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Introducing PL (Leibniz 17th c., 1704; Boole 1854)

First-order logic (FOL) syntax over symbols (Co,Fu,Pr ,Re):
t ::= x ∈ V | c ∈ Co | f (t1, . . . , tn), f ∈ Fun
A ::= p ∈ Pr | R(t1, . . . , tn), R ∈ Ren | t1 ≡ t2 | true | false

| (¬A) | (A ∨ B) | (A ∧ B) | (A → B) | (A ↔ B)
| ∃xA | ∀xA

Propositional calculus (PL) over symbols Pr (propositional
variables) has simpler syntax.

A ::= p ∈ Pr | true | false
| (¬A) | (A ∨ B) | (A ∧ B) | (A → B) | (A ↔ B)

A propositional assignment s is a function assigning a boolean
value p[s] in {T ,F} to every propositional variable p in Pr .

This is lifted to formulas: every Boolean operation has a truth
table (EFT, Section III.2, page 29) giving a truth value A[s] to
the formula A.



Introducing PL (Leibniz 17th c., 1704; Boole 1854)

First-order logic (FOL) syntax over symbols (Co,Fu,Pr ,Re):
t ::= x ∈ V | c ∈ Co | f (t1, . . . , tn), f ∈ Fun
A ::= p ∈ Pr | R(t1, . . . , tn), R ∈ Ren | t1 ≡ t2 | true | false

| (¬A) | (A ∨ B) | (A ∧ B) | (A → B) | (A ↔ B)
| ∃xA | ∀xA

Propositional calculus (PL) over symbols Pr (propositional
variables) has simpler syntax.

A ::= p ∈ Pr | true | false
| (¬A) | (A ∨ B) | (A ∧ B) | (A → B) | (A ↔ B)

A propositional assignment s is a function assigning a boolean
value p[s] in {T ,F} to every propositional variable p in Pr .

This is lifted to formulas: every Boolean operation has a truth
table (EFT, Section III.2, page 29) giving a truth value A[s] to
the formula A.



Introducing PL (Leibniz 17th c., 1704; Boole 1854)

First-order logic (FOL) syntax over symbols (Co,Fu,Pr ,Re):
t ::= x ∈ V | c ∈ Co | f (t1, . . . , tn), f ∈ Fun
A ::= p ∈ Pr | R(t1, . . . , tn), R ∈ Ren | t1 ≡ t2 | true | false

| (¬A) | (A ∨ B) | (A ∧ B) | (A → B) | (A ↔ B)
| ∃xA | ∀xA

Propositional calculus (PL) over symbols Pr (propositional
variables) has simpler syntax.

A ::= p ∈ Pr | true | false
| (¬A) | (A ∨ B) | (A ∧ B) | (A → B) | (A ↔ B)

A propositional assignment s is a function assigning a boolean
value p[s] in {T ,F} to every propositional variable p in Pr .

This is lifted to formulas: every Boolean operation has a truth
table (EFT, Section III.2, page 29) giving a truth value A[s] to
the formula A.



Model checking (Alfred Tarski 1935)

s |= p iff p[s] = T
s |= ¬A iff not (s |= A)
s |= A ∨ B iff s |= A or s |= B
s |= A ∧ B iff s |= A and s |= B
s |= A → B iff (if s |= A then s |= B)
s |= A ↔ B iff (s |= A iff s |= B)

s is a model of A when s |= A (assignments called models).
s is a model of theory Th if s satisfies every formula in Th.

Exercise
Evaluate q ∧ (¬(p → r)) over p[s] = F ,q[s] = T , r [s] = T .

Lemma (Coincidence)
For symbols Pr , a Pr-formula A and Pr-assignment s, whether
s |= A depends only on propositional variables occurring in A.

So for formula A in which n propositional variables occur, the
truth table for A is finite and has 2n rows.
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Implication truth table

In mathematics, we say that if n is a prime > 2, then n is odd.

Case n = 3: if 3 is a prime > 2 (T), then 3 is odd (T). The
implication is T.

Case n = 4: if 4 is a prime > 2 (F), then 4 is odd (F). The
implication is T.

Case n = 9: if 9 is a prime > 2 (F), then 9 is odd (T). The
implication is T.

On the other hand, saying that if n is a prime, then n is odd
gives:
Case n = 2: if 2 is a prime (T), then 2 is odd (F). This
implication is F.

Exercise (Independence of negation)
Show that positive formulas (∧,∨) have monotone truth tables.
That is, changing an input variable from F to T cannot change
formula value from T to F. How about ∧,∨,→ ?
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Hardware

We want to add two n-bit numbers, the result may be n + 1 bits.

Exercise (Half adder)
Given two bits x , y, give a truth table determining their sum and
carry bits r , c. Which Boolean functions are these?

Exercise (Full adder)
Given two bits x , y and an incoming carry bit z, give a truth
table determining their sum and outgoing carry bits r , c.

Exercise (Multiplier)
Given 4-bit numbers X ,Y, show that their 8-bit product P can
be determined using school arithmetic.

X0Y 3 X0Y 2 X0Y 1 X0Y0
+ X1Y 3 X1Y 2 X1Y 1 X1Y 0
+ X2Y 3 X2Y 2 X2Y 1 X2Y 0
+ X3Y 3 X3Y 2 X3Y 1 X3Y 0
= P7 P6 P5 P4 P3 P2 P1 P0
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Formula validity and satisfiability

Definition
A formula A is valid (|= A) if for every assignment s, s |= A.

Exercise (Double negation, De Morgan, Distributivity)
Show that the following formulas are valid: (¬¬A) ↔ A;
¬(A ∨ B) ↔ ((¬A) ∧ (¬B)); ¬(A ∧ B) ↔ ((¬A) ∨ (¬B));
(A ∧ (B ∨ C)) ↔ ((A ∧ B) ∨ (A ∧ C));
(A ∨ (B ∧ C)) ↔ ((A ∨ B) ∧ (A ∨ C))

Definition
Formula A is satisfiable (Sat A) if there is some assignment s
such that s |= A.

Exercise (Duality)
Show that A is valid if and only if ¬A is not satisfiable, and A is
satisfiable if and only if ¬A is not valid.



Boolean functions are representable

Theorem (Emil Post 1921)
Given finite Pr , a function g from Pr-assignments to {T ,F},
there is a Pr-formula A whose truth table is the function g.
Consider three cases to prove this theorem.

1 g(s) is not T (that is, F ) for every assignment s. In this
case the required formula is false (or p ∧ (¬p)).

2 g(s) is T for a unique model s0, and F otherwise. In this
case the required formula is A0 = (

∧
p[s0]=T

p) ∧ (
∧

p[s0]=F

¬p).

This captures the assignment s0.
3 g(s) is T for s1, . . . , sn for some bound n, since the number

of models over a finite symbol set is finite by the
Coincidence Lemma. In this case the required formula is

n∨
i=1

Ai , where Ai is defined for model si as above.
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Normal forms

Definition
A literal is either a propositional symbol p or its negation ¬p.
A formula is in disjunctive normal form (DNF) if it is a
disjunction of ≥ 1 conjunctions of literals.
A formula is in conjunctive normal form (CNF) if it is a
conjunction of ≥ 1 disjunctions of literals.

Theorem
Every formula has a logically equivalent one which is in DNF.
Every formula A has a logically equivalent one which is in CNF.

1 Follows from the fact that every formula has a truth table.
By the proof of Post’s theorem, truth table can be seen as
a formula in DNF.

2 First find the DNF equivalent, say B, of ¬A. Then
¬B ↔ ¬(¬A) ↔ A. Use Double Negation and De Morgan’s
laws to transform ¬B for B in DNF to an equivalent CNF.
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Checking satisfiability

A literal is always satisfiable.

A formula which is a conjunction of literals is satisfiable if it
does not have contradictory literals of the form p and ¬p. This
can be checked by going through the formula in time linear in
the size of the formula.

A formula in DNF is satisfiable if one of its disjuncts is
satisfiable. This can be checked by going through one disjunct
after another, again in linear time.

A formula in CNF is satisfiable if one disjunct is satisfied in
every one of its conjuncts, such that no contrary literals of the
form p and ¬p are chosen in different conjuncts. This can be
checked by trying all possibilities of selecting disjuncts, which
can be done in time exponential in the size of the formula.
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Conversion to conjunctive normal form (Tseitin 1968)

Theorem (Richard Karp 1972)
There is a polynomial time algorithm reducing satisfiability of a
PL formula to satisfiability of a PL formula in CNF.

Proof idea: From A = (P1 ∧ Q1) ∨ (P2 ∧ Q2) ∨ · · · ∨ (Pn ∧ Qn) to
CNF, naively applying Distributivity of Or over And, conversion
to CNF blows up formula size exponentially.

(Tseitin 1968) transformation, use fresh variables r1, . . . , rn:
B = (r1 ∨ · · · ∨ rn) ∧ ((r1 → (P1 ∧ Q1))∧

((r2 → (P2 ∧ Q2)) ∧ · · · ∧ (rn → (Pn ∧ Qn))

Equisatisfiability left to right: Suppose A is satisfiable.
Assign to every ri the truth value of (Pi ∧ Qi).
One of the ri in B is assigned T , so B is satisfiable.

Equisatisfiability right to left: Suppose B is satisfiable.
Then one ri in its first conjunct is assigned T .
By implication, (Pi ∧ Qi) is T . Then A is satisfiable.
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