
DPLL and CDCL algorithms
Text: Heinz-Dieter Ebbinghaus, Jörg Flum, Wolfgang

Thomas, Mathematical logic, Chapter XI.5; Daniel Kroening,
Ofer Strichman, Decision procedures, Sec 2.2.2

Kamal Lodaya

Bharat Gyan Vigyan Samiti Karnataka, IISc

March 2025



Decision problems for FOL (Hilbert, Ackermann 1928)

Model checking: Given model M, S-formula B, does M |= B?
Requires a finite domain D = {d1, . . . ,dm} for finite
input. Then interp’n I, ass’t s are polynomial in m.

Satisfiability: Given formula B, is there a model M such that
M |= B holds?

Entscheidungsproblem: Given formula B, does M |= B hold for
every model M? Dual to satisfiability.

Model checking: Think of ∃xB(x) as
m∨

i=1

B(di). The formula size

increases polynomially in m.

Parse tree for formula has nodes polynomial in size of the input.
Use a traversal algorithm, this can be done in polynomial time.

Theorem (Turing 1936)
There is no algorithm for Entscheidungsproblem/FOL sat.



Sat solving (Martin Davis, Hilary Putnam 1960)

Fix a PL signature (propositional variables) Pr . Given formula
B, is there an assignment s on Pr such that s |= B holds?

Construct a truth table for B and check
for evaluation to T . This can be done
in time exponential in the number of
variables in B.
How to do better?

Conjunctive normal form: Assume that for-
mula B is in CNF, a set of clauses, written as
Th = ⟨K1; . . . ;Km⟩. Each clause Ki is a set
of literals, written as [ℓi,1, . . . , ℓi,n]. (Note: A
Horn clause is one with ≤ 1 positive literal.)
Every clause is a consequence Th |= Ki .
Recall Resolution rule, preserving satisfiabil-
ity. (Res): ⟨[B,A]; [¬A,C]⟩ =⇒ [B,C].

Applying resolution on consequences gives a consequence.



Sat solving (Martin Davis, George Logemann and
Donald Loveland 1962)

(UnitRes/One-Literal) If [ℓ] in clause set Th, delete clauses of
Th containing ℓ (including unit clause) and occurrences in Th of
complement ℓ. (No choice for satisfying assignment!)
(Affirmative-negative) If some literal ℓ occurs only positively/
only negatively in clause set Th, delete clauses in Th with ℓ.
(Split) Check sat of Th by testing sat of ⟨Th; [ℓ]⟩ and of ⟨Th; [ℓ]⟩.
Th |= [⟨Th; [ℓ]⟩, ⟨Th; [ℓ]⟩], neither set may be a consequence.

DPLL ALGORITHM: First preprocess to CNF.
Apply (UR) or (UR),(AN) eagerly (called Unit
or Boolean constraint propagation). Other-
wise choose a variable for (Split) and ap-
ply sequentially. If assignment to one value
reaches a conflict, then backtrack to second
value. Exponential when formula unsat. D. Loveland



DPLL execution as search tree (Nordström 2022)

Example
B = (x ∨z)∧ (z → y)∧ (y → (x ∨u))∧¬(y ∧
u)∧(u∨v)∧¬(x∧v)∧(u → w)∧¬(x∧u∧w)
gives Th =
⟨[x , z]; [y , z]; [x , y ,u]; [y ,u]; [u, v ]; [x , v ]; [u,w ]; [x ,u,w ]⟩.
Execution of DPLL (UP),(Split) visualized as
a search tree. G. Logemann

x��
��

y��
��

u��
��

v��
��

w��
��

z��
��

u��
��

[x , z]��
��

[y , z]��
��

[x , y ,u]��
��

[y ,u]��
��

[u, v ]��
��

[x , v ]��
��

[u,w ]��
��

[x ,u,w ]��
��

������� F

PPPPPPP

T

��� F
QQQ

T ��� F
QQQ

T

�
�
�
�

F T
�
�
�
�

F
A
A
A
A

T
�
�
�
�

F
C
C
C
C

T
�

�
�

�
F

C
C
C
C

T



DPLL resolution tree (Nordström 2022)

Can visualize as Resolution calculus proof (Robinson 1968).
(Resolution) on pivot A: ⟨[B,A]; [¬A,C]⟩ =⇒ [B,C] resolvent.
Th = ⟨[x , z]; [y , z]; [x , y ,u]; [y ,u]; [u, v ]; [x , v ]; [u,w ]; [x ,u,w ]⟩

false��
��

x��
��

x��
��

u ∨ x��
��

x ∨ u��
��

x ∨ y��
��

x ∨ y��
��

x ∨ z��
��

y ∨ z��
��

x ∨ y ∨ u��
��

y ∨ u��
��

u ∨ v��
��

x ∨ v��
��

u ∨ w��
��

x ∨ u ∨ w��
��

������� F

PPPPPPP

T

��� F
QQQ

T ��� F
QQQ

T

�
�
�
�

F T
�
�
�
�

F
A
A
A
A

T
�
�
�
�

F
C
C
C
C

T
�

�
�

�
F

C
C
C
C

T

Tree-like (resolution) proof: Proofs may not share subproofs.
DPLL resolution proofs are tree-like.



DPLL run: decision levels and trail
DL Partial assignment Clauses Trail
0 [p1,p4,p3][p3,p2]
1 p1 7→ T [p1,p4,p3][p3,p2] p1@1
2 p1 7→ T ,p4 7→ T [p1,p4,p3][p3,p2] p4@2
UP p1 7→ T ,p4 7→ T ,p3 7→ T [p3][p3,p2] p3@2
UP p1 7→ T ,p4 7→ T ,p3 7→ T ,p2 7→ F [p2] p2@2

• Clause is satisfied if some literal evaluates to T under
partial assignment

• Clause K is conflicting if all literals are assigned and K
evaluates to F

• Clause K becomes unit if all but one literal is assigned and
K is not satisfied

• Guessed assignments p1@1 and p4@2 are reasons of
forced assignment p3@2, which is reason of forced
assignment p2@2.
Clauses from which reasons come are antecedents.



DPLL run: guessed and forced assignments

Trail of splits (guessed/forced variables at decision levels):

DL Partial assignment Clauses Trail
0 [p1,p4,p3][p3,p2]
1 p1 7→ T [p1,p4,p3][p3,p2] p1@1
2 p1 7→ T ,p4 7→ T [p1,p4,p3][p3,p2] p4@2
UP p1 7→ T ,p4 7→ T ,p3 7→ T [p3][p3,p2] p3@2
UP p1 7→ T ,p4 7→ T ,p3 7→ T ,p2 7→ F [p2] p2@2

Initially no clause is unit, forcing guess to new level p1@1.

Again, neither clause is unit, forcing guess to new level p4@2.

Now, one clause is unit and we get a forced assignment p3@2
from p1@1,p4@2 using clause K 1.

Makes other clause unit and we get a forced assignment p2@2
from p3@2 using clause K 2.

BCP dag/implication graph: Nodes are assignments to var’s
(eg, p2@2). Edges labelled by antecedent clauses.



DPLL run ends in conflict

Exercise
Clause set ⟨[p2,p3]; [p1,p4]; [p2,p4]; [p1,p2,p3]⟩.
No unit, guess p1.
Imply p4, imply p2, imply p3, imply []. Conflict.

Last guessed assignment is p1 7→ T .
Backtrack to forced assignment p1 7→ F.

Can guess p2 and imply p3.

Example
Consider guessed assignment x1, . . . , xn−1, xn, backtrack on
trail and try x1, . . . , xn−1, xn. If the formula is unsatisfiable, every
time we backtrack we will be forced to try xn.

(DLL 1962) suggested backjumping to a higher level than the
previous one.



DPLL run (Ashutosh Gupta 2018)

cbna CS 433 Automated Reasoning 2025 Instructor: Ashutosh Gupta IITB India 15

Example: decide, propagate, and backtrack in DPLL

Example 6.4

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3 = (¬p2 ∨ p4)

c4 = (¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

Blue : causing unit propagation
Green/Blue : true clause

p6

p5

0

p7

0, c8

p1

0

p3

1

p2

1, c2

p4

1, c1

c4 conflict

1, c3

..
0

Backtrack
to the last
decision

Decision
variable

Propagated
variable

Exercise 6.7 Complete the DPLL run



Scheme (João Marques-Silva, Karem Sakallah 1996)

Represent trails with a BCP dag (implication
graph):

• Nodes: partial assignments to var’s
(eg, p2@2)

• Edges: labelled by antecedent clauses
• At most one conflict node reached from

conflicting clauses

Conflict dag: Subdag of BCP dag such that
all nodes have a path to the single con-
flict. Non-conflict nodes have a decision lit-
eral or have literals ℓ1, . . . , ℓk as predeces-
sors where [ℓ1, . . . , ℓk , ℓ] is a clause from the
given formula.



Implication graph (Ashutosh Gupta 2018)

cbna CS 433 Automated Reasoning 2025 Instructor: Ashutosh Gupta IITB India 22

Example: implication graph

Example 6.7

c1 = (¬p1 ∨ p2)

c2 = (¬p1 ∨ p3 ∨ p5)

c3 = (¬p2 ∨ p4)

c4 = (¬p3 ∨ ¬p4)

c5 = (p1 ∨ p5 ∨ ¬p2)

c6 = (p2 ∨ p3)

c7 = (p2 ∨ ¬p3 ∨ p7)

c8 = (p6 ∨ ¬p5)

p6

p5

0

p7

p1

0

0, c8

p3

1

p2

1, c2

p4

1, c1

c4 conflict

1, c3

Implication graph

¬p6@1

¬p5@1

c8

¬p7@2 p1@3

p3@3

c2 c2

p2@3

c1

p4@3

c3

conflict

c4

c4



Backjump (Richard Stallman, Gerald Sussman 1977)

Example (Where to backjump?)
⟨K 1 : [p2,p4,p5];K 2 : [p4,p6,p8];K 3 : [p5,p6,p7];K 4 : [p6,p7]⟩.
Conflict dag: let conflicting clause be p6@5 K 4−→[], p7@5 K 4−→[].
Let p7@5 have reasons p5@5 K 3−→p7@5, p6@5 K 3−→p7@5.
Let p6@5 have reasons p4@5 K 2−→p6@5, p8@3 K 2−→p6@5.
Let p5@5 have reasons p4@5 K 1−→p5@5, p2@3 K 1−→p5@5.
K 3,K 4 (K 2,K 4) do not agree on assignment of p7 (p6, resp’ly).
Resolve K 3,K 4 on p7 to get K 5 : [p5,p6]. Both p5@5,p6@5.
Resolve K 2,K 5 on p6 to get K 6 : [p4,p5,p8]. Both p4@5,p5@5.
Resolve K 6,K 1 on p5 to get K 7 : [p2,p4,p8]. p4@5 dominates
paths to conflict (Edward Lowry, Clebourne Medlock 1969).
K 7 is still conflicting. Backjumping to a level below 5, K 7 is
assertive (unit), solver flips p4@5 (earlier could flip one of two
variables) and learns p4. Never returns to level 5 with same
partial assignment. Every resolution replaces literal by literals
falsified higher up, eventually there must be an assertive literal.



Conflict-driven clause learning (Marques-Silva 1995)
Th = ⟨K 1 : [p,u];K 2 : [q, r ];K 3 : [r ,w ];K 4 : [u, x , y ];

K 5 : [x , y , z];K 6 : [x , z];K 7 : [y , z];K 8 : [x , z];K 9 : [p,u]⟩

Decision level 1: p@1 K 1−→u@1
Decision level 2: q@2 K 2−→r@2 K 3−→w@2
Decision level 3: x@3 K 4−→y@3 K 5−→z@3 K 7−→false

Resolve K5,K7 to get K 10 : [x , y ]
Resolve K4,K10 to get K 11 : [u, x ], which is learnt. Propagate
learnt clause to backjump to:

Decision level 1: p@1 K 1−→u@1K 11−→x@1 K 6−→z@1 K 8−→false

Resolve K6,K8 to get K 12 : [x ], which is learnt. Backjump to:

Decision level 1: x@1K 11−→u@1 K 1−→p@1 K 9−→false

Resolve K1,K9 to get K 13 : [u]
Resolve K13,K11 to get K 14 : [x ]K 12−→[]

CDCL resolution proofs are not tree-like.



Certificate of unsatisfiability

A sequence of clauses K1 . . .Kt is a certificate of unsatisfiability
if Kt = [], and for every 1 ≤ i ≤ t , the empty clause can be
derived using (UP) from Thi = {K1, . . . ,Ki−1,¬Ki}, where for
Ki = [ℓi,1, . . . , ℓi,n], ¬Ki

def
= [ℓi,1] . . . [ℓi,n].

Theorem (Evgenii Goldberg, Yakov Novikov 2003)
If CDCL terminates with unsatisfiability on a formula, the
sequence of clauses that it has learnt is a certificate of
unsatisfiability.
Sufficient to show that when clause K = [ℓ, ℓ1, . . . , ℓk ] is learnt,
appending the unit clauses [ℓ][ℓ1] . . . [ℓk ] to those already learnt
will derive the empty clause by (UP).
K has been obtained from the original conflict clause by
successive resolutions with reasons ℓj1 , . . . , ℓjs for each literal
that was removed in constructing K .



Edge-cuts (Marques-Silva 1995)

Example (Which dominator?)
Th ⊇ ⟨K 7 : [p7,p1,p9,p8];K 8 : [p7,p4,p8];K 9 : [p7,p2,p3,p8]⟩

Conflict dag: let conflict clause be p5@6 K 6−→[], p6@6 K 6−→[].

Let p5@6 have reasons p7@3 K 4−→p5@6, p4@6 K 4−→p5@6.

Let p6@6 have reasons p8@3 K 5−→p6@6, p4@6 K 5−→p6@6.

Let p4@6 have reasons p2@3 K 3−→p4@6, p3@6 K 3−→p4@6.

Let p2@6 have reason p1@6 K 1−→p2@6.

Let p3@6 have reasons p1@6 K 2−→p2@6, p9@1 K 2−→p2@6.

Can learn K 7 : [p7,p1,p9,p8] (assertive), or K 8 : [p7,p4,p8]
(assertive), or K 9 : [p7,p2,p3,p8] (not assertive, discard).

Immediate dominator (first UIP): Choose K 8 : [p7,p4,p8],
smaller, more likely for BCP; efficient to find (Thomas Lengauer,
Robert Tarjan 1979). Different solvers make different choices.



Separation (Marques-Silva 1995)

Every edge-cut of the BCP dag separating the reason side
(decision variables) of the BCP dag from the conflict side (at
least one literal with its complement) is useful for learning. All
nodes on the reason side having an edge going to the conflict
side are the reasons of conflict. Negations of corresponding
literals give the learnt clause associated with the cut.

Theorem (Marques-Silva 1995)
Learnt clauses are derived from their reasons.
Every learnt clause is a consequence of the given Th.
Proof of the first part: resolvent of consequences is a
consequence. Reasons may again be learnt clauses, induction
gives the second part.

Adding learnt clause to Th does not change satisfying
assignments of Th.
DPLL a sound and complete algorithm, CDCL also is.



Sat solvers in practice

For large Th, huge number of clauses can be learnt in an
execution. How to manage this database of lemmas?

• CDCL solvers perform well: lakh variables, million clauses
• Aggressively erase learnt clauses that do not seem useful
• Sometimes they keep learnt clauses but restart search
• Tricky formulas like propositional Pigeonhole Principle

(Haken 1985) and propositional Ordering Principle
(Balakrishnan Krishnamurthy 1985) may not appear

• Several parameters studied by theoreticians may only
coarsely reflect divisions found in practice. For example
clause-variable ratio: number of clauses in formula divided by
number of variables in formula, for random formulas at about
4.26 there is a “phase transition” from
almost-certainly-satisfiable to almost-certainly-unsatisfiable

• Heuristics are far ahead of theory



Parameters (Vijay Ganesh, Moshe Vardi 2020)

(Resolution) on pivot A: ⟨[B,A]; [¬A,C]⟩ =⇒ [B,C] resolvent.

Merge: number of overlapping literals in B,C.
Heuristic (Peter Andrews 1968): Choose clauses
which have a high amount of merge.
Studied by (Edward Zulkoski, Ruben Martins,
Christoph Wintersteiger, Jia Hui Liang, Krzysztof
Czarnecki, Vijay Ganesh 2018).

Modularity: incidence graph of a formula (nodes variables, edge
if appearing in same clause).
Heuristic (Carlos Ansótegui, Jesús Giráldez-Cru,
Jordi Levy 2012): If incidence graph has “clusters”
weakly connected to other clusters, solver can
work on “decomposition” of formula.
Studied by (Zack Newsham, Vijay Ganesh,
Sebastian Fischmeister, Gilles Audemard, Laurent
Simon 2014).


