Propositional Logic

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

16 January 2023

Outline of these lectures

1 Propositional Logic Basics

2 Sequent Calculus

3 Soundness and Completeness

000

Propositional Logic

Fix a countable set of propositional variables $Pr = \{p_0, p_1, \ldots\}$ Formulas of Propositional Logic are given by

Propositional Logic Formulas Syntax

$$\varphi ::= p \mid \neg \varphi \mid (\varphi \vee \varphi)$$

Derived or shorthand operators

- true: $(p_0 \vee \neg p_0)$
- false: $\neg(p_0 \lor \neg p_0)$
- $\varphi \wedge \psi$: $\neg(\neg \varphi \vee \neg \psi)$
- $\varphi \to \psi$: $(\neg \varphi \lor \psi)$.

PL Semantics

- Valuation (or Assignment) is a map $s : Pr \rightarrow \{T, F\}$.
- "s satisfies φ " defined in the expected way (inductively). Examples: Let s be a valuation in which $p \mapsto T, q \mapsto F$. Then s satisfies $p \lor q$, but s does not satisfy $p \land q$,
- φ is satisfiable if there is a valuation which satisfies φ .
- φ is valid (or a tautology) if every valuation satisfes φ . Examples: $(p \lor \neg p), (p \to q) \to (\neg q \to \neg p)$.
- A set of formulas Φ is satisfiable if there is a valuation which satisfies all the formulas in Φ .

Logical Consequence

• φ is a logical consequence of a set of formulas Φ (we also say " Φ entails φ "), written

$$\Phi \vDash \varphi$$
,

if every valuation s that satisfies all the formulas in Φ also satisfies φ .

- Example: $\{p, \neg p \lor q\} \vDash q$, but
- $\{p_0 \to p_1, p_1 \to p_2, \ldots\} \not\vDash p_5 \vee p_7$.

Sequent Calculus

- A sequent is a pair (Γ, φ) , where Γ is a (possibly empty) finite sequence of formulas, and φ is a formula.
- We write (Γ, φ) as simply " $\Gamma \varphi$ ".
- (Γ, φ) or " $\Gamma \varphi$ " must be read as a claim that " φ is a logical consequence of Γ ".
- $\Gamma \varphi$ is correct if $\Gamma \vDash \varphi$ (more precisely the set of formulas in Γ entails φ).
- Example: $[p, \neg p \lor q] \ q$ is a correct claim.
- Example: $[p, \neg p \lor q] \ q \land r$ is **not** a correct claim.

Sequent Calculus G: Rules I

Antecedant Rule (Ant):

provided Γ is contained in Γ' .

Proof by Cases Rule (PC):

$$\begin{array}{cccc}
\Gamma & \psi & \varphi \\
\Gamma & \neg \psi & \varphi \\
\hline
\Gamma & & \varphi
\end{array}$$

Assumption Rule (Ass):

provided φ belongs to Γ.

Contradiction Rule (Ctr):

$$\begin{array}{cccc}
\Gamma & \neg \varphi & \psi \\
\Gamma & \neg \varphi & \neg \psi \\
\hline
\Gamma & \varphi
\end{array}$$

Sequent Calculus G: Rules II

Or-Antecedant Rule (a) (Or-A-(a)):

$$\begin{array}{ccc}
\Gamma & \varphi & \theta \\
\Gamma & \psi & \theta \\
\hline
\Gamma & (\varphi \lor \psi) & \theta
\end{array}$$

Or-Succeedent Rule (a) (Or-S-(a)):

$$\frac{\Gamma \quad \varphi}{\Gamma \quad (\varphi \lor \psi)}$$

Or-Antecedant Rule (b) (Or-A-(b)):

$$\begin{array}{ccc} \Gamma & \varphi & \theta \\ \Gamma & \psi & \theta \\ \hline \Gamma & (\psi \lor \varphi) & \theta \end{array}$$

Or-Succeedent Rule (b) (Or-S-(b)):

$$\frac{\Gamma \quad \varphi}{\Gamma \quad (\psi \vee \varphi)}$$

Derivations using Sequent Calculus

A derivation of a sequent Γ φ (in the Sequent Calculus $\mathcal G$) is a sequence of sequents

$$\Gamma_0 \quad \varphi_0$$
 $\Gamma_1 \quad \varphi_1$
 \dots
 $\Gamma_n \quad \varphi_n$

such that

- **2** each $\Gamma_i \varphi_i$ is obtained from the rules of \mathcal{G} , applied to sequents earlier in the sequence.

We write

$$\vdash_{\mathcal{G}} \Gamma \varphi$$
,

(or simply $\vdash \Gamma \varphi$) to mean there is a derivation of $\Gamma \varphi$ in \mathcal{G} .

Example Derivation

The following derivation shows that $\vdash [] (p \lor \neg p)$:

- 1. [] p p (by (Ass) rule) 2. [] p ($p \lor \neg p$) (by (Or-S(a)) applied to 2, $\neg p$
- 4. $[] \neg p \quad (p \lor \neg p)$ (by (Or-S(b)) applied to 3, p)
- 5. [] $(p \lor \neg p)$ (by (PC) applied to 2,4).

Exercise

Exercise

Show that

$$\vdash [p, \neg p \lor q] q.$$

Second Contradiction Rule (Ctr'):

$$\begin{array}{ccc}
\Gamma & \psi \\
\Gamma & \neg \psi \\
\hline
\Gamma & \varphi
\end{array}$$

This rule is derivable from the rules in \mathcal{G} in the sense that if $\vdash \Gamma \psi$ and $\vdash \Gamma \neg \psi$, then we also have $\vdash \Gamma \varphi$ (for any ψ and φ).

1.

7. Γ ψ (Since Γ ψ is derivable)

12. Γ $\neg \psi$ (Since $\Gamma \neg \psi$ is derivable)
13. $\Gamma \neg \varphi$ ψ (by (Ant)(7, $\neg \varphi$))
14. $\Gamma \neg \varphi$ $\neg \psi$ (by (Ant)(12, $\neg \varphi$))
15. Γ φ (by (Ctr)(13,14))

Exercise

Exercise

Show that the following rule is derivable from the rules in \mathcal{G} : (Modus-Ponens)

$$\begin{array}{ccc}
\Gamma & \psi \\
\Gamma & \neg \psi \lor \varphi
\end{array}$$

$$\Gamma & \varphi$$

Soundness and Completeness of Sequent Calculus

Theorem (Soundness and Completeness of G)

 $\vdash_{\mathcal{G}} \Gamma \varphi$ if and only if $\Gamma \vDash \varphi$.

We say

$$\Phi \vdash_{\mathcal{G}} \varphi$$

if for some $\Gamma \subseteq \Phi$ (more precisely the elements in Γ belong to Φ), we have $\vdash_{\mathcal{G}} \Gamma \varphi$.

Then:

Theorem (Strong Soundness and Completeness of G)

 $\Phi \vdash_{\mathcal{G}} \varphi$ if and only if $\Phi \vDash \varphi$.