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Is real arithmetic decidable?

Syntax of real arithmetic

I FO(R,+,−, ·, <, 0, 1) , with the usual interpretations of
+,−, ·, <, 0, 1.

I More formally:

(Term) t ::= x ∈ V | 0 | 1 | t1 + t2 | t1 − t2 | t1 · t2
(Atom)A ::= t1 < t2 | t1 = t2
(Formula)ϕ ::= A |ϕ ∧ ϕ |ϕ ∨ ϕ | ¬ϕ | ∃xϕ | ∀xϕ

Decidability

A theory is decidable if there is an algorithm that can decide in
finite time whether a given formula is valid in the theory.
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Tarski-Seidenberg theorem

Tarski-Seidenberg theorem

The first-order theory of reals admits quantifier elimination.

I Quantifier-free real arithmetic is decidable.

I Thus, it is sufficient to provide a proof of the above theorem.
We will give a constructive proof, originally by Hörmander
(1983).

Example

∃x : ax + b = 0
becomes (a = 0)⇒ (b = 0) on quantifier elimination.



Reduction of formula to required form

All terms are polynomials

I If our formula has no variables, then we are done.

I Otherwise, each term has k variables. For any one variable x ,
it can be considered as a polynomial in x , with coefficients
being polynomials in the remaining k − 1 variables.

I So each atom is of the form p(x) ./ 0, where ./ is one of
≤, <,>,≥,=, 6=.

Lemma
It is sufficient to eliminate ∃ from a formula of the form

∃x : p1(x) ./1 0 ∧ · · · ∧ pn(x) ./n 0 ,

where ./i is one of ≤, <,>,≥,=, 6=.



Reduction of formula to required form

Proof of lemma
Suppose we can eliminate quantifiers from formulae of the given
form. Then for any given formula with n + 1 quantifiers,

I Consider the innermost quantifier along with the subformula ϕ
in its body.

I If the quantifier is ∀, rewrite ∀xϕ(x) as ¬(∃x ¬ϕ(x)).

I Convert the subformula to DNF (i.e. of the form
ϕ1(x) ∨ · · · ∨ ϕm(x), where each ϕi is a conjunction of
atoms.)

I Distribute ∃ over the ϕi s, to get
(∃xϕ1(x)) ∨ · · · ∨ (∃xϕm(x)).

I Eliminate quantifiers from each of these m subformulas, to
get a formula with n quantifiers.

By induction, we are done.
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Division algorithm (univariate)

Division
Given two polynomials p(x) and q(x) (with q nonzero), containing
no other variables, we can divide p by q, to get polynomials s and
r satisfying the equation

p(x) = s(x)q(x) + r(x) ,

with deg(r) < deg(q).



Sign matrix (univariate)

Sign matrix

Given a set of polynomials {p1(x), . . . , pn(x)} in one variable x ,
with x1 < x2 < · · · < xm being the list of points which are real
roots of atleast one pi , the reduced sign matrix M of these
polynomials is as follows:

I Rows are indexed by pi s.

I Columns indices are:
(−∞, x1), x1, (x1, x2), x2, . . . , (xm−1, xm), xm, (xm,∞).

I On the column indexed by the interval or point j ,

Mij =


+ if pi (x) > 0 on j

0 if pi (x) = 0 on j

− if pi (x) < 0 on j .



Sign matrix example

pa = x4 + 3x3 + x2 − 3x − 2

pb = 12x2 − 7x − 10

x1 x2 x3 x4 x5

pa + 0 – 0 – – – 0 + + +

pb + + + + + 0 – – – 0 +



Sign matrix to quantifier-free formula (univariate)

Quantifier-free formula from sign matrix

The sign matrix for a set of univariate polynomials
p1(x), . . . , pn(x) is sufficient to convert any formula of the below
form into a quantifier-free formula

∃x : p1(x) ./1 0 ∧ · · · ∧ pn(x) ./n 0

where ./i can be one of ≤, <,>,≥,=, 6=

Example:

∃x : pa(x) < 0 ∧ pb(x) = 0
where
pa = x4 + 3x3 + x2 − 3x − 2 and
pb = 12x2 − 7x − 10



Sign matrix to quantifier-free formula (univariate)

x1 x2 x3 x4 x5

pa + 0 – 0 – – – 0 + + +

pb + + + + + 0 – – – 0 +

Original formula: ∃x : pa(x) < 0 ∧ pb(x) = 0

New formula:
(+1 = −1 ∧+1 = 0) ∨
....
....
....



x1 x2 x3 x4 x5

pa + 0 – 0 – – – 0 + + +

pb + + + + + 0 – – – 0 +

Original formula: ∃x : pa(x) < 0 ∧ pb(x) = 0

New formula:
(+1 = −1 ∧ +1 = 0) ∨

(0 = −1 ∧ +1 = 0) ∨
(−1 = −1 ∧ +1 = 0) ∨

(0 = −1 ∧ +1 = 0) ∨
(−1 = −1 ∧ +1 = 0) ∨
(−1 = −1 ∧ 0 = 0) ∨
(−1 = −1 ∧ −1 = 0) ∨

(0 = −1 ∧ −1 = 0) ∨
(+1 = −1 ∧ −1 = 0) ∨
(+1 = −1 ∧ 0 = 0) ∨
(+1 = −1 ∧ +1 = 0) ∨



Sign matrix to quantifier-free formula (univariate)

x1 x2 x3 x4 x5

pa + 0 – 0 – – – 0 + + +

pb + + + + + 0 – – – 0 +

Another example:

if we instead had

∃x : pa(x) ≥ 0 ∧ pb(x) < 0

the quantifier-free formula would be:

((+1 = 0 ∨+1 = +1) ∧ +1 = −1) ∨
((0 = 0 ∨ 0 = +1) ∧ +1 = −1) ∨

((−1 = 0 ∨ −1 = +1) ∧ +1 = −1) ∨
....
....



Building the Sign Matrix

Algorithm: Build from ‘smaller’ one

Given p, p1, p2, . . . , pn, this algorithm constructs its sign matrix
from the sign matrix of p′, p1, . . . , pn, r0, r1, . . . , rn
where p′ is the derivative of p and ri is the remainder obtained
when p is divided by pi , in other words p(x) = s(x) · pi (x) + ri (x) .
(Note: r0 is the remainder when p is divided by p′. Think of p′ as
p0)

Example:

p = x4 + 3x3 + x2 − 3x − 2 and
p1 = 12x2 − 7x − 10



Building the Sign Matrix from a ‘smaller’ one

p = x4 + 3x3 + x2 − 3x − 2 p′ = 4x3 + 9x2 + 2x − 3

p1 = 12x2 − 7x − 10 r0 = −19

16
x2 − −21

8
x − 23

16

r1 =
3931

1728
x +

1097

864

x1 x2 x3 x4 x5 x6 x7

p′ – 0 + + + 0 – – – – – 0 + + +

p1 + + + + + + + 0 – – – – – 0 +

r0 – – – 0 + 0 – – – – – – – – –

r1 – – – – – – – – – 0 + + + + +

Split the sign matrix into two equally sized parts, one for the p, p1, . . . , pn
and one for the r0, r1, . . . , rn.
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Building the Sign Matrix from a ‘smaller’ one

I Split the sign matrix into two equally sized parts, one for the
p, p1, . . . , pn and one for the r0, r1, . . . , rn

I Add a new row for p

x1 x2 x3 x4 x5 x6 x7

p′ – 0 + + + 0 – – – – – 0 + + +

p1 + + + + + + + 0 – – – – – 0 +

p

x1 x2 x3 x4 x5 x6 x7

r0 – – – 0 + 0 – – – – – – – – –

r1 – – – – – – – – – 0 + + + + +



Building the Sign Matrix from a ‘smaller’ one

I We can now infer the sign of p(xi ) for each point xi that is a
root of one of the polynomials pk , as follows:

Recall, p(x) = sk(x) · pk(x) + rk(x).
Thus, if pk(xi ) = 0, then p(xi ) = 0 + rk(xi ).
sign(p(xi )) = sign(rk(xi ))

x1 x2 x3 x4 x5 x6 x7

p′ – 0 + + + 0 – – – – – 0 + + +

p1 + + + + + + + 0 – – – – – 0 +

p – 0 – – +

x1 x2 x3 x4 x5 x6 x7

r0 – – – 0 + 0 – – – – – – – – –

r1 – – – – – – – – – 0 + + + + +



Building the Sign Matrix from a ‘smaller’ one

I Throw away second sign matrix

I ‘Condense’ the first matrix by removing the points that are
not roots of one of p′, p1, . . . , pn

x1 x2 x3 x4 x5 x6 x7

p′ – 0 + + + 0 – – – – – 0 + + +

p1 + + + + + + + 0 – – – – – 0 +

p – 0 – – +

x1 x2 x3 x4 x5

p′ – 0 + 0 – – – 0 + + +

p1 + + + + + 0 – – – 0 +

p – 0 – – +



Building the Sign Matrix from a ‘smaller’ one

I Throw away second sign matrix

I ‘Condense’ the first matrix by removing the points that are
not roots of one of p′, p1, . . . , pn

x1 x2 x3 x4 x5 x6 x7

p′ – 0 + + + 0 – – – – – 0 + + +

p1 + + + + + + + 0 – – – – – 0 +

p – 0 – – +

x1 x2 x3 x4 x5

p′ – 0 + 0 – – – 0 + + +

p1 + + + + + 0 – – – 0 +

p – 0 – – +



Building the Sign Matrix from a ‘smaller’ one

I If p(xi ) · p(xi+1) < 0, by Intermediate Value theorem, p has a
root in the interval (xi , xi+1).

Replace column labeled by (xi , xi+1) with 3 copies of itself,
where the middle column is labeled by the root of p

x1 x2 x3 x4 x5

p′ – 0 + 0 – – – 0 + + +

p1 + + + + + 0 – – – 0 +

p – 0 – – +

x1 x2 x3 x4 xnew x5

p′ – 0 + 0 – – – 0 + + + + +

p1 + + + + + 0 – – – – – 0 +

p – 0 – –

0

+



Building the Sign Matrix from a ‘smaller’ one

I If p(xi ) · p(xi+1) < 0, by Intermediate Value theorem, p has a
root in the interval (xi , xi+1).
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p – 0 – – 0 +



Building the Sign Matrix from a ‘smaller’ one

Pause and ponder

• Can p have two roots in (xi , xi+1) ?

• Can p(xi ) = p(xi+1) = 0 ?

• Given p(xi ) > 0 and p(xi+1) = 0, can p have a root in
(xi , xi+1) ?

• Given p(xi ) < 0 and p(xi+1) = 0, can p have a root in
(xi , xi+1) ?

x1 x2 x3 x4 x5 x6

p′ – 0 + 0 – – – 0 + + + + +

p1 + + + + + 0 – – – – – 0 +

p – 0 – – 0 +
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Pause and ponder
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Building the Sign Matrix from a ‘smaller’ one

I If p(xi ) ≥ 0 and p(xi+1) ≥ 0, then add sign of p on (xi , xi+1)
as +

I If p(xi ) ≤ 0 and p(xi+1) ≤ 0, then add sign of p on (xi , xi+1)
as −

x1 x2 x3 x4 x5 x6

p′ – 0 + 0 – – – 0 + + + + +

p1 + + + + + 0 – – – – – 0 +

p – 0 – – 0 + +



Building the Sign Matrix from a ‘smaller’ one

I If p(xi ) ≥ 0 and p(xi+1) ≥ 0, then add sign of p on (xi , xi+1)
as +

I If p(xi ) ≤ 0 and p(xi+1) ≤ 0, then add sign of p on (xi , xi+1)
as −

x1 x2 x3 x4 x5 x6

p′ – 0 + 0 – – – 0 + + + + +

p1 + + + + + 0 – – – – – 0 +

p – – 0 – – – – – 0 + +



Building the Sign Matrix from a ‘smaller’ one

I Add a new row at either ends of the table and label them as
−∞ and +∞

I Infer the sign of p at −∞ and +∞ by looking at the degree
of p and the sign of leading coefficient of p

Recall,
p = x4 + 3x3 + x2 − 3x − 2

−∞ x1 x2 x3 x4 x5 x6 +∞
p′ – – 0 + 0 – – – 0 + + + + + +

p1 + + + + + + 0 – – – – – 0 + +

p

+

– – 0 – – – – – 0 + +

+



Building the Sign Matrix from a ‘smaller’ one

I Add a new row at either ends of the table and label them as
−∞ and +∞

I Infer the sign of p at −∞ and +∞ by looking at the degree
of p and the sign of leading coefficient of p

Recall,
p = x4 + 3x3 + x2 − 3x − 2

−∞ x1 x2 x3 x4 x5 x6 +∞
p′ – – 0 + 0 – – – 0 + + + + + +

p1 + + + + + + 0 – – – – – 0 + +

p + – – 0 – – – – – 0 + + +



Building the Sign Matrix from a ‘smaller’ one

I Fill in the 2 intervals, (−∞, x1), (xn,+∞) as before.

I Throw away the first and last column

I Remove the row labeled by p′

I ‘Condense’ the matrix to remove points that are not roots of
one of p, p1, . . . , pn

−∞ xnew x1 x2 x3 x4 x5 x6 +∞
p′ – – – – 0 + 0 – – – 0 + + + + + +

p1 + + + + + + + + 0 – – – – – 0 + +

p + + 0 – – – 0 – – – – – 0 + + + +



Building the Sign Matrix from a ‘smaller’ one

I Fill in the 2 intervals, (−∞, x1), (xn,+∞) as before.

I Throw away the first and last column

I Remove the row labeled by p′

I ‘Condense’ the matrix to remove points that are not roots of
one of p, p1, . . . , pn

x1 x2 x3 x4 x5 x6 x7

p′ – – – 0 + 0 – – – 0 + + + + +

p1 + + + + + + + 0 – – – – – 0 +

p + 0 – – – 0 – – – – – 0 + + +



Building the Sign Matrix from a ‘smaller’ one

I Fill in the 2 intervals, (−∞, x1), (xn,+∞) as before.

I Throw away the first and last column

I Remove the row labeled by p′

I ‘Condense’ the matrix to remove points that are not roots of
one of p, p1, . . . , pn

x1 x2 x3 x4 x5 x6 x7

p′ – – – 0 + 0 – – – 0 + + + + +

p1 + + + + + + + 0 – – – – – 0 +

p + 0 – – – 0 – – – – – 0 + + +



Building the Sign Matrix from a ‘smaller’ one

I Fill in the 2 intervals, (−∞, x1), (xn,+∞) as before.

I Throw away the first and last column

I Remove the row labeled by p′

I ‘Condense’ the matrix to remove points that are not roots of
one of p, p1, . . . , pn

x1 x2 x3 x4 x5

p1 + + + + + 0 – – – 0 +

p + 0 – 0 – – – 0 + + +

This completes the construction



Building Sign Matrix

Using the algorithm we just described, we can build the sign matrix
of p1, p2, . . . , pn as follows:

• If all pi have degree 0, i.e. pi = ci for all i , then the sign
matrix is

p1 sign(c1)

p2 sign(c2)

· ·
· ·
pn sign(cn)

• Else, use recursion to find the sign matrix of
p′, p2, p3, . . . , pn, r0, r2, r3, . . . , rn.
Using this and the previous algorithm, find the sign matrix of
p1, p2, . . . , pn

Termination?



Building Sign Matrix

Using the algorithm we just described, we can build the sign matrix
of p1, p2, . . . , pn as follows:

• If all pi have degree 0, i.e. pi = ci for all i , then the sign
matrix is

p1 sign(c1)

p2 sign(c2)

· ·
· ·
pn sign(cn)

• Else, use recursion to find the sign matrix of
p′, p2, p3, . . . , pn, r0, r2, r3, . . . , rn.
Using this and the previous algorithm, find the sign matrix of
p1, p2, . . . , pn

Termination?



Building Sign Matrix

Using the algorithm we just described, we can build the sign matrix
of p1, p2, . . . , pn as follows:

• If all pi have degree 0, i.e. pi = ci for all i , then the sign
matrix is

p1 sign(c1)

p2 sign(c2)

· ·
· ·
pn sign(cn)

• Else, use recursion to find the sign matrix of
p′, p2, p3, . . . , pn, r0, r2, r3, . . . , rn.
Using this and the previous algorithm, find the sign matrix of
p1, p2, . . . , pn

Termination?



Building Sign Matrix-Termination

Termination using König’s lemma

Given p1, . . . , pn we set up a finitely branching tree as follows:

I Let the root of the tree be a polynomial which has degree
strictly larger than the degree of all pi

I let p1, . . . , pn be the children of the root node.
I We build the rest of the tree inductively as follows:

• let s1, . . . , sm be the leaves of the current tree.
• If deg(si ) = 0 for all i , then we stop here and return this

as final tree.
• If deg(si ) > 0 for some i ,find sj which has maximum

degree and add s ′j , r0, r1, .., rj−1, rj+1, .., rm as the children
of sj (Finitely branching).

Key observation: degree of child < degree of parent



Building Sign Matrix-Termination

Termination using König’s lemma

Now after we have built the tree, assume that our algorithm
doesn’t terminate. This means our tree is infinite.
But by König’s lemma, we will have an infinite branch. But note
that as we go down a branch, the degree of the polynomials are
strictly decreasing
⇒ infinite decent in N
⇒ contradiction

Thus, our algorithm terminates.

This finishes quantifier elimination for univariate polynomials.

Can we extend this to the case where there are more than 1
variables in the formula? (Multivariate case)



Building Sign Matrix-Termination

Termination using König’s lemma

Now after we have built the tree, assume that our algorithm
doesn’t terminate. This means our tree is infinite.
But by König’s lemma, we will have an infinite branch. But note
that as we go down a branch, the degree of the polynomials are
strictly decreasing
⇒ infinite decent in N
⇒ contradiction

Thus, our algorithm terminates.

This finishes quantifier elimination for univariate polynomials.

Can we extend this to the case where there are more than 1
variables in the formula? (Multivariate case)



Multivariate case

Issues with multiple variables

In the general case, where we have a formula of the form

∃x : α1(x , y1, . . . , ym) ∧ · · · ∧ αn(x , y1, . . . , ym) ,

where each αi is of the form pi (x , y1, . . . , ym) ./i 0, and the yj s
are free variables, we cannot use the same procedure.

Example

Consider the formula ∃x : yx > 0. We cannot directly construct
the sign matrix here, as the sign of yx depends on the value of y .
In this case, we can solve this by splitting into three cases
(depending on the sign of y), and creating a sign matrix for each
separately.
Let φ+(y), φ0(y) and φ−(y) be the resulting quantifier-free
fromulae from each of these matrices (where φ+ corresponds to
the case where y > 0, etc.)



Multivariate case

Example

Then ∃x : yx > 0 can be rewritten as:
(y > 0 ∧ φ+(y)) ∨
(y = 0 ∧ φ0(y)) ∨
(y < 0 ∧ φ−(y)).
Specifically, in this case, we have the following sign matrices:

y > 0

x1
p(x) -1 0 +1

φ+(y) :

(−1 = +1)∨
(0 = +1)∨

(+1 = +1)

y = 0

p(x) 0

φ0(y) :

(0 = +1)

y < 0

x1
p(x) +1 0 −1

φ+(y) :

(+1 = +1)∨
(0 = +1)∨

(−1 = +1)



Multivariate case

Example

Then ∃x : yx > 0 is equivalent to:
(y > 0 ∧ ((−1 = +1) ∨ (0 = +1) ∨ (+1 = +1))) ∨
(y = 0 ∧ (0 = +1)) ∨
(y < 0 ∧ ((+1 = +1) ∨ (0 = +1) ∨ (−1 = +1))).

In general, the process requires many more cases and subcases.



Division algorithm (multivariate)

Pseudo-division
Given two polynomials p(x) and q(x), which may contain other
variables in addition to x , we can ’divide’ p by q, to get
polynomials s and r satisfying the equation

akp(x) = s(x)q(x) + r(x) ,

with degx(r) < degx(q). (Here, a is the leading coefficient of q(x))



Division algorithm (multivariate)

Algorithm

Let degx(q) = n, and degx(p) = m.

I If n > m, then setting s(x) ≡ 0 and r(x) = p(x) works.

I Consider the case where n ≤ m.

I Take the (nonzero) leading coefficients of q(x) and p(x) to be
a and b, respectively, so that q(x) = axn + q0(x), and
p(x) = bxm + p0(x). Then we have

ap(x) = bxm−nq(x) + (ap0(x)− bxm−nq0(x)) .

I Note that r ′(x) = ap0(x)− bxm−nq0(x) has lower degree than
p(x). Now we can repeat the step above, with r ′(x) taking
the place of p(x). This gives us

ar ′(x) = s ′(x)q(x) + r ′′(x) .
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Division algorithm (multivariate)

Algorithm (cont.)

I Composing the previous two steps gives us

a2p(x) =
[
abxm−nq(x) + s ′(x)

]
q(x) + r ′′(x) .

I Continue this process by dividing the remainder polynomial by
q at each step. As the degree of the remainder decreases at
each step, it eventually becomes less than n, and the
algorithm terminates.

I If it terminates after k divisions, we have

akp(x) = s1(x)q(x) + r1(x) ,

with degx(r1) < degx(q).



Division algorithm (multivariate)

Algorithm (cont.)

I If we consider univariate polynomials (so that a is a nonzero
constant), dividing throughout by ak gets us

p(x) = s(x)q(x) + r(x) ,

which is the required result.

I However, if p and q are multivariate, then a might be a
polynomial in the other variables. In this case, we leave the
result as it is.



Sign-preserving pseudo-division algorithm

Pseudo-division
Given two polynomials p(x) and q(x), which may contain other
variables in addition to x , we can ’divide’ p by q, to get
polynomials s and r satisfying the equation

akp(x) = s(x)q(x) + r(x) ,

with degx(r) < degx(q). (Here, a is the leading coefficient of q(x))

In the univariate case, we had no prefactor of ak , so at the roots of
q, sgn(p) = sgn(r).
For the multivariate case, this only holds at points where ak > 0.
(Note that a is a polynomial in the yi s.) So we need to modify the
algorithm a bit.



Sign-preserving pseudo-division algorithm

Sign-preserving pseudo-division algorithm

a is the leading coefficient of q(x). Depending on the values of
y1, . . . , ym, we have the following cases:

I If a = 0, then a is not the leading coefficient of q, and so we
move to the next coefficient and recurse. (Edge case - all
coefficients are zero)

I If a 6= 0, then we perform pseudo-division to get
akp = s · q + r ′.

I If ak < 0 (i.e. if a < 0 and k is odd), we multiply both sides
by a to get ak+1p = as · q + ar ′. Now ak+1 > 0, so we can set
r = ar ′.

I Otherwise (a > 0, or k even), simply set r = r ′.

I In both these above cases, the prefactor of p(x) is positive, so
we have sgn(p(xi )) = sgn(r(xi )) at all roots xi of q(x). So r
is a sign-preserving remainder on ’division’ of p by q.
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Sign-preserving pseudo-division algorithm

Edge case

While performing case splits, there is a case wherein we assume all
the coefficients of q are zero. Here we simply return None which
will will be handled separately when are building the sign matrix.



Building a sign matrix

I Given p, p1, p2, . . . , pn, we can construct their sign matrices
from the sign matrices of p′, p1, . . . , pn, r0, r1, . . . , rn, in the
same manner as earlier.

I The only difference is that now we have multiple cases,
corresponding to multiple choices for the signs of the
coefficients. Under the assumptions of each case, we can
create separate sign matrices for p, p1, p2, . . . , pn.

I At the end, this leaves us with a large number of sign
matrices. Each of them can be converted into a quantifier-free
formula, and put in conjunction with the assumptions for that
case. The disjunction of all these formulae is the required
end-result.

I We can use the same argument from earlier to say that a sign
matrix for any p1, p2, . . . , pn, can be constructed in finite time.
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Building a sign matrix

Edge cases

I If r0 is None, then all the coefficients of p′ were assumed to
be zero. This would mean p is a constant, hence we simply
find sign of the coefficient of x0 and append a constant row
to the sign matrix of p1, . . . , pn and label the row as p.

I If ri is None where i ≥ 1, then all the coefficients of pi were
assumed to be zero. This would mean pi is a constant, hence
it has no roots and doesn’t help in building the sign matrix.
Thus we simply ignore pi and build the sign matrix for
p1, .., pi−1, pi+1, .., pn, r0, .., ri−1, ri+1, .., rn from which we
build sign matrix of p, p1, .., pi−1, pi+1, .., pn to which we can
simply add the constant row corresponding pi .



An example

Example

Eliminating ∃ from the formula ∃x : y(x2 + 1) > 0.

I We have p = y(x2 + 1), and p′ = 2xy .

I On pseudo-division of p by p′, we get
(2y) · y(x2 + 1) = yx · 2yx + 2y2.

I Divide into cases based on the sign of 2y :

• Case 1: if 2y > 0, then r0 = 2y2.

• Case 2: if 2y < 0, then r0 = 2y · 2y2 = 4y3.

• Case 3: if 2y = 0, then we move to the next coefficient.
However, this is the last coefficient, so p′ is the zero
polynomial, and so p is constant over the real line.



An example

Case 1
I To get the sign matrix of p, we need the sign-matrix of 2xy

and 2y2.

I We have (2xy)′ = 2y . On pseudo-division, this gives us
(2y) · 2xy = (2yx) · 2y + 0.

I Similarly, on pseudo-dividing 2xy by 2y2, we get
(2y2) · 2xy = (2yx) · 2y2 + 0.

I So to find the sign matrix of 2xy and 2y2, we need to find the
sign matrix of {2y2, 2y , 0} (there will be 3× 3 cases,
depending on the signs of 2y2 and 2y).

Case 2 is dealt with in a similar way.
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An example

So our resulting formula is a disjunction of clauses, with each
clause corresponding to different cases. For example, part of the
formula arising from subcases of Case 1 (where y > 0) is:
((2y > 0 ∧ 2y2 > 0 ∧ y > 0) ∧ (+1 = +1)) ∨
((2y < 0 ∧ 2y2 > 0 ∧ y > 0) ∧ (−1 = +1)) ∨
. . .
. . .
. . .
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