Overview of E0 205
Mathematical Logic and Theorem Proving

Deepak D'Souza and Kamal Lodaya

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

04 Jan 2023

Logic and Computer Science
®00

Mathematical Logic and Theorem Proving

e “Mathematical” Logic (pioneered by Boole, Frege, Russell,
Hilbert, Godel, .. .)

o Goals related to foundations of Mathematics (formalizing set
theory and mathematical reasoning techniques)

o Applications in Math and Theoretical CS (e.g. Biichi's logical
characterisations of regular languages)

as opposed to Philosophical Logic.

@ SMT (SAT+Decision Procedures for certain theories) vs
Theorem Proving

e Fully automated vs Interactive.

Logic and Computer Science
oceo

Why study Logic in Computer Science?

Computability

@ Notions of computability were proposed to answer questions
in logic

o Formalizing mathematics (coming up with a complete proof
system, deciding truth of logical statements) led to Hilbert
proposing the “Entscheidungsproblem” (decision problem for
logical validity).

e Church and Turing separately proposed Lambda Calculus and
Turing machines as notions of computability, and showed the
Entscheidungsproblem was undecidable.

@ Natural computational problems

o SAT complete for NP, Horn-SAT complete for P
o FO with fixpoints.

Logic and Computer Science
ooe

Why study Logic in Computer Science?

Verification and Synthesis

@ Specification languages
e Temporal Logic
e Floyd-Hoare Logic
@ Checking whether a program/system satisfies a specification
e Program satisfies a pre-post specification if generated
Verification Conditions (VCs) are logically valid.
e Model-Checking procedures for Temporal Logics.
o Constrained Horn Clauses
@ Symbolic Analysis
e Symbolic Model-Checking
e Predicate abstraction
o Controller Synthesis

Course Contents
°

Course Contents

@ Mathematical Logic

Propositional and First-Order Logic
Normal Forms

Sound and complete proof systems
Compactness

@ Decision Procedures

Equality and Uninterpreted Functions (EUF)
Real and Integer Linear Arithmetic

Array logic

Nelson-Oppen combination

Mathematical Logic
[I}

Example of Group Theory

Group Axioms g,

VxVyVz ((xoy)oz = xo(yoz)) (1)
Vx (xoe = x) (2)
Vx3y (xoy = e) (3)

Structures for ®¢,: (Z,+,0) and (R, +,0); but not (R, -, 1).

Theorem: Every element of a group has a left-inverse:
Vx3Jy(yox = e).

Question: is there a complete proof system for Group theory?
That is, whenever we have ®¢, F ¢, then we also have &g, F .

Mathematical Logic
oce

Godel's Completeness Theorem

Let ® - ¢ denote a derivation of ¢ from ® using the Sequent
Calculus proof system.

Theorem (Completeness)

For any set of first-order logic sentences ®:

SF piff dF .

Some consequences of the theorem and its proof:
@ There is a complete proof system for Group Theory (Sequent
Calculus + ®g, as axioms).
@ (Lowenheim-Skolem) If a set of FO formulas @ is satisfiable
then it is satisfiable in a countable model.

@ (Compactness) If a set of formulas @ is unsatisfiable, then
there is a finite subset of ® which is unsatisfiable.

Decision Procedures
©00000000

Boolean SAT solving

Does the system satisfy the temporal logic formula
G(b = X(—b))

1

In bounded model-checking we could ask for a path of length 2 that
violates the specification: Is

—ag A —bo A T (a0, bo, a1, b1) A T(ay, by, a2, ba) A by A ba,

where T(a,b,a,b')=(-anad Ab < b)V(aA-3ad Ab < -b),
satisfiable?

Decision Procedures
0®0000000

Linear Arithmetic

Bounded model-checking for programs:

Does there exist zero-iteration
execution violating the assertion: Is

int x = 19;
int y = 15; x1=19Ay1 =15Ax3 <10Ay <x1
while (x >= 10) {
int z = -1; satisfiable?
X =X+ z;
}

assert(y >= x);

Decision Procedures
[eeX Yololelelele]

Linear Arithmetic

Floyd-Hoare style verification of programs:

Are the constraints: Vx, y,z,x’:

int x = 19; x=19 — x <20
int y = 15; Xx<20AXx>10Az=-1AX =x+z = x' <20

// inv: x <= 20 /
while (x >= 10) { x<20Ay=15A—=(x>10) = y > x

int z = -1;
X =X + z;
}

assert(y >= x);

valid?

Decision Procedures
000®00000

Array Logic

ainit(int A[], int len) {

Varine o g RN
hile (i < 1 y
’ i\[i] 1 0; - // ya
} i=1+1; i Bf—"”" len @wi//, -
i/ Post:
forall k: ((0 <= k < len) Loop invariant:
=> Alk] = 0)

(0<i<len) AVK((0 < k<i) = A[k] =0)
Verification condition:
[(0<i<len) AVK((0 < k< i) = Alk] =0) A (i < len)] =

Vk:((0< k < len) = A[K] = 0).

Decision Procedures
000080000

Uninterpreted Functions with Equality (EUF)

Is this formula valid?

g(g(g(x))) = xng(e(g(g(g(x))))) = x = g(x) = x.

Congruence closure algorithm.

Decision Procedures
00000®000

Nelson-Oppen Combination

Example: Is this sentence satisfiable?

f(F(x)—f(y) #f(2)Ax<yAy+z<xAz>0

Decision Procedures
00000®000

Nelson-Oppen Combination

Example: Is this sentence satisfiable?

f(F(x)—f(y) #f(2)Ax<yAy+z<xAz>0

No, because the arithmetic constraints imply that x = y and
z = 0; and the functional constraints must then imply that

F(f(x) = f(y)) = £(0) = f(2).

Decision Procedures
000000800

Nelson-Oppen Combination

Shows how we can combine decision procedures for two theories
into a decision procedure for their union.

“Equality Sharing” Procedure:

Is this sentence satisfiable?

f(F(x)=f(y) #f(2)Ax<yAy+z<xAz>0

Arithmetic Constraints Function Constraints
x <y fler) # f(2)
y+z < x flx) = &
z >0 fly) = &

82— 83

Decision Procedures
000000080

Nelson-Oppen Combination

Does this procedure work for integer arithmetic and functions?

Is this sentence satisfiable? (int x)

1<xAx<2Af(x)#f(1)Af(x)#F(2)

Arithmetic Constraints Function Constraints
1 < x f(x) # f(a)
x < 2 f(x) # f(b)
a = 1
b = 2

Need “convex” theories.

Decision Procedures
00000000e

Constrained Horn Clauses

Find unary relations f, g and inv

such that:
int x = 19;

while (%) { x =19 = inv(x)
int z = £0); inv(x) ANf(2) Ax' = x4z = inv(x)

X=X+Z; .
) inv(x) Ag(y) = y > x

int y = g0O;
assert(y >= x);

Decision Procedures
00000000e

Constrained Horn Clauses

Find unary relations f, g and inv

such that:
int x = 19;
while (%) { x =19 = inv(x)
int z = £Q); inv(x) ANf(2) AX =x+z = inv(X)
}X=X+Z; inv(x)Ng(y) = y>x
int y = g3

assert(y >= x);

Course details
°

Course Details

o Weightage: 40% assignments + seminar, 20% midsem exam,
40% final exam.
@ Assignments to be done on your own.

@ Dishonesty Policy: Any instance of copying in an assignment
will fetch you a 0 in that assignment + one grade reduction +
report to DCC.

@ Seminar (in pairs) can be chosen from list on course webpage
or your own topic.

@ Course webpage:
www.csa.iisc.ac.in/"deepakd/logic-2023

@ Teaching assistants for the course: Alvin George and
Prathamesh Patil

@ Those interested in crediting/auditing please send me an
email so that | can add you to the course mailing list.

	Logic and Computer Science
	Course Contents
	Mathematical Logic
	Decision Procedures
	Course details

