Propositional Logic Deepak D'Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. 16 January 2023 #### **Outline of these lectures** **1** Propositional Logic Basics 2 Sequent Calculus **3** Soundness and Completeness 000 ### **Propositional Logic** Fix a countable set of propositional variables $Pr = \{p_0, p_1, \ldots\}$ Formulas of Propositional Logic are given by # **Propositional Logic Formulas Syntax** $$\varphi ::= p \mid \neg \varphi \mid (\varphi \vee \varphi)$$ Derived or shorthand operators - true: $(p_0 \vee \neg p_0)$ - false: $\neg(p_0 \lor \neg p_0)$ - $\varphi \wedge \psi$: $\neg(\neg \varphi \vee \neg \psi)$ - $\varphi \to \psi$: $(\neg \varphi \lor \psi)$. #### **PL Semantics** - Valuation (or Assignment) is a map $s : Pr \rightarrow \{T, F\}$. - "s satisfies φ " defined in the expected way (inductively). Examples: Let s be a valuation in which $p \mapsto T, q \mapsto F$. Then s satisfies $p \lor q$, but s does not satisfy $p \land q$, - φ is satisfiable if there is a valuation which satisfies φ . - φ is valid (or a tautology) if every valuation satisfes φ . Examples: $(p \lor \neg p), (p \to q) \to (\neg q \to \neg p)$. - A set of formulas Φ is satisfiable if there is a valuation which satisfies all the formulas in Φ . # **Logical Consequence** • φ is a logical consequence of a set of formulas Φ (we also say " Φ entails φ "), written $$\Phi \vDash \varphi$$, if every valuation s that satisfies all the formulas in Φ also satisfies φ . - Example: $\{p, \neg p \lor q\} \vDash q$, but - $\{p_0 \to p_1, p_1 \to p_2, \ldots\} \not\vDash p_5 \vee p_7$. # Sequent Calculus - A sequent is a pair (Γ, φ) , where Γ is a (possibly empty) finite sequence of formulas, and φ is a formula. - We write (Γ, φ) as simply " $\Gamma \varphi$ ". - (Γ, φ) or " $\Gamma \varphi$ " must be read as a claim that " φ is a logical consequence of Γ ". - $\Gamma \varphi$ is correct if $\Gamma \vDash \varphi$ (more precisely the set of formulas in Γ entails φ). - Example: $[p, \neg p \lor q] \ q$ is a correct claim. - Example: $[p, \neg p \lor q] \ q \land r$ is **not** a correct claim. ### Sequent Calculus G: Rules I Antecedant Rule (Ant): provided Γ is contained in Γ' . Proof by Cases Rule (PC): $$\begin{array}{cccc} \Gamma & \psi & \varphi \\ \Gamma & \neg \psi & \varphi \\ \hline \Gamma & & \varphi \end{array}$$ Assumption Rule (Ass): provided φ belongs to Γ. Contradiction Rule (Ctr): $$\begin{array}{cccc} \Gamma & \neg \varphi & \psi \\ \Gamma & \neg \varphi & \neg \psi \\ \hline \Gamma & \varphi \end{array}$$ # Sequent Calculus G: Rules II Or-Antecedant Rule (a) (Or-A-(a)): $$\begin{array}{ccc} \Gamma & \varphi & \theta \\ \Gamma & \psi & \theta \\ \hline \Gamma & (\varphi \lor \psi) & \theta \end{array}$$ Or-Succeedent Rule (a) (Or-S-(a)): $$\frac{\Gamma \quad \varphi}{\Gamma \quad (\varphi \lor \psi)}$$ Or-Antecedant Rule (b) (Or-A-(b)): $$\begin{array}{ccc} \Gamma & \varphi & \theta \\ \Gamma & \psi & \theta \\ \hline \Gamma & (\psi \lor \varphi) & \theta \end{array}$$ Or-Succeedent Rule (b) (Or-S-(b)): $$\frac{\Gamma \quad \varphi}{\Gamma \quad (\psi \vee \varphi)}$$ ### **Derivations using Sequent Calculus** A derivation of a sequent Γ φ (in the Sequent Calculus $\mathcal G$) is a sequence of sequents $$\Gamma_0 \quad \varphi_0$$ $\Gamma_1 \quad \varphi_1$ \dots $\Gamma_n \quad \varphi_n$ such that - **2** each $\Gamma_i \varphi_i$ is obtained from the rules of \mathcal{G} , applied to sequents earlier in the sequence. We write $$\vdash_{\mathcal{G}} \Gamma \varphi$$, (or simply $\vdash \Gamma \varphi$) to mean there is a derivation of $\Gamma \varphi$ in \mathcal{G} . ### **Example Derivation** The following derivation shows that $\vdash [] (p \lor \neg p)$: - 1. [] p p (by (Ass) rule) 2. [] p ($p \lor \neg p$) (by (Or-S(a)) applied to 2, $\neg p$ - 4. $[] \neg p \quad (p \lor \neg p)$ (by (Or-S(b)) applied to 3, p) - 5. [] $(p \lor \neg p)$ (by (PC) applied to 2,4). #### **Exercise** ### Exercise Show that $$\vdash [p, \neg p \lor q] q.$$ ### Second Contradiction Rule (Ctr'): $$\begin{array}{ccc} \Gamma & \psi \\ \Gamma & \neg \psi \\ \hline \Gamma & \varphi \end{array}$$ This rule is derivable from the rules in \mathcal{G} in the sense that if $\vdash \Gamma \psi$ and $\vdash \Gamma \neg \psi$, then we also have $\vdash \Gamma \varphi$ (for any ψ and φ). 1. 7. Γ ψ (Since Γ ψ is derivable) 12. Γ $\neg \psi$ (Since $\Gamma \neg \psi$ is derivable) 13. $\Gamma \neg \varphi$ ψ (by (Ant)(7, $\neg \varphi$)) 14. $\Gamma \neg \varphi$ $\neg \psi$ (by (Ant)(12, $\neg \varphi$)) 15. Γ φ (by (Ctr)(13,14)) #### **Exercise** #### **Exercise** Show that the following rule is derivable from the rules in \mathcal{G} : (Modus-Ponens) $$\begin{array}{ccc} \Gamma & \psi \\ \Gamma & \neg \psi \lor \varphi \end{array}$$ $$\Gamma & \varphi$$ ### Soundness and Completeness of Sequent Calculus #### Theorem (Soundness and Completeness of G) $\vdash_{\mathcal{G}} \Gamma \varphi$ if and only if $\Gamma \vDash \varphi$. We say $$\Phi \vdash_{\mathcal{G}} \varphi$$ if for some $\Gamma \subseteq \Phi$ (more precisely the elements in Γ belong to Φ), we have $\vdash_{\mathcal{G}} \Gamma \varphi$. Then: #### Theorem (Strong Soundness and Completeness of G) $\Phi \vdash_{\mathcal{G}} \varphi$ if and only if $\Phi \vDash \varphi$.