
Truth tables
Heinz-Dieter Ebbinghaus, Jörg Flum, Wolfgang Thomas,

Mathematical logic, Section III.2, VIII.3

Kamal Lodaya

January 2023

Introducing PL (Leibniz 17th c., 1704; Boole 1854)

First-order logic (FOL) syntax over symbols (Co,Fu,Pr ,Re):
t ::= x ∈ V | c ∈ Co | f (t1, . . . , tn), f ∈ Fun
A ::= p ∈ Pr | R(t1, . . . , tn), R ∈ Ren | t1 ≡ t2 | true | false

| (¬A) | (A ∨ B) | (A ∧ B) | (A → B) | (A ↔ B)
| ∃xA | ∀xA

Propositional calculus (PL) over symbols Pr (propositional
variables) has simpler syntax.

A ::= p ∈ Pr | true | false
| (¬A) | (A ∨ B) | (A ∧ B) | (A → B) | (A ↔ B)

A propositional assignment s is a function assigning a boolean
value p[s] in {T ,F} to every propositional variable p in Pr .

This is lifted to formulas: every Boolean operation has a truth
table (EFT, Section III.2, page 29) giving a truth value A[s] to
the formula A.

Introducing PL (Leibniz 17th c., 1704; Boole 1854)

First-order logic (FOL) syntax over symbols (Co,Fu,Pr ,Re):
t ::= x ∈ V | c ∈ Co | f (t1, . . . , tn), f ∈ Fun
A ::= p ∈ Pr | R(t1, . . . , tn), R ∈ Ren | t1 ≡ t2 | true | false

| (¬A) | (A ∨ B) | (A ∧ B) | (A → B) | (A ↔ B)
| ∃xA | ∀xA

Propositional calculus (PL) over symbols Pr (propositional
variables) has simpler syntax.

A ::= p ∈ Pr | true | false
| (¬A) | (A ∨ B) | (A ∧ B) | (A → B) | (A ↔ B)

A propositional assignment s is a function assigning a boolean
value p[s] in {T ,F} to every propositional variable p in Pr .

This is lifted to formulas: every Boolean operation has a truth
table (EFT, Section III.2, page 29) giving a truth value A[s] to
the formula A.

Introducing PL (Leibniz 17th c., 1704; Boole 1854)

First-order logic (FOL) syntax over symbols (Co,Fu,Pr ,Re):
t ::= x ∈ V | c ∈ Co | f (t1, . . . , tn), f ∈ Fun
A ::= p ∈ Pr | R(t1, . . . , tn), R ∈ Ren | t1 ≡ t2 | true | false

| (¬A) | (A ∨ B) | (A ∧ B) | (A → B) | (A ↔ B)
| ∃xA | ∀xA

Propositional calculus (PL) over symbols Pr (propositional
variables) has simpler syntax.

A ::= p ∈ Pr | true | false
| (¬A) | (A ∨ B) | (A ∧ B) | (A → B) | (A ↔ B)

A propositional assignment s is a function assigning a boolean
value p[s] in {T ,F} to every propositional variable p in Pr .

This is lifted to formulas: every Boolean operation has a truth
table (EFT, Section III.2, page 29) giving a truth value A[s] to
the formula A.

Model checking (Alfred Tarski 1935)

s |= p iff p[s] = T
s |= ¬A iff not (s |= A)
s |= A ∨ B iff s |= A or s |= B
s |= A ∧ B iff s |= A and s |= B
s |= A → B iff (if s |= A then s |= B)
s |= A ↔ B iff (s |= A iff s |= B)

s is a model of A when s |= A (assignments called models).
s is a model of theory Th if s satisfies every formula in Th.

Exercise
Evaluate q ∧ (¬(p → r)) over p[s] = F ,q[s] = T , r [s] = T .

Lemma (Coincidence)
For symbols Pr , a Pr-formula A and Pr-assignment s, whether
s |= A depends only on propositional variables occurring in A.

So for formula A in which n propositional variables occur, the
truth table for A is finite and has 2n rows.

Model checking (Alfred Tarski 1935)

s |= p iff p[s] = T
s |= ¬A iff not (s |= A)
s |= A ∨ B iff s |= A or s |= B
s |= A ∧ B iff s |= A and s |= B
s |= A → B iff (if s |= A then s |= B)
s |= A ↔ B iff (s |= A iff s |= B)

s is a model of A when s |= A (assignments called models).
s is a model of theory Th if s satisfies every formula in Th.

Exercise
Evaluate q ∧ (¬(p → r)) over p[s] = F ,q[s] = T , r [s] = T .

Lemma (Coincidence)
For symbols Pr , a Pr-formula A and Pr-assignment s, whether
s |= A depends only on propositional variables occurring in A.

So for formula A in which n propositional variables occur, the
truth table for A is finite and has 2n rows.

Model checking (Alfred Tarski 1935)

s |= p iff p[s] = T
s |= ¬A iff not (s |= A)
s |= A ∨ B iff s |= A or s |= B
s |= A ∧ B iff s |= A and s |= B
s |= A → B iff (if s |= A then s |= B)
s |= A ↔ B iff (s |= A iff s |= B)

s is a model of A when s |= A (assignments called models).
s is a model of theory Th if s satisfies every formula in Th.

Exercise
Evaluate q ∧ (¬(p → r)) over p[s] = F ,q[s] = T , r [s] = T .

Lemma (Coincidence)
For symbols Pr , a Pr-formula A and Pr-assignment s, whether
s |= A depends only on propositional variables occurring in A.

So for formula A in which n propositional variables occur, the
truth table for A is finite and has 2n rows.

Implication truth table

In mathematics, we say that if n is a prime > 2, then n is odd.

Case n = 3: if 3 is a prime > 2 (T), then 3 is odd (T). The
implication is T.

Case n = 4: if 4 is a prime > 2 (F), then 4 is odd (F). The
implication is T.

Case n = 9: if 9 is a prime > 2 (F), then 9 is odd (T). The
implication is T.

On the other hand, saying that if n is a prime, then n is odd
gives:
Case n = 2: if 2 is a prime (T), then 2 is odd (F). This
implication is F.

Exercise (Independence of negation)
Show that positive formulas (∧,∨) have monotone truth tables.
That is, changing an input variable from F to T cannot change
formula value from T to F. How about ∧,∨,→ ?

Implication truth table

In mathematics, we say that if n is a prime > 2, then n is odd.

Case n = 3: if 3 is a prime > 2 (T), then 3 is odd (T). The
implication is T.

Case n = 4: if 4 is a prime > 2 (F), then 4 is odd (F). The
implication is T.

Case n = 9: if 9 is a prime > 2 (F), then 9 is odd (T). The
implication is T.

On the other hand, saying that if n is a prime, then n is odd
gives:
Case n = 2: if 2 is a prime (T), then 2 is odd (F). This
implication is F.

Exercise (Independence of negation)
Show that positive formulas (∧,∨) have monotone truth tables.
That is, changing an input variable from F to T cannot change
formula value from T to F. How about ∧,∨,→ ?

Implication truth table

In mathematics, we say that if n is a prime > 2, then n is odd.

Case n = 3: if 3 is a prime > 2 (T), then 3 is odd (T). The
implication is T.

Case n = 4: if 4 is a prime > 2 (F), then 4 is odd (F). The
implication is T.

Case n = 9: if 9 is a prime > 2 (F), then 9 is odd (T). The
implication is T.

On the other hand, saying that if n is a prime, then n is odd
gives:
Case n = 2: if 2 is a prime (T), then 2 is odd (F). This
implication is F.

Exercise (Independence of negation)
Show that positive formulas (∧,∨) have monotone truth tables.
That is, changing an input variable from F to T cannot change
formula value from T to F. How about ∧,∨,→ ?

Hardware

We want to add two n-bit numbers, the result may be n + 1 bits.

Exercise (Half adder)
Given two bits x , y, give a truth table determining their sum and
carry bits r , c. Which Boolean functions are these?

Exercise (Full adder)
Given two bits x , y and an incoming carry bit z, give a truth
table determining their sum and outgoing carry bits r , c.

Exercise (Multiplier)
Given 4-bit numbers X ,Y, show that their 8-bit product P can
be determined using school arithmetic.

X0Y 3 X0Y 2 X0Y 1 X0Y0
+ X1Y 3 X1Y 2 X1Y 1 X1Y 0
+ X2Y 3 X2Y 2 X2Y 1 X2Y 0
+ X3Y 3 X3Y 2 X3Y 1 X3Y 0
= P7 P6 P5 P4 P3 P2 P1 P0

Hardware

We want to add two n-bit numbers, the result may be n + 1 bits.

Exercise (Half adder)
Given two bits x , y, give a truth table determining their sum and
carry bits r , c. Which Boolean functions are these?

Exercise (Full adder)
Given two bits x , y and an incoming carry bit z, give a truth
table determining their sum and outgoing carry bits r , c.

Exercise (Multiplier)
Given 4-bit numbers X ,Y, show that their 8-bit product P can
be determined using school arithmetic.

X0Y 3 X0Y 2 X0Y 1 X0Y0
+ X1Y 3 X1Y 2 X1Y 1 X1Y 0
+ X2Y 3 X2Y 2 X2Y 1 X2Y 0
+ X3Y 3 X3Y 2 X3Y 1 X3Y 0
= P7 P6 P5 P4 P3 P2 P1 P0

Hardware

We want to add two n-bit numbers, the result may be n + 1 bits.

Exercise (Half adder)
Given two bits x , y, give a truth table determining their sum and
carry bits r , c. Which Boolean functions are these?

Exercise (Full adder)
Given two bits x , y and an incoming carry bit z, give a truth
table determining their sum and outgoing carry bits r , c.

Exercise (Multiplier)
Given 4-bit numbers X ,Y, show that their 8-bit product P can
be determined using school arithmetic.

X0Y 3 X0Y 2 X0Y 1 X0Y0
+ X1Y 3 X1Y 2 X1Y 1 X1Y 0
+ X2Y 3 X2Y 2 X2Y 1 X2Y 0
+ X3Y 3 X3Y 2 X3Y 1 X3Y 0
= P7 P6 P5 P4 P3 P2 P1 P0

Hardware

We want to add two n-bit numbers, the result may be n + 1 bits.

Exercise (Half adder)
Given two bits x , y, give a truth table determining their sum and
carry bits r , c. Which Boolean functions are these?

Exercise (Full adder)
Given two bits x , y and an incoming carry bit z, give a truth
table determining their sum and outgoing carry bits r , c.

Exercise (Multiplier)
Given 4-bit numbers X ,Y, show that their 8-bit product P can
be determined using school arithmetic.

X0Y 3 X0Y 2 X0Y 1 X0Y0
+ X1Y 3 X1Y 2 X1Y 1 X1Y 0
+ X2Y 3 X2Y 2 X2Y 1 X2Y 0
+ X3Y 3 X3Y 2 X3Y 1 X3Y 0
= P7 P6 P5 P4 P3 P2 P1 P0

Formula validity and satisfiability

Definition
A formula A is valid (|= A) if for every assignment s, s |= A.

Exercise (Double negation, De Morgan, Distributivity)
Show that the following formulas are valid: (¬¬A) ↔ A;
¬(A ∨ B) ↔ ((¬A) ∧ (¬B)); ¬(A ∧ B) ↔ ((¬A) ∨ (¬B));
(A ∧ (B ∨ C)) ↔ ((A ∧ B) ∨ (A ∧ C));
(A ∨ (B ∧ C)) ↔ ((A ∨ B) ∧ (A ∨ C))

Definition
Formula A is satisfiable (Sat A) if there is some assignment s
such that s |= A.

Exercise (Duality)
Show that A is valid if and only if ¬A is not satisfiable, and A is
satisfiable if and only if ¬A is not valid.

Boolean functions are representable

Theorem (Emil Post 1921)
Given finite Pr , a function g from Pr-assignments to {T ,F},
there is a Pr-formula A whose truth table is the function g.
Consider three cases to prove this theorem.

1 g(s) is not T (that is, F) for every assignment s. In this
case the required formula is false (or p ∧ (¬p)).

2 g(s) is T for a unique model s0, and F otherwise. In this
case the required formula is A0 = (

∧
p[s0]=T

p) ∧ (
∧

p[s0]=F

¬p).

This captures the assignment s0.
3 g(s) is T for s1, . . . , sn for some bound n, since the number

of models over a finite symbol set is finite by the
Coincidence Lemma. In this case the required formula is

n∨
i=1

Ai , where Ai is defined for model si as above.

Boolean functions are representable

Theorem (Emil Post 1921)
Given finite Pr , a function g from Pr-assignments to {T ,F},
there is a Pr-formula A whose truth table is the function g.
Consider three cases to prove this theorem.

1 g(s) is not T (that is, F) for every assignment s. In this
case the required formula is false (or p ∧ (¬p)).

2 g(s) is T for a unique model s0, and F otherwise. In this
case the required formula is A0 = (

∧
p[s0]=T

p) ∧ (
∧

p[s0]=F

¬p).

This captures the assignment s0.
3 g(s) is T for s1, . . . , sn for some bound n, since the number

of models over a finite symbol set is finite by the
Coincidence Lemma. In this case the required formula is

n∨
i=1

Ai , where Ai is defined for model si as above.

Boolean functions are representable

Theorem (Emil Post 1921)
Given finite Pr , a function g from Pr-assignments to {T ,F},
there is a Pr-formula A whose truth table is the function g.
Consider three cases to prove this theorem.

1 g(s) is not T (that is, F) for every assignment s. In this
case the required formula is false (or p ∧ (¬p)).

2 g(s) is T for a unique model s0, and F otherwise. In this
case the required formula is A0 = (

∧
p[s0]=T

p) ∧ (
∧

p[s0]=F

¬p).

This captures the assignment s0.

3 g(s) is T for s1, . . . , sn for some bound n, since the number
of models over a finite symbol set is finite by the
Coincidence Lemma. In this case the required formula is

n∨
i=1

Ai , where Ai is defined for model si as above.

Boolean functions are representable

Theorem (Emil Post 1921)
Given finite Pr , a function g from Pr-assignments to {T ,F},
there is a Pr-formula A whose truth table is the function g.
Consider three cases to prove this theorem.

1 g(s) is not T (that is, F) for every assignment s. In this
case the required formula is false (or p ∧ (¬p)).

2 g(s) is T for a unique model s0, and F otherwise. In this
case the required formula is A0 = (

∧
p[s0]=T

p) ∧ (
∧

p[s0]=F

¬p).

This captures the assignment s0.
3 g(s) is T for s1, . . . , sn for some bound n, since the number

of models over a finite symbol set is finite by the
Coincidence Lemma. In this case the required formula is

n∨
i=1

Ai , where Ai is defined for model si as above.

Normal forms

Definition
A literal is either a propositional symbol p or its negation ¬p.
A formula is in disjunctive normal form (DNF) if it is a
disjunction of ≥ 1 conjunctions of literals.
A formula is in conjunctive normal form (CNF) if it is a
conjunction of ≥ 1 disjunctions of literals.

Theorem
Every formula has a logically equivalent one which is in DNF.
Every formula A has a logically equivalent one which is in CNF.

1 Follows from the fact that every formula has a truth table.
By the proof of Post’s theorem, truth table can be seen as
a formula in DNF.

2 First find the DNF equivalent, say B, of ¬A. Then
¬B ↔ ¬(¬A) ↔ A. Use Double Negation and De Morgan’s
laws to transform ¬B for B in DNF to an equivalent CNF.

Normal forms

Definition
A literal is either a propositional symbol p or its negation ¬p.
A formula is in disjunctive normal form (DNF) if it is a
disjunction of ≥ 1 conjunctions of literals.
A formula is in conjunctive normal form (CNF) if it is a
conjunction of ≥ 1 disjunctions of literals.

Theorem
Every formula has a logically equivalent one which is in DNF.
Every formula A has a logically equivalent one which is in CNF.

1 Follows from the fact that every formula has a truth table.
By the proof of Post’s theorem, truth table can be seen as
a formula in DNF.

2 First find the DNF equivalent, say B, of ¬A. Then
¬B ↔ ¬(¬A) ↔ A. Use Double Negation and De Morgan’s
laws to transform ¬B for B in DNF to an equivalent CNF.

Normal forms

Definition
A literal is either a propositional symbol p or its negation ¬p.
A formula is in disjunctive normal form (DNF) if it is a
disjunction of ≥ 1 conjunctions of literals.
A formula is in conjunctive normal form (CNF) if it is a
conjunction of ≥ 1 disjunctions of literals.

Theorem
Every formula has a logically equivalent one which is in DNF.
Every formula A has a logically equivalent one which is in CNF.

1 Follows from the fact that every formula has a truth table.
By the proof of Post’s theorem, truth table can be seen as
a formula in DNF.

2 First find the DNF equivalent, say B, of ¬A. Then
¬B ↔ ¬(¬A) ↔ A. Use Double Negation and De Morgan’s
laws to transform ¬B for B in DNF to an equivalent CNF.

Checking satisfiability

A literal is always satisfiable.

A formula which is a conjunction of literals is satisfiable if it
does not have contradictory literals of the form p and ¬p. This
can be checked by going through the formula in time linear in
the size of the formula.

A formula in DNF is satisfiable if one of its disjuncts is
satisfiable. This can be checked by going through one disjunct
after another, again in linear time.

A formula in CNF is satisfiable if one disjunct is satisfied in
every one of its conjuncts, such that no contrary literals of the
form p and ¬p are chosen in different conjuncts. This can be
checked by trying all possibilities of selecting disjuncts, which
can be done in time exponential in the size of the formula.

Checking satisfiability

A literal is always satisfiable.

A formula which is a conjunction of literals is satisfiable if it
does not have contradictory literals of the form p and ¬p. This
can be checked by going through the formula in time linear in
the size of the formula.

A formula in DNF is satisfiable if one of its disjuncts is
satisfiable. This can be checked by going through one disjunct
after another, again in linear time.

A formula in CNF is satisfiable if one disjunct is satisfied in
every one of its conjuncts, such that no contrary literals of the
form p and ¬p are chosen in different conjuncts. This can be
checked by trying all possibilities of selecting disjuncts, which
can be done in time exponential in the size of the formula.

Checking satisfiability

A literal is always satisfiable.

A formula which is a conjunction of literals is satisfiable if it
does not have contradictory literals of the form p and ¬p. This
can be checked by going through the formula in time linear in
the size of the formula.

A formula in DNF is satisfiable if one of its disjuncts is
satisfiable. This can be checked by going through one disjunct
after another, again in linear time.

A formula in CNF is satisfiable if one disjunct is satisfied in
every one of its conjuncts, such that no contrary literals of the
form p and ¬p are chosen in different conjuncts. This can be
checked by trying all possibilities of selecting disjuncts, which
can be done in time exponential in the size of the formula.

Checking satisfiability

A literal is always satisfiable.

A formula which is a conjunction of literals is satisfiable if it
does not have contradictory literals of the form p and ¬p. This
can be checked by going through the formula in time linear in
the size of the formula.

A formula in DNF is satisfiable if one of its disjuncts is
satisfiable. This can be checked by going through one disjunct
after another, again in linear time.

A formula in CNF is satisfiable if one disjunct is satisfied in
every one of its conjuncts, such that no contrary literals of the
form p and ¬p are chosen in different conjuncts. This can be
checked by trying all possibilities of selecting disjuncts, which
can be done in time exponential in the size of the formula.

Conversion to conjunctive normal form (Tseitin 1968)

Theorem (Richard Karp 1972)
There is a polynomial time algorithm reducing satisfiability of a
PL formula to satisfiability of a PL formula in CNF.

Proof idea: From A = (P1 ∧ Q1) ∨ (P2 ∧ Q2) ∨ · · · ∨ (Pn ∧ Qn) to
CNF, naively applying Distributivity of Or over And, conversion
to CNF blows up formula size exponentially.

(Tseitin 1968) transformation, use fresh variables r1, . . . , rn:
B = (r1 ∨ · · · ∨ rn) ∧ ((r1 → (P1 ∧ Q1))∧

((r2 → (P2 ∧ Q2)) ∧ · · · ∧ (rn → (Pn ∧ Qn))

Equisatisfiability left to right: Suppose A is satisfiable.
Assign to every ri the truth value of (Pi ∧ Qi).
One of the ri in B is assigned T , so B is satisfiable.

Equisatisfiability right to left: Suppose B is satisfiable.
Then one ri in its first conjunct is assigned T .
By implication, (Pi ∧ Qi) is T . Then A is satisfiable.

Conversion to conjunctive normal form (Tseitin 1968)

Theorem (Richard Karp 1972)
There is a polynomial time algorithm reducing satisfiability of a
PL formula to satisfiability of a PL formula in CNF.
Proof idea: From A = (P1 ∧ Q1) ∨ (P2 ∧ Q2) ∨ · · · ∨ (Pn ∧ Qn) to
CNF, naively applying Distributivity of Or over And, conversion
to CNF blows up formula size exponentially.

(Tseitin 1968) transformation, use fresh variables r1, . . . , rn:
B = (r1 ∨ · · · ∨ rn) ∧ ((r1 → (P1 ∧ Q1))∧

((r2 → (P2 ∧ Q2)) ∧ · · · ∧ (rn → (Pn ∧ Qn))

Equisatisfiability left to right: Suppose A is satisfiable.
Assign to every ri the truth value of (Pi ∧ Qi).
One of the ri in B is assigned T , so B is satisfiable.

Equisatisfiability right to left: Suppose B is satisfiable.
Then one ri in its first conjunct is assigned T .
By implication, (Pi ∧ Qi) is T . Then A is satisfiable.

Conversion to conjunctive normal form (Tseitin 1968)

Theorem (Richard Karp 1972)
There is a polynomial time algorithm reducing satisfiability of a
PL formula to satisfiability of a PL formula in CNF.
Proof idea: From A = (P1 ∧ Q1) ∨ (P2 ∧ Q2) ∨ · · · ∨ (Pn ∧ Qn) to
CNF, naively applying Distributivity of Or over And, conversion
to CNF blows up formula size exponentially.

(Tseitin 1968) transformation, use fresh variables r1, . . . , rn:
B = (r1 ∨ · · · ∨ rn) ∧ ((r1 → (P1 ∧ Q1))∧

((r2 → (P2 ∧ Q2)) ∧ · · · ∧ (rn → (Pn ∧ Qn))

Equisatisfiability left to right: Suppose A is satisfiable.
Assign to every ri the truth value of (Pi ∧ Qi).
One of the ri in B is assigned T , so B is satisfiable.

Equisatisfiability right to left: Suppose B is satisfiable.
Then one ri in its first conjunct is assigned T .
By implication, (Pi ∧ Qi) is T . Then A is satisfiable.

Conversion to conjunctive normal form (Tseitin 1968)

Theorem (Richard Karp 1972)
There is a polynomial time algorithm reducing satisfiability of a
PL formula to satisfiability of a PL formula in CNF.
Proof idea: From A = (P1 ∧ Q1) ∨ (P2 ∧ Q2) ∨ · · · ∨ (Pn ∧ Qn) to
CNF, naively applying Distributivity of Or over And, conversion
to CNF blows up formula size exponentially.

(Tseitin 1968) transformation, use fresh variables r1, . . . , rn:
B = (r1 ∨ · · · ∨ rn) ∧ ((r1 → (P1 ∧ Q1))∧

((r2 → (P2 ∧ Q2)) ∧ · · · ∧ (rn → (Pn ∧ Qn))

Equisatisfiability left to right: Suppose A is satisfiable.
Assign to every ri the truth value of (Pi ∧ Qi).
One of the ri in B is assigned T , so B is satisfiable.

Equisatisfiability right to left: Suppose B is satisfiable.
Then one ri in its first conjunct is assigned T .
By implication, (Pi ∧ Qi) is T . Then A is satisfiable.

