

First-Order Logic

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

25 January 2023

Outline of these lectures

1 Background

2 Syntax of First-Order Logic

3 Structural Induction

4 Semantics

Why study FO Logic in Computer Science?

- Some of the most exciting results, arguably greatest intellectual achievements, in Mathematics in the last century were to do with FO Logic (Gödel's Completeness and Incompleteness Theorems).
 - Far-reaching consequences in logic and computation
- Spawning the study of Computability (notions of computability, undecidable problems (**Entscheidungsproblem** or deciding logical consequence), many natural “complete” problems (like SAT) were from logic).
- FO arises naturally in Program Verification and Synthesis (Floyd-Hoare logic, array logics, symbolic techniques for verification and synthesis)
- Normal forms are useful in decision procedures for logical problems.
- Helps to clarify basic notions (“theory of arrays”, “theory of linear integer arithmetic”) in decision procedures for logic.

Outline of Topics in FO Logic

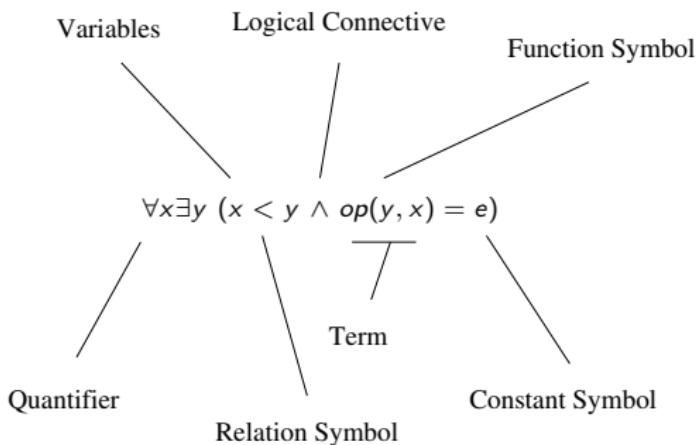
- 1 Syntax and Semantics of FO Logic
- 2 Normal Forms, Substitution lemma etc.
- 3 Sequent Calculus
- 4 Completeness
- 5 Compactness and Lowenheim-Skolem Theorem

Example FO Logic Formula

$$\forall x \exists y (x < y \wedge op(y, x) = e)$$

Example FO Logic Formula

$$\forall x \exists y (x < y \wedge op(y, x) = e)$$



FO Signature

A **First-Order signature** is a tuple

$$S = (R, F, C)$$

where

- R is a countable set of **relation symbols**
- F is a countable set of **function symbols**
- C is a countable set of **constant symbols**

Each relational/functional symbol comes with an associated “arity”.

Example FO signatures

- $S_{gr} = (\{\}, \{op^{(2)}\}, \{e\})$ (Groups)
- $S_{ogr} = (\{<^{(2)}\}, \{op^{(2)}\}, \{e\})$ (Ordered Groups)
- $S_{ar} = (\{\}, \{+^{(2)}, \cdot^{(2)}\}, \{0, 1\})$ (Arithmetic)
- $S_{eq} = (\{r^{(2)}\}, \{\}, \{\})$ (Equivalence Relations)

FO Alphabet

The **FO alphabet** induced by an FO signature $S = (R, F, C)$ is the set of symbols A_S which is the union of

- $R \cup F \cup C$ (symbols from the signature)
- $\{\neg, \vee, \wedge, \rightarrow, \leftrightarrow, \exists, \forall\}$ (logical connectives)
- $\{(), ',',)\}$ (parenthesis and comma)
- $\mathbb{V} = \{v_0, v_1, \dots\}$ (variables)

FO Terms

The set of **S -terms** T^S (of an FO signature S) is given by

$$t ::= x \mid c \mid f(t_1, \dots, t_n)$$

where $x \in \{v_0, v_1, \dots\}$ is a variable, $c \in C$ is a constant symbol, and $f \in F$ is a function symbol of arity n .

Example terms

- $e, x, op(e, e), op(x, op(e, e))$ (S_{gr} -terms)
- $0, 1, x, +(0, 1), \cdot(0, +(0, 1))$ (S_{ar} -terms)

FO Formulas

The set of **S -formulas** L^S (of an FO signature S) is given by

$$\begin{aligned}\varphi ::= & \quad t_1 = t_2 \mid r(t_1, \dots, t_n) \quad (\text{Atomic Formulas}) \\ & \mid \neg\varphi \mid (\varphi \vee \varphi) \mid (\varphi \wedge \varphi) \mid (\varphi \rightarrow \varphi) \mid (\varphi \leftrightarrow \varphi) \\ & \mid \exists x\varphi \mid \forall x\varphi\end{aligned}$$

where r is a relation symbol of arity n and t_1, \dots, t_n are S -terms.

Example formulas

- $\forall x(x = x)$ (S_{gr} -formula)
- $\forall x\exists y(<(x, y) \wedge op(y, x) = e)$ (S_{gr} -formula)
- $\exists y(x = +(y, y))$ (S_{ar} -formula)

Countability of Terms and Formulas

Theorem (Countability)

For any FO signature S , the set of S -terms and S -formulas are countable.

Recall that a set X is **countable** if there is an onto map from \mathbb{N} to X (or equivalently, an injection from X to \mathbb{N}).

Argue that the set A_S^* is countable, hence L^S which is a subset of A_S^* is also countable.

Principle of Structural Induction for Formulas

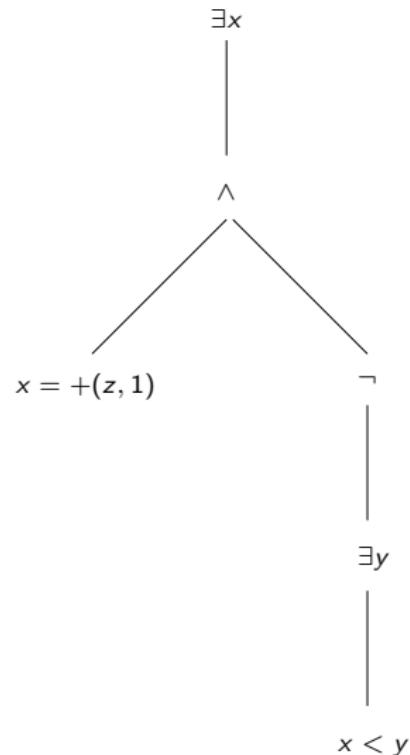
For any FO signature S , if a property P of S -formulas

- holds for all atomic S -formulas, and
- whenever it holds for S -formulas φ and ψ , it also holds for $\neg\varphi$, $(\varphi \vee \psi)$, $(\varphi \wedge \psi)$, $(\varphi \rightarrow \psi)$, $(\varphi \leftrightarrow \psi)$, $\exists x\varphi$, and $\forall x\varphi$;

then P holds for **all** S -formulas.

Formula structure

$$\exists x(x = +(z, 1) \wedge \neg \exists y(x < y))$$



Exercise

Exercise

Show that in any S_{gr} -formula, the number of opening and closing parenthesis must be equal.

Giving Semantics to FO Formulas

- In logic in general, formulas are interpreted in **models** or **structures**.

Examples:

- In Propositional Logic models are **valuations**:

$$\langle p_0 \mapsto \text{true}, p_1 \mapsto \text{false}, \dots \rangle \models (p_0 \vee \neg p_1)$$

- In Temporal Logic models are **sequences of valuations**:

$$\langle p \mapsto \text{true}, q \mapsto \text{false} \rangle \langle p \mapsto \text{false}, q \mapsto \text{false} \rangle \dots \models G(p \rightarrow Fq)$$

- What kind of a model do we need to interpret the S_{gr} -formula

$$\forall x \exists y (op(y, x) = e) ?$$

Giving Semantics to FO Formulas

- In logic in general, formulas are interpreted in **models** or **structures**.

Examples:

- In Propositional Logic models are **valuations**:

$$\langle p_0 \mapsto \text{true}, p_1 \mapsto \text{false}, \dots \rangle \models (p_0 \vee \neg p_1)$$

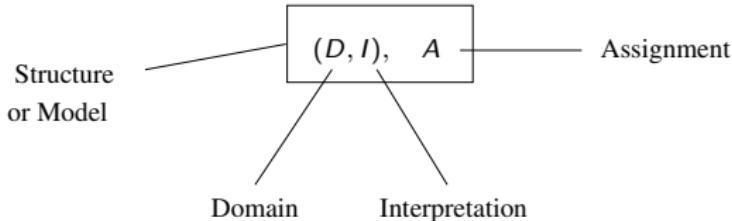
- In Temporal Logic models are **sequences of valuations**:

$$\langle p \mapsto \text{true}, q \mapsto \text{false} \rangle \langle p \mapsto \text{false}, q \mapsto \text{false} \rangle \dots \models G(p \rightarrow Fq)$$

- What kind of a model do we need to interpret the S_{gr} -formula

$$\forall x \exists y (op(y, x) = e) ?$$

- In FO, a model looks like:



Example Structures

Example structures for $S_{gr} = (op, e)$.

- $(\mathbb{Z}, +, 0)$:
 - Domain D : $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$.
 - Interpretation I :
 - $op \mapsto +$ (i.e. the binary function $+$: $\mathbb{Z} \rightarrow \mathbb{Z}$ given by: $+ (i, j) = i + j$).
 - $e \mapsto 0$
- $(\mathbb{Z}_3, (+ \bmod 3), 0)$:
 - Domain D : $\mathbb{Z}_3 = \{0, 1, 2\}$.
 - Interpretation I :
 - $op \mapsto (+ \bmod 3)$ (i.e. the binary function “ $(+ \bmod 3)$ ”: $\mathbb{Z}_3 \rightarrow \mathbb{Z}_3$ given by: $(+ \bmod 3)(i, j) = (i + j) \bmod 3$).
 - $e \mapsto 0$

Truth of a formula in a model: intuitively

Exercise

Consider the S_{gr} -structure $(\mathbb{Z}, +, 0)$. Are the following formulas true in this model?

- $\forall x \exists y (op(x, y) = e)$
- $\exists x (op(x, x) = e)$
- $\forall x (op(x, x) = e)$

Domain and Interpretation

Let $S = (R, F, C)$ be an FO signature.

A **Domain** D is a non-empty set.

An **S -interpretation** I is a map that assigns

- to each relation symbol $r^{(n)} \in R$, a relation $I(r) \subseteq (D \times \cdots \times D)$
- to each function symbol $f^{(n)} \in R$, a function $I(f) : (D \times \cdots \times D) \rightarrow D$
- to each constant symbol $c \in C$, an element $I(c) \in D$.

Assignments for Variables

- How do we give meaning to the formula

$$\exists y (op(x, y) = e) ?$$

(The variable x is said to be “free” in this formula).

- Even if we were interested in “sentences” (formulas without free variables), still convenient to have assignments.

Let D be a domain.

- An **assignment** (in D) is a map $A : \mathbb{V} \rightarrow D$.
- For an assignment A , variable $x \in \mathbb{V}$, and $d \in D$, we use $A[d/x]$ to denote the assignment A' given by:

$$A'(y) = \begin{cases} A(y) & \text{if } y \neq x \\ d & \text{otherwise.} \end{cases}$$

Semantics of FO

Let S be an FO signature. An **S -structure** (or **S -model**) is a tuple $M = (D, I, A)$, where D is a domain, I an interpretation for symbols in S , and A is an assignment in D .

For an S -term t we define $M(t)$ to be the interpretation of t (the domain element that t maps to). Formally

$$\begin{aligned} M(c) &= I(c) \\ M(v) &= A(v) \\ M(f(t_1, \dots, t_n)) &= I(f)(M(t_1), \dots, M(t_n)) \end{aligned}$$

We define the relation “ $M \models \varphi$ ” (φ is satisfied in model M) by:

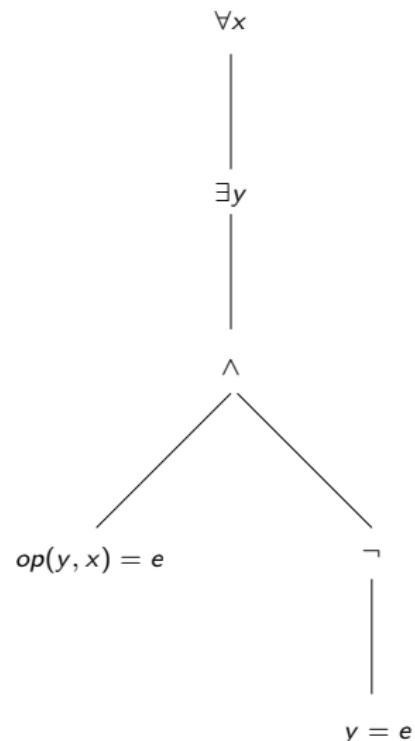
$$\begin{aligned} M \models (t = t') &\quad \text{iff } M(t) = M(t') \\ M \models (r(t_1, \dots, t_n)) &\quad \text{iff } (M(t_1), \dots, M(t_n)) \in I(r) \\ M \models \neg\varphi &\quad \text{iff } M \not\models \varphi \\ M \models (\varphi \vee \psi) &\quad \text{iff } M \models \varphi \text{ or } M \models \psi \\ M \models \exists x\varphi &\quad \text{iff } \text{there is } d \in D \text{ s.t. } (D, I, A[d/x]) \models \varphi \\ M \models \forall x\varphi &\quad \text{iff } \text{for each } d \in D \text{ we have } (D, I, A[d/x]) \models \varphi. \end{aligned}$$

Semantics: Example

Find the truth of the S_{gr} -formula

$$\forall x \exists y ((op(y, x) = e) \wedge \neg(y = e))$$

in the structure $(\mathbb{Z}, +, 0)$.



Exercise

Exercise

Consider the FO signature $S = (r^{(1)}, f^{(2)})$. Give models that (a) satisfy and (b) don't satisfy the following formulas:

- $\forall y(f(x, y) = x)$
- $\exists x \forall y(f(x, y) = y)$
- $\exists x(r(x) \wedge \forall y r(f(x, y)))$.

Satisfiability and Validity

- An S -formula φ is **satisfiable** if there is an S -model M such that $M \models \varphi$.
- An S -formula φ is **valid** if for every S -model M , we have $M \models \varphi$.

Proposition

φ is valid iff $\neg\varphi$ is not satisfiable.

Logical Implication and Equivalence

- φ implies ψ iff every model of φ is also a model of ψ .
- φ is logically equivalent to ψ , written $\varphi \equiv \psi$, iff the set of models of φ coincides with that of ψ .

Examples

- $r(x) \rightarrow r(y)$ is logically equivalent to $\neg r(x) \vee r(y)$.
- $\forall x \varphi$ is logically equivalent to $\neg \exists \neg \varphi$

Logical Consequence

- For a set T of S -formulas, we say a model M satisfies T , written " $M \models T$ ", iff $M \models \varphi$ for each $\varphi \in T$.
- For a set T of S -formulas, and an S -formula φ , we say φ is a **logical consequence** of T , written

$$T \models \varphi,$$

iff for every S -model M , whenever $M \models T$ we have $M \models \varphi$.

Examples

- $\{\exists y \forall x (op(x, y) = e)\} \models \forall x \exists y (op(x, y) = e)$
- $\{\forall x \exists y (op(x, y) = e)\} \not\models \exists y \forall x (op(x, y) = e)$
- $\{\forall x \exists y (op(x, y) = e), \forall x (x = e)\} \models \exists y \forall x (op(x, y) = e)$

Theories

The **theory** of a set of S -formulas T , written “ $Th(T)$ ”, is the set of S -formulas that are logical consequences of T . That is:

$$Th(T) = \{\varphi \mid T \vDash \varphi\}.$$

Theory of Groups $Th(\Phi_{gr})$

Let Φ_{gr} be the set of formulas (group axioms) (using infix \circ instead of op):

$$\forall x \forall y \forall z ((x \circ y) \circ z = x \circ (y \circ z)) \quad (1)$$

$$\forall x (x \circ e = x) \quad (2)$$

$$\forall x \exists y (x \circ y = e) \quad (3)$$

Then $Th(\Phi_{gr})$

- Contains $\forall x \exists y (op(y, x) = e)$, but
- Does **not** contain $\forall x \forall y (op(x, y) = op(y, x))$.

Theories

The **theory** of an S -structure M , written “ $Th(M)$ ”, is the set of S -formulas that are true in M :

$$Th(M) = \{\varphi \mid M \vDash \varphi\}.$$

Theory of Arithmetic $Th(\mathbb{N}, +, \cdot, 0, 1)$

- Contains $\forall x(x \cdot 0 = 0)$, but
- Does not contain $\exists y \forall x(x < y)$ (here $< (x, y)$ is shorthand for $\exists z((z \neq 0) \wedge (x + z = y)))$