Consistency

Heinz-Dieter Ebbinghaus, Jörg Flum, Wolfgang Thomas, Mathematical logic, Section IV.7

Kamal Lodaya

Bharat Gyan Vigyan Samiti Karnataka, IISc

January 2025

Outline

What have we done so far?

- First defined the language of PL.
- Gave a model theory (meaning) of truth $s \models B$, satisfiability Sat B and consequence $Th \models B$ using assignments s.
- Gave an algorithm to check satisfiability of a formula B.
- Gave a proof-theoretic (pattern-matching) generation of derivations Γ B and derivability Th ⊢ B using a calculus G.
- Showed soundness of G, that if $Th \vdash_G B$ (for some finite $\Gamma \subset Th$, there is a derivation of ΓB in G), then $Th \models B$.

What is the way to completeness, that if $Th \models B$ then $Th \vdash_G B$?

Exercise (Duality)

Show that A is valid if and only if $\neg A$ is not satisfiable, and A is satisfiable if and only if $\neg A$ is not valid.

Idea of consistency (Bernays, Post *c.*1920)

Proof by contradiction (Ctr): 2nd contradiction rule (Ctr'):

Premisses: $\Gamma \neg A B \Gamma \neg A \neg B$ Premisses: $\Gamma A \Gamma \neg A$

Conclusion: ΓA Conclusion: ΓB

- In rule (Ctr), antecedent theory $\Gamma \cup \{\neg A\}$ is inconsistent.
- In rule (Ctr'), antecedent theory Γ is inconsistent.

Definition

Theory Th is called inconsistent (Inc Th) if for some B, $Th \vdash B$ and $Th \vdash \neg B$. Otherwise Th is called consistent (Con Th).

Idea of consistency (Bernays, Post *c.*1920)

Proof by contradiction (Ctr): 2nd contradiction rule (Ctr'):

Premisses: $\Gamma \neg A B \Gamma \neg A \neg B$ Premisses: $\Gamma A \Gamma \neg A$

Conclusion: Γ *A* Conclusion: Γ *B*• In rule (Ctr), antecedent theory $\Gamma \cup \{\neg A\}$ is inconsistent.

• In rule (Ctr'), antecedent theory Γ is inconsistent.

Definition

Theory Th is called inconsistent (Inc Th) if for some B, $Th \vdash B$ and $Th \vdash \neg B$. Otherwise Th is called consistent (Con Th).

Exercise (Chemistry report makes sense?)

When cobalt but no nickel is present, a brown colour appears in the solution.

Nickel and manganese are absent.

Cobalt is present but only a green colour appears.

Is *Th* consistent?

$$\textit{Th} = \{(1)\textit{Co} \land \neg \textit{Ni} \rightarrow \neg \textit{green}, (2) \neg \textit{Ni} \land \neg \textit{Mn}, (3)\textit{Co} \land \textit{green}\}$$

Is *Th* consistent?

```
\textit{Th} = \{(1)\textit{Co} \land \neg \textit{Ni} \rightarrow \neg \textit{green}, (2) \neg \textit{Ni} \land \neg \textit{Mn}, (3)\textit{Co} \land \textit{green}\}
```

Answer: By (3) and (And-S), $Th \vdash Co$. By (2) and (And-S), $Th \vdash \neg Ni$. By (And),(1) and (MP), $Th \vdash \neg green$. By (3) and (And-S), $Th \vdash green$.

Th is inconsistent.

Is Th consistent?

$$\textit{Th} = \{(1)\textit{Co} \land \neg \textit{Ni} \rightarrow \neg \textit{green}, (2) \neg \textit{Ni} \land \neg \textit{Mn}, (3)\textit{Co} \land \textit{green}\}$$

Answer: By (3) and (And-S), $Th \vdash Co$. By (2) and (And-S), $Th \vdash \neg Ni$. By (And),(1) and (MP), $Th \vdash \neg green$. By (3) and (And-S), $Th \vdash green$.

Th is inconsistent.

Question: Is there an algorithm to check if a theory Th, or (for simplicity) just a singleton formula $\{A\}$, is consistent?

Is *Th* consistent?

$$\textit{Th} = \{(1)\textit{Co} \land \neg \textit{Ni} \rightarrow \neg \textit{green}, (2) \neg \textit{Ni} \land \neg \textit{Mn}, (3)\textit{Co} \land \textit{green}\}$$

Answer: By (3) and (And-S), $Th \vdash Co$. By (2) and (And-S), $Th \vdash \neg Ni$. By (And),(1) and (MP), $Th \vdash \neg green$. By (3) and (And-S), $Th \vdash green$.

Th is inconsistent.

Question: Is there an algorithm to check if a theory Th, or (for simplicity) just a singleton formula $\{A\}$, is consistent?

How to check $A \not\vdash B$: formula B is *not* derivable from A?

Is *Th* consistent?

$$\textit{Th} = \{(1)\textit{Co} \land \neg \textit{Ni} \rightarrow \neg \textit{green}, (2) \neg \textit{Ni} \land \neg \textit{Mn}, (3)\textit{Co} \land \textit{green}\}$$

Answer: By (3) and (And-S), $Th \vdash Co$. By (2) and (And-S), $Th \vdash \neg Ni$. By (And),(1) and (MP), $Th \vdash \neg green$. By (3) and (And-S), $Th \vdash green$.

Th is inconsistent.

Question: Is there an algorithm to check if a theory Th, or (for simplicity) just a singleton formula $\{A\}$, is consistent?

How to check $A \not\vdash B$: formula B is *not* derivable from A?

How to get hold of closure of *A*, that is, set of all formulas generable from it using derivations? And then check that *B* is not in that set?

Inconsistency explodes, consistency extends

```
Lemma (Consistency (EFT, Section IV.7))

(Explosion) Inc Th iff (if and only if) for every A, Th \vdash A.

(Closure) Th \vdash A iff Inc (Th \cup \{\neg A\}).

(Extension) If Con Th, then either Con (Th \cup \{A\}) or Con(Th \cup \{\neg A\}).
```

Proof.

For (Explosion), right to left: For any B, $Th \vdash B$ and $Th \vdash \neg B$. For left to right: suppose for some B, there is a derivation Γ_1 B and a derivation $\Gamma_2 \neg B$. Paste these together to obtain derivations ($\Gamma_1 \cup \Gamma_2$) B and ($\Gamma_1 \cup \Gamma_2$) $\neg B$. Then use the 2nd Contradiction rule (Ctr') to derive any A.

Inconsistency explodes, consistency extends

```
Lemma (Consistency (EFT, Section IV.7))

(Explosion) Inc Th iff (if and only if) for every A, Th \vdash A.

(Closure) Th \vdash A iff Inc (Th \cup \{\neg A\}).

(Extension) If Con Th, then either Con (Th \cup \{A\}) or Con (Th \cup \{\neg A\}).
```

Proof.

For (Explosion), right to left: For any B, $Th \vdash B$ and $Th \vdash \neg B$. For left to right: suppose for some B, there is a derivation Γ_1 B and a derivation $\Gamma_2 \neg B$. Paste these together to obtain derivations ($\Gamma_1 \cup \Gamma_2$) B and ($\Gamma_1 \cup \Gamma_2$) $\neg B$. Then use the 2nd Contradiction rule (Ctr') to derive any A.

For (Closure), left to right: $(Th \cup \{\neg A\}) \vdash A \land \neg A$. For right to left: by (Explosion), $(Th \cup \{\neg A\}) \vdash A$ using derivation $\Gamma \neg A A$. By (Ass), $\Gamma A A$. Proof by cases (PC) gives ΓA .

For (Extension), use the contrapositive.

