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Mathematical Logic and Theorem Proving

e “Mathematical” Logic (pioneered by Boole, Frege, Russell,
Hilbert, Godel, .. .)

o Goals related to foundations of Mathematics (formalizing set
theory and mathematical reasoning techniques)

o Applications in Math and Theoretical CS (e.g. Biichi's logical
characterisations of regular languages)

as opposed to Philosophical Logic.

@ SMT (SAT+Decision Procedures for certain theories) vs
Theorem Proving

e Fully automated vs Interactive.
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Why study Logic in Computer Science?

Computability

@ Notions of computability were proposed to answer questions
in logic

o Formalizing mathematics (coming up with a complete proof
system, deciding truth of logical statements) led to Hilbert
proposing the “Entscheidungsproblem” (decision problem for
logical validity).

e Church and Turing separately proposed Lambda Calculus and
Turing machines as notions of computability, and showed the
Entscheidungsproblem was undecidable.

@ Natural computational problems

o SAT complete for NP, Horn-SAT complete for P
o FO with fixpoints.
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Why study Logic in Computer Science?

Verification and Synthesis

@ Specification languages
e Temporal Logic
e Floyd-Hoare Logic
@ Checking whether a program/system satisfies a specification
e Program satisfies a pre-post specification if generated
Verification Conditions (VCs) are logically valid.
e Model-Checking procedures for Temporal Logics.
o Constrained Horn Clauses
@ Symbolic Analysis
e Symbolic Model-Checking
e Predicate abstraction
o Controller Synthesis
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Course Contents

@ Mathematical Logic

Propositional and First-Order Logic
Normal Forms

Sound and complete proof systems
Compactness

@ Decision Procedures

Equality and Uninterpreted Functions (EUF)
Real and Integer Linear Arithmetic

Array logic

Nelson-Oppen combination
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Example of Group Theory

Group Axioms g,

VxVyVz ((xoy)oz = xo(yoz)) (1)
Vx (xoe = x) (2)
Vx3y (xoy = e) (3)

Structures for ®¢,: (Z,+,0) and (R, +,0); but not (R, -, 1).

Theorem: Every element of a group has a left-inverse:
Vx3Jy(yox = e).

Question: is there a complete proof system for Group theory?
That is, whenever we have ®¢, F ¢, then we also have &g, F .
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Godel's Completeness Theorem

Let ® - ¢ denote a derivation of ¢ from ® using the Sequent
Calculus proof system.

Theorem (Completeness)

For any set of first-order logic sentences ®:

SF piff dF .

Some consequences of the theorem and its proof:
@ There is a complete proof system for Group Theory (Sequent
Calculus + ®g, as axioms).
@ (Lowenheim-Skolem) If a set of FO formulas @ is satisfiable
then it is satisfiable in a countable model.

@ (Compactness) If a set of formulas @ is unsatisfiable, then
there is a finite subset of ® which is unsatisfiable.
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Boolean SAT solving

Does the system satisfy the temporal logic formula
G(b = X(—b))

1

In bounded model-checking we could ask for a path of length 2 that
violates the specification: Is

—ag A —bo A T (a0, bo, a1, b1) A T(ay, by, a2, ba) A by A ba,

where T(a,b,a,b')=(-anad Ab < b)V(aA-3ad Ab < -b),
satisfiable?
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Linear Arithmetic

Bounded model-checking for programs:

Does there exist zero-iteration
execution violating the assertion: Is

int x = 19;
int y = 15; x1=19Ay1 =15Ax3 <10Ay <x1
while (x >= 10) {
int z = -1; satisfiable?
X =X+ z;
}

assert(y >= x);
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Linear Arithmetic

Floyd-Hoare style verification of programs:

Are the constraints: Vx, y,z,x’:

int x = 19; x=19 — x <20
int y = 15; Xx<20AXx>10Az=-1AX =x+z = x' <20

// inv: x <= 20 /
while (x >= 10) { x<20Ay=15A—=(x>10) = y > x

int z = -1;
X =X + z;
}

assert(y >= x);

valid?
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Array Logic

ainit(int A[], int len) {

Varine o g RN
hile (i < 1 y
’ i\[i] 1 0; - // ya
} i=1+1; i Bf—"”" len @wi//, -
i/ Post:
forall k: ((0 <= k < len) Loop invariant:
=> Alk] = 0)

(0<i<len) AVK((0 < k<i) = A[k] =0)
Verification condition:
[(0<i<len) AVK((0 < k< i) = Alk] =0) A (i < len)] =

Vk:((0< k < len) = A[K] = 0).
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Uninterpreted Functions with Equality (EUF)

Is this formula valid?

g(g(g(x))) = xng(e(g(g(g(x))))) = x = g(x) = x.

Congruence closure algorithm.
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Nelson-Oppen Combination

Example: Is this sentence satisfiable?

f(F(x)—f(y) #f(2)Ax<yAy+z<xAz>0
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Nelson-Oppen Combination

Example: Is this sentence satisfiable?

f(F(x)—f(y) #f(2)Ax<yAy+z<xAz>0

No, because the arithmetic constraints imply that x = y and
z = 0; and the functional constraints must then imply that

F(f(x) = f(y)) = £(0) = f(2).
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Nelson-Oppen Combination

Shows how we can combine decision procedures for two theories
into a decision procedure for their union.

“Equality Sharing” Procedure:

Is this sentence satisfiable?

f(F(x)=f(y) #f(2)Ax<yAy+z<xAz>0

Arithmetic Constraints Function Constraints
x <y fler) # f(2)
y+z < x flx) = &
z >0 fly) = &

82— 83
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Nelson-Oppen Combination

Does this procedure work for integer arithmetic and functions?

Is this sentence satisfiable? (int x)

1<xAx<2Af(x)#f(1)Af(x)#F(2)

Arithmetic Constraints Function Constraints
1 < x f(x) # f(a)
x < 2 f(x) # f(b)
a = 1
b = 2

Need “convex” theories.
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Constrained Horn Clauses

Find unary relations f, g and inv

such that:
int x = 19;

while (%) { x =19 = inv(x)
int z = £0); inv(x) ANf(2) Ax' = x4z = inv(x)

X=X+Z; .
) inv(x) Ag(y) = y > x

int y = g0O;
assert(y >= x);
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Constrained Horn Clauses

Find unary relations f, g and inv

such that:
int x = 19;
while (%) { x =19 = inv(x)
int z = £Q); inv(x) ANf(2) AX =x+z = inv(X)
}X=X+Z; inv(x)Ng(y) = y>x
int y = g3

assert(y >= x);
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Course Details

o Weightage: 40% assignments + seminar, 20% midsem exam,
40% final exam.
@ Assignments to be done on your own.

@ Dishonesty Policy: Any instance of copying in an assignment
will fetch you a 0 in that assignment + one grade reduction +
report to DCC.

@ Seminar (in pairs) can be chosen from list on course webpage
or your own topic.

@ Course webpage:
www.csa.iisc.ac.in/"deepakd/logic-2023

@ Teaching assistants for the course: Alvin George and
Prathamesh Patil

@ Those interested in crediting/auditing please send me an
email so that | can add you to the course mailing list.
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