V

(y <OA((+1=+41) V(0 =+1) V(-1 =+1))).

In general, the process requires many more cases and subcases.



Division algorithm (multivariate)

Pseudo-division

Given two polynomials p(x) and g(x), which may contain other
variables in addition to x, we can 'divide’ p by g, to get
polynomials s and r satisfying the equation

ap(x) = s(x)q(x) + r(x),

with deg, (r) < deg,(q). (Here, a is the leading coefficient of g(x))



Division algorithm (multivariate)

Algorithm
Let deg,(q) = n, and deg,(p) = m.
» If n > m, then setting s(x) = 0 and r(x) = p(x) works.



Division algorithm (multivariate)

Algorithm

Let deg,(q) = n, and deg,(p) = m.
» If n > m, then setting s(x) =0 and r(x) = p(x) works.
» Consider the case where n < m.

» Take the (nonzero) leading coefficients of g(x) and p(x) to be
a and b, respectively, so that g(x) = ax” + go(x), and
p(x) = bx™ + po(x). Then we have

ap(x) = bx"""q(x) + (apo(x) — bx™"qo(x)) -



Division algorithm (multivariate)

Algorithm

Let deg,(q) = n, and deg,(p) = m.
» If n > m, then setting s(x) =0 and r(x) = p(x) works.
» Consider the case where n < m.

» Take the (nonzero) leading coefficients of g(x) and p(x) to be
a and b, respectively, so that g(x) = ax” + go(x), and
p(x) = bx™ + po(x). Then we have

ap(x) = bx"""q(x) + (apo(x) — bx™"qo(x)) -

» Note that r'(x) = apo(x) — bx™ "qo(x) has lower degree than
p(x). Now we can repeat the step above, with r'(x) taking
the place of p(x). This gives us



Division algorithm (multivariate)

Algorithm (cont.)

» Composing the previous two steps gives us
a’p(x) = [abx™ "q(x) + s'(x)] q(x) + r"(x).

» Continue this process by dividing the remainder polynomial by
q at each step. As the degree of the remainder decreases at
each step, it eventually becomes less than n, and the
algorithm terminates.

» If it terminates after k divisions, we have

a“p(x) = s1(x)q(x) + n(x),

with deg,(r1) < deg,(q).



Division algorithm (multivariate)

Algorithm (cont.)

» If we consider univariate polynomials (so that a is a nonzero
constant), dividing throughout by a gets us

p(x) = s(x)q(x) + r(x)

which is the required result.

» However, if p and g are multivariate, then a might be a
polynomial in the other variables. In this case, we leave the
result as it is.



Sign-preserving pseudo-division algorithm

Pseudo-division

Given two polynomials p(x) and g(x), which may contain other
variables in addition to x, we can 'divide’ p by g, to get
polynomials s and r satisfying the equation

a“p(x) = s(x)q(x) + r(x),

with deg,(r) < deg,(q). (Here, a is the leading coefficient of g(x))

In the univariate case, we had no prefactor of a¥, so at the roots of
q, sgn(p) = sgn(r).

For the multivariate case, this only holds at points where a¥ > 0.
(Note that a is a polynomial in the y;s.) So we need to modify the
algorithm a bit.



Sign-preserving pseudo-division algorithm

Sign-preserving pseudo-division algorithm
a is the leading coefficient of g(x). Depending on the values of
Y1,---,Ym, we have the following cases:
> If a =0, then a is not the leading coefficient of g, and so we
move to the next coefficient and recurse. (Edge case - all
coefficients are zero)
» If a # 0, then we perform pseudo-division to get
akp=s-q+r.



Sign-preserving pseudo-division algorithm

Sign-preserving pseudo-division algorithm
a is the leading coefficient of g(x). Depending on the values of
Y1,---,Ym, we have the following cases:
> If a =0, then a is not the leading coefficient of g, and so we
move to the next coefficient and recurse. (Edge case - all
coefficients are zero)
» If a # 0, then we perform pseudo-division to get
akp=s-q+r.
> If ak < 0 (i.e. if a< 0 and k is odd), we multiply both sides
by a to get akTlp = as- g+ ar’. Now a**1 > 0, so we can set
r=ar.

» Otherwise (a > 0, or k even), simply set r = r’.



Sign-preserving pseudo-division algorithm

Sign-preserving pseudo-division algorithm

a is the leading coefficient of g(x). Depending on the values of

Yi,---

>

, ¥m, we have the following cases:

If a=0, then a is not the leading coefficient of g, and so we
move to the next coefficient and recurse. (Edge case - all
coefficients are zero)

If a £ 0, then we perform pseudo-division to get
akp=s-q+r.

If a¥ < 0 (i.e. if a< 0 and k is odd), we multiply both sides
by a to get akTlp = as- g+ ar’. Now a**1 > 0, so we can set
r=ar.

Otherwise (a > 0, or k even), simply set r = r'.

In both these above cases, the prefactor of p(x) is positive, so
we have sgn(p(x;)) = sgn(r(x;)) at all roots x; of g(x). So r
is a sign-preserving remainder on 'division’ of p by g.



Sign-preserving pseudo-division algorithm

Edge case

While performing case splits, there is a case wherein we assume all
the coefficients of g are zero. Here we simply return None which
will will be handled separately when are building the sign matrix.



Building a sign matrix

» Given p, p1, p2, ..., Pn, We can construct their sign matrices
from the sign matrices of p’, p1,...,pn, 0, M- .., Iy, in the
same manner as earlier.

» The only difference is that now we have multiple cases,
corresponding to multiple choices for the signs of the
coefficients. Under the assumptions of each case, we can
create separate sign matrices for p, p1, p2,- .., Pn-



Building a sign matrix

» Given p, p1, p2, ..., Pn, We can construct their sign matrices
from the sign matrices of p’, p1,...,pn, 0, M- .., Iy, in the
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Building a sign matrix

» Given p, p1, p2, ..., Pn, We can construct their sign matrices
from the sign matrices of p’, p1,...,pn, 0, M- .., Iy, in the
same manner as earlier.

» The only difference is that now we have multiple cases,
corresponding to multiple choices for the signs of the
coefficients. Under the assumptions of each case, we can
create separate sign matrices for p, p1, p2,- .., Pn-

P> At the end, this leaves us with a large number of sign
matrices. Each of them can be converted into a quantifier-free
formula, and put in conjunction with the assumptions for that
case. The disjunction of all these formulae is the required
end-result.

> We can use the same argument from earlier to say that a sign
matrix for any p1, p2, ..., Pn, can be constructed in finite time.



Building a sign matrix

Edge cases

» If ry is None, then all the coefficients of p’ were assumed to
be zero. This would mean p is a constant, hence we simply
find sign of the coefficient of x° and append a constant row
to the sign matrix of pi,..., p, and label the row as p.

» If r; is None where i > 1, then all the coefficients of p; were
assumed to be zero. This would mean p; is a constant, hence
it has no roots and doesn’t help in building the sign matrix.
Thus we simply ignore p; and build the sign matrix for
Pl ey Pie1y Pid+1s s Pns 10y -y Fi—1, Fi+1, -+, n from which we
build sign matrix of p, p1,.., pi—1, Pi+1,--» Pn t0 Which we can
simply add the constant row corresponding p;.



An example

Example
Eliminating 3 from the formula 3x : y(x? + 1) > 0.

> We have p = y(x? + 1), and p’ = 2xy.

» On pseudo-division of p by p/, we get
(2y) - y(x®2 + 1) = yx - 2yx + 2y2.

» Divide into cases based on the sign of 2y:

e Case 1: if 2y > 0, then rg = 2y2.
e Case 2: if 2y < 0, then rg = 2y - 2y = 4y3.
e Case 3: if 2y = 0, then we move to the next coefficient.

However, this is the last coefficient, so p’ is the zero
polynomial, and so p is constant over the real line.
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and 2y2.
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Case 1
» To get the sign matrix of p, we need the sign-matrix of 2xy
and 2y2.
» We have (2xy)’ = 2y. On pseudo-division, this gives us
(2y) - 2xy = (2yx) - 2y + 0.
» Similarly, on pseudo-dividing 2xy by 2y?, we get
(2y%) - 2xy = (2yx) - 2y + 0.



An example

Case 1

» To get the sign matrix of p, we need the sign-matrix of 2xy
and 2y2.

» We have (2xy)’ = 2y. On pseudo-division, this gives us
(2y) - 2xy = (2yx) - 2y + 0.

» Similarly, on pseudo-dividing 2xy by 2y?, we get
(2y?) - 2xy = (2yx) - 2y? + 0.

» So to find the sign matrix of 2xy and 22, we need to find the
sign matrix of {2y2 2y, 0} (there will be 3 x 3 cases,
depending on the signs of 2y? and 2y).

Case 2 is dealt with in a similar way.



An example

So our resulting formula is a disjunction of clauses, with each
clause corresponding to different cases. For example, part of the
formula arising from subcases of Case 1 (where y > 0) is:

(Qy >0A22>0Ay>0) A (+1=+1)) Vv

(Qy <0A22>0Ay>0)A(-1=+41)) Vv
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