DPLL and CDCL algorithms
Text: Heinz-Dieter Ebbinghaus, J6rg Flum, Wolfgang

Thomas, Mathematical logic, Chapter XI.5; Daniel Kroening,
Ofer Strichman, Decision procedures, Sec 2.2.2

Kamal Lodaya

Bharat Gyan Vigyan Samiti Karnataka, 11Sc

March 2025

Decision problems for FOL

Model checking: Given model M, S-formula B, does M |= B?
Requires a finite domain D = {d4, ..., dn} for finite
input. Then interp’n /, ass’t s are polynomial in m.

Satisfiability: Given formula B, is there a model M such that
M = B holds?

Entscheidungsproblem: Given formula B, does M |= B hold for
every model M? Dual to satisfiability

Model checking: Think of 3xB(x) as \/ B(d;). The formula size

i=1
increases polynomially in m.

Parse tree for formula has nodes polynomial in size of the input.
Use a traversal algorithm, this can be done in polynomial time.

Theorem ()
There is no algorithm for Entscheidungsproblem/FOL sat.

Sat solving

Fix a PL signature (propositional variables) Pr. Given formula
B is there an aSS|gnment son Pr such that s = B holds?
A

Construct a truth table for B and check
for evaluation to T. This can be done
in time exponential in the number of
variables in B.

How to do better?

Conjunctive normal form: Assume that for-
mula Bis in CNF, a set of clauses, written as
Th = (Ky;...; Km). Each clause K; is a set
of literals, written as [¢;1,...,¢; 5. (Note: A
Horn clause is one with < 1 positive literal.)
Every clause is a consequence Th | K;.

Recall Resolution rule, preserving satisfiabil-

ity. (Res): ([B, A];[-A, C]) = [B,C].
Applying resolutlon on consequences gives a consequence.

Sat solving

(UnitRes/One-Literal) If [¢] in clause set Th, delete clauses of
Th containing ¢ (including unit clause) and occurrences in Th of
complement ¢. (No choice for satisfying assignment!)

(Affirmative-negative) If some literal ¢ occurs only positively/
only negatively in clause set Th, delete clauses in Th with /.

(Split) Check sat of Th by testing sat of (Th; [¢]) and of (Th; [/]).
Th = [(Th; [4]), {Th; [/])], neither set may be a consequence.

DPLL ALGORITHM: First preprocess to CNF.
Apply (UR) or (UR),(AN) eagerly (called Unit
or Boolean constraint propagation). Other-
wise choose a variable for (Split) and ap-
ply sequentially. If assignment to one value
reaches a conflict, then backtrack to second
value. Exponential when formula unsat.

D. Loveland

DPLL execution as search tree (Nordstrom 2022)

Example

B=(xVzZ)AN(z—=y)AN(y — (xVu))A=(y A
AUV V)A(XAVIA(U = W)A=(XAUAW)
gives Th =

(x.z]; [y, 2l [x,y, ul; [y, dl; [u, v]; [X, V] [U, w]; [x, B
Execution of DPLL (UP),(Split) visualized as A
a search tree. G. Logemann

DPLL resolution tree

Can visualize as Resolution calculus proof .
(Resolution) on pivot A: ([B, A]; [-A, C]) = [B, C] resolvent.
Th = ([x, z; [y, 2); [x, ¥, u}; [y, U] [u, v]; [x, V]; [U, w]; [X, U, W)

Tree-like (resolution) proof: Proofs may not share subproofs.
DPLL resolution proofs are tree-like.

DPLL run: decision levels and trail

DL Partial assignment Clauses Trail
0 [ﬁ? 57 p3][l737 E]

1 pi— T [ﬁ?ﬁ? p3][:[737@] p1@1
2 pi—=T,pa—T [P1. P4, p3][Ps, P2] Pa@2
UP pi—T,p4— T,p3=T [ps][Ps, P2] p3©2
UP p1— T,ps— T,p3— T,po— F [p2] po@2

e Clause is satisfied if some literal evaluates to T under
partial assignment

e Clause K is conflicting if all literals are assigned and K
evaluates to F

¢ Clause K becomes unit if all but one literal is assigned and
K is not satisfied

e Guessed assignments p;©@1 and p,@2 are reasons of
forced assignment p3@2, which is reason of forced
assignment p,@2.

Clauses from which reasons come are antecedents.

DPLL run: guessed and forced assignments

Trail of splits (guessed/forced variables at decision levels):

DL Partial assignment Clauses Trail
0 (D1, Pa, p3][Ps, P2]

1 p1— T W?Ea Ps][l73>m] p1@1
2 pi=T,paT [P1, Pa, P3][Ps, P2] Pa@2
UP p1— T,ps— T,p3— T [p3][Ps. P2] p3©2
UP P11 — T,,D4i—> T,p3'—> T,pgi—>F [[72] 5@2

Initially no clause is unit, forcing guess to new level p;@1.
Again, neither clause is unit, forcing guess to new level p,@2.

Now, one clause is unit and we get a forced assignment p;©2
from p;@1, p4@2 using clause K1.

Makes other clause unit and we get a forced assignment p,©@2
from p3©@2 using clause K2.

BCP dag/implication graph: Nodes are assignments to var’s
(eg, p©@2). Edges labelled by antecedent clauses.

DPLL run ends in conflict

Exercise
Clause set ([p2, p3]; [P1, Pal; [P2, Pal; [P1, P2, P3])-

No unit, guess p; .
Imply p4, imply po, imply ps, imply []. Conflict.

Last guessed assignment is py — T.
Backitrack to forced assignment py — F.

Can guess p, and imply ps.

Example
Consider guessed assignment X1, ..., X,_1, X, backtrack on
trail and try X7, ..., X,_1, Xp. If the formula is unsatisfiable, every

time we backtrack we will be forced to try x,.

suggested backjumping to a higher level than the
previous one.

DPLL run

Example: decide, propagate, and backtrack in DPLL

Example 6.4 @.
Q

a1 = (—p1V p2)
c2=(=p1Vp3Vps)
&= (P pe) @. Decision
ca = (p3V ps) @
s = (p1V psV p2) @
6 = (p2V p3)
7= (p2V —p3Vpr)
cg = (ps V —ps)

Backtrack
to the last

. .) decision
Blue : causing unit propagation

Green/Blue : true clause

Exercise 6.7 Complete the DPLL run

000 CS 433 Automated Reasoning 2025 Instructor: Ashutosh Gupta 1ITB India

Scheme

Represent trails with a BCP dag (implication
graph):
e Nodes: partial assignments to var’s
(eg, P2©2)
e Edges: labelled by antecedent clauses

* At most one conflict node reached from
conflicting clauses

Conflict dag: Subdag of BCP dag such that
all nodes have a path to the single con-
flict. Non-conflict nodes have a decision lit-
eral or have literals /1, ...,/x as predeces-
sors where [(4,. .., ¢, (] is a clause from the
given formula.

Implication graph

Example: implication graph

Example 6.7 @. Implication graph
8 —ps@1
a=(=p1Vp) © 8
= (=p1VpsVps) 0 N
C3:(—|p2\/p4) @ |ﬁp7@2| |ﬁp5©1| |P1@3|

ca = (—p3V —pa) @
2

cs = (p1V psV—p2) 1,c
e = (p2V p3) @
cz=(p2V-p3Vpr) lcl

cg = (ps V —ps) @

000 CS 433 Automated Reasoning 2025 Instructor: Ashutosh Gupta 1ITB India

Backjump

Example (Where to backjump?)

(K1 : [p2, Pa, ps]; K2 : [Pa, Ps, ps]; K3 : [s, Pe, p7]; K4 : [Pg, p7]).-
Conflict dag: let conflicting clause be p6©5ﬁ>[], E@Sﬂ[].
Let p7@5 have reasons p5©5ﬁ>ﬁ©5, p6@5ﬁ>ﬁ©5.

Let ps@5 have reasons p4@5£>p6©5, m@sﬁps@s.

Let p5s@5 have reasons p4@5ﬁ>p5©5, E@3ﬁ>p5©5.

K3, K4 (K2, K4) do not agree on assignment of p7 (pg, resp’ly).
Resolve K3, K4 on p7 to get K5 : [ps, pg]. Both ps@5, ps@5.
Resolve K2, K5 on ps to get K6 : [pg4, ps, ps]. Both p,@5, ps@5.
Resolve K6, K1 on ps to get K7 : [p2, P4, Ps]. p4@5 dominates
paths to conflict

K7 is still conflicting. Backjumping to a level below 5, K7 is
assertive (unit), solver flips p,©@5 (earlier could flip one of two
variables) and learns p4. Never returns to level 5 with same
partial assignment. Every resolution replaces literal by literals
falsified higher up, eventually there must be an assertive literal

Conflict-driven clause learning

Th= (K1:[p,u];K2:[q,r]; K3:[r,w]; K4 : [u,x,y];
K5:[x,y,z]; K6 : [X,z]; K7 : [y,z]; K8 : [X,Z]; K9 : [p, U])
Decision level 1: p@1 AN Y
Decision level 2: 6©2ﬁr©2ﬁ>w©2
Decision level 3: Y@Sﬂy@Sﬂz@Sﬂfalse
Resolve K5,K7 to get K10 : [x, y]
Resolve K4,K10 to get K11 : [u, x], which is learnt. Propagate

learnt clause to backjump to:

Decision level 1: 155001 ™ x01 X% 201 X% false

Resolve K6,K8 to get K12 : [x], which is learnt. Backjump to:

Decision level 1: X011 01 ﬂ>p©1 ", false

Resolve K1,K9 to get K13 : [u]
Resolve K13,K11 to get K14 : [x] 3]

CDCL resolution proofs are not tree-like.

Certificate of unsatisfiability

A sequence of clauses Kj ... K; is a certificate of unsatisfiability
if Kt =[], and for every 1 < i < t, the empty clause can be
derived using (UP) from Th; = {Kj, ..., Ki_1, K}, where for

Ki=1[li1s - Linl =K €[] [Cinl-

Theorem ()

If CDCL terminates with unsatisfiability on a formula, the
sequence of clauses that it has learnt is a certificate of
unsatisfiability.

Sufficient to show that when clause K = [¢, ¢4, ..., 4] is learnt,
appending the unit clauses [¢][¢1] . .. [¢x] to those already learnt
will derive the empty clause by (UP).

K has been obtained from the original conflict clause by
successive resolutions with reasons /;,, ..., ¢;, for each literal
that was removed in constructing K.

Edge-cuts

Example (Which dominator?)
Th 2 <K7 : [pﬁﬁvpgvpd; K8: [mvmapB]; K9 : [pﬁﬁvﬁvaD
Conflict dag: let conflict clause be p5©6ﬁ>[], ps@sﬁ[].

Let ps@6 have reasons p703-"% ps©6, p,@6 % ps©6.
Let ps@6 have reasons pg@3-"> ps©6, p,@6-~> ps@6.
Let p,©@6 have reasons p2©3ﬁ>p4@6, p3@6ﬁ>p4@6.
Let p,@6 have reason p; @6ﬁ>p2©6.

Let p3@6 have reasons py ©6£>p2©6, Pg@1 ﬁpg@)s.

Can learn K7 : [p7, p1, py, ps] (assertive), or K8 : [p7, Pa, ps]
(assertive), or K9 : [p7, P2, P3, Ps] (not assertive, discard).

Immediate dominator (first UIP): Choose K8 : [p7, P4, ps],
smaller, more likely for BCP; efficient to find
. Different solvers make different choices.

Separation

Every edge-cut of the BCP dag separating the reason side
(decision variables) of the BCP dag from the conflict side (at
least one literal with its complement) is useful for learning. All
nodes on the reason side having an edge going to the conflict
side are the reasons of conflict. Negations of corresponding
literals give the learnt clause associated with the cut.

Theorem ()

Learnt clauses are derived from their reasons.
Every learnt clause is a consequence of the given Th.

Proof of the first part: resolvent of consequences is a
consequence. Reasons may again be learnt clauses, induction
gives the second part.

Adding learnt clause to Th does not change satisfying
assignments of Th.
DPLL a sound and complete algorithm, CDCL also is.

Sat solvers in practice

For large Th, huge number of clauses can be learnt in an
execution. How to manage this database of lemmas?

CDCL solvers perform well: lakh variables, million clauses
Aggressively erase learnt clauses that do not seem useful
Sometimes they keep learnt clauses but restart search

Tricky formulas like propositional Pigeonhole Principle
and propositional Ordering Principle
may not appear

Several parameters studied by theoreticians may only
coarsely reflect divisions found in practice. For example
clause-variable ratio: number of clauses in formula divided by
number of variables in formula, for random formulas at about
4.26 there is a “phase transition” from
almost-certainly-satisfiable to almost-certainly-unsatisfiable

Heuristics are far ahead of theory

Parameters

(Resolution) on pivot A: ([B, A]; [-A, C]) = [B, C] resolvent.

Merge:

Modularity:

number of overlapping literals in B, C.

Heuristic : Choose clauses
which have a high amount of merge.
Studied by

incidence graph of a formula (nodes variables, edge
if appearing in same clause).
Heuristic

: If incidence graph has “clusters”
weakly connected to other clusters, solver can
work on “decomposition” of formula.

Studied by

