First-Order Logic

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

25 January 2023

Outline of these lectures

© Background
© Syntax of First-Order Logic
© Structural Induction

Q@ Semantics

Background
[1}

Why study FO Logic in Computer Science?

@ Some of the most exciting results, arguably greatest

intellectual achievements, in Mathematics in the last century
were to do with FO Logic (Godel's Completeness and
Incompleteness Theorems).

o Far-reaching consequences in logic and computation

Spawned the study of Computability (notions of
computability, undecidable problems (Entscheidugsproblem or
deciding logical consequence), many natural “complete”
problems (like SAT) were from logic).

FO arises naturally in Program Verification and Synthesis
(Floyd-Hoare logic, array logics, symbolic techniques for
verification and synthesis)

Normal forms are useful in decision procedures for logical
problems.

Helps to clarify basic notions (“theory of arrays”, “theory of
linear integer arithmetic”) in decision procedures for logic.

Background
oce

Outline of Topics in FO Logic

@ Syntax and Semantics of FO Logic

@ Normal Forms, Substitution lemma etc.
© Sequent Calculus

© Completeness

© Compactness and Lowenheim-Skolem Theorem

Syntax of First-Orde
©00000

Example FO Logic Formula

Vx3y(x <y Aop(y,x) = e)

Syntax of First-Order Logic
©00000

Example FO Logic Formula

Vx3y(x <y Aop(y,x) = e)

Variables Logical Connective
Function Symbol

/

Vx3dy (x <y A op(y,x) =e)

ALEAN

Quantifier Constant Symbol
Relation Symbol

Syntax of First-Order Logic
©0®0000

FO Signature

A First-Order signature is a tuple
S=(R,F,C)

where
@ R is a countable set of relation symbols
@ F is a countable set of function symbols
@ C is a countable set of constant symbols

Each relational /functional symbol comes with an associated
“arity” .

Example FO signatures

® Sy = ({}, {0}, {e}) (Groups)

0 Sogr = ({<@}, {op®}, {e}) (Ordered Groups)
o S, = ({},{+®,-} {0,1}) (Arithmetic)

0 Seq = ({r@},{},{}) (Equivalence Relations)

Syntax of First-Order Logic
00®000

FO Alphabet

The FO alphabet induced by an FO signature S = (R, F, C) is the
set of symbols As which is the union of

@ RUF U C (symbols from the signature)
@ {—,V,A,—, <>, 3,V} (logical connectives)
e {(,")",)} (parenthesis and comma)

o V={w,wv,...} (variables)

Syntax of First-Order Logic
00000

FO Terms

The set of S-terms T° (of an FO signature S) is given by
to=x|c| f(ty,... ty)

where x € {w, v1,...} is a variable, ¢ € C is a constant symbol,
and f € F is a function symbol of arity n.

Example terms

° e, x, op(e,e), op(x,op(e,e)) (Sgr-terms)
@ 0,1, x, +(0,1), -(0,+(0,1)) (Sa-terms)

Syntax of First-Order Logic
0000e0

FO Formulas

The set of S-formulas L° (of an FO signature S) is given by

o = ti=t|r(t,...,tn) (Atomic Formulas)
=2 [(eVe) | (eAe)] (p—=¢)| (v)
| 3xp | ¥xg
where r is a relation symbol of arity n and ti,...,t, are S-terms.

Example formulas

@ Vx(x = x) (Sgr-formula)
o Vx3Jy(< (x,y) Nop(y,x) =e) (Sg-formula)
o Jy(x =+(y,y)) (Sar-formula)

Syntax of First-Order Logic
oooo0e

Countability of Terms and Formulas

Theorem (Countability)

For any FO signature S, the set of S-terms and S-formulas are
countable.

Recall that a set X is countable if there is an onto map from N to
X (or equivalently, an injection from X to N).

Argue that the set A% is countable, hence L® which is a subset of
5 is also countable.

Structural Induction
®00

Principle of Structural Induction for Formulas

For any FO signature S, if a property P of S-formulas
@ holds for all atomic S-formulas, and

@ whenever it it holds for S-formulas ¢ and 1, it also holds for

2, (P V), (pAY), (¢ =), (¢ <> ¥), Ixp, and Vxgp;
then P holds for all S-formulas.

Structural Induction
oeo

Formula structure

Ix
Ix(x = +(z,1) A —~Jy(x < y))
AN
x = +(z,1) -

x <y

Structural Induction
ooe

Exercise

Show that in any Sg-formula, the number of opening and closing
parenthesis must be equal.

Semantics
©000000000000

Giving Semantics to FO Formulas

@ In logic in general, formulas are interpreted in models or
structures.
Examples:
e In Propositional Logic models are valuations:

{po > true, p; — false,...) E (po V —p1)
o In Temporal Logic models are sequences of valuations:
(p > true, q — false) (p — false,q — false)---E G(p — Fq)

@ What kind of a model do we need to interpret the S,,-formula

Vx3y(op(y,x) = €)?

Semantics
©000000000000

Giving Semantics to FO Formulas

@ In logic in general, formulas are interpreted in models or
structures.
Examples:
e In Propositional Logic models are valuations:

{po > true, p; — false,...) E (po V —p1)
o In Temporal Logic models are sequences of valuations:
(p > true, q — false) (p — false,q — false)---E G(p — Fq)
@ What kind of a model do we need to interpret the S,,-formula
Vx3y(op(y,x) = €)?

@ In FO, a model looks like:

Assignment

1 (D)), A~

Structure
or Model

Domain Interpretation

Semantics
0®00000000000

Example Structures

Example structures for Sgr = (op, e).
e (Z,+,0):
e Domain D: Z=1{...,-2,-1,0,1,2,...}.
o Interpretation /:
@ op — + (i.e. the binary function + : Z — Z given by:
+(i,J) =i+J).
e e—0
® (Zs3,(+mod 3),0):
e Domain D: Z3 = {0,1,2}.
o Interpretation /:

@ op — (+ mod 3) (i.e. the binary function “(+ mod 3)"
: Zs — Zs3 given by: (+ mod 3)(i,j) = (i +) mod 3).
o e—0

Semantics
0080000000000

Truth of a formula in a model: intuitively

Exercise

Consider the Sg-structure (Z,+,0). Are the following formulas
true in this model?

o Vxdy(op(x,y) = e)
e Ix(op(x,x) =e)

@ Vx(op(x,x) =e)

Semantics
000®000000000

Domain and Interpretation

Let S = (R, F, C) be an FO signature.
A Domain D is a non-empty set.
An S-interpretation / is a map that assigns

@ to each relation symbol r(") € R, a relation
I(r) S (D x---xD)

@ to each function symbol (") € R, a function
I(f)y:(Dx---xD)—D

@ to each constant symbol ¢ € C, an element /(c) € D.

Semantics
0000800000000

Assignments for Variables

@ How do we give meaning to the formula

Jy(op(x,y) = €)?

(The variable x is said to be “free” in this formula).

@ Even if we were interested in “sentences” (formulas without
free variables), still convenient to have assignments.

Let D be a domain.
@ An assignment (in D) isamap A:V — D.

@ For an assignment A, variable x € V, and d € D, we use
A[d/x] to denote the assignment A’ given by:

A/(y):{ Aly) ify #x

d otherwise.

Semantics
00000@0000000

Semantics of FO

Let S be an FO signature. An S-structure (or S-model) is a tuple
M = (D, 1, A), where D is a domain, / an interpretation for
symbols in S, and A is an assignment in D.
For an S-term t we define M(t) to be the interpretation of t (the
domain element that t maps to). Formally

M(c) = I(c)

M(v) = A(v)

M(F(ts,. o t)) = I(F)(M(t),..., M(tn))

We define the relation “M E ¢" (¢ is satisfied in model M) by:

ME (t=1t) iff M(t) = M(t')

ME (r(t1,...,tn)) iff (M(t1),...,M(ts)) € I(r)

ME —p iff MEp

ME (V) iff MEpor ME 1)

M E Ixe iff thereisd € Ds.t. (D,l,A[d/x])F ¢

M E Vxep iff for each d € D we have (D, I, Ald/x]) E ¢.

Semantics
0000008000000

Semantics: Example

Find the truth of the Sg-formula

Vx
Vx3Jy((op(y,x) =e) A=(y =e))
in the structure (Z, +, 0).
Jy
AN
op(y;x) =e -

Semantics

0000000e@00000

Exercise

Exercise

Consider the FO signature S = (r(1), £(2)). Give models that (a)
satisfy and (b) don't satisfy the following formulas:

o Vy(f(x,y) = x)

o IVy(f(x,y) =y)

o Ix(r(x) AVy r(f(x,y)).

Semantics
0000000080000

Satisfiability and Validity

@ An S-formula ¢ is satisfiable if there is an S-model M such
that M E .

@ An S-formula ¢ is valid if for every S-model M, we have
ME .

Proposition

@ is valid iff =g is not satisfiable.

Semantics
0000000008000

Logical Implication and Equivalence

@ implies ¢ iff every model of ¢ is also a model of .

@ ¢ is logically equivalent to ¥, written ¢ = 1, iff the set of
models of ¢ coincides with that of .

@ r(x) — r(y) is logically equivalent to —=r(x) V r(y).
@ Vxy is logically equivalent to =3—¢p

Semantics
0000000000800

Logical Consequence

@ For a set T of S-formulas, we say a model M satisfies T,
written “M E T", iff M E ¢ foreach p € T.

@ For a set T of S-formulas, and an S-formula ¢, we say ¢ is a
logical consequence of T, written

TE @,

iff for every S-model M, whenever M E T we have M E ¢.

o {3yVx(op(x,y) = e)} F VxIy(op(x,y) = e)
o {Vx3y(op(x,y) = e)} # IyVx(op(x,y) = e)
o {Vx3dy(op(x,y) = e), Vx(x = e)} F yVx(op(x,y) = e)

Semantics
0000000000080

Theories

The theory of a set of S-formulas T, written “Th(T)", is the set
of S-formulas that are logical consequences of T. That is:

Th(T)={p | T F o}

Theory of Groups Th(®,,)

Let ®,, be the set of formulas (group axioms) (using infix o
instead of op):

Vxy¥z ((xoy)oz = xo(yoz)) W
Vx (xoe = x) (2)
Vx3y (xoy = e) (3)

Then Th(®g)
o Contains Vx3y(op(y, x) = e), but

@ Does not contain VxVy(op(x, y) = op(y, x)).

Semantics
000000000000e

Theories

The theory of an S-structure M, written “Th(M)", is the set of
S-formulas that are true in M:

Th(M) = {¢ | MF p}.

Theory of Arithmetic Th(N, +,-,0,1)

@ Contains Vx(x -0 =0), but

@ Does not contain JyVx(x < y) (here < (x, y) is shorthand for
2((z#0) A (x + 2 =y)))

	Background
	Syntax of First-Order Logic
	Structural Induction
	Semantics

