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Rules (Gerhard Gentzen 1934)

Two structural rules and five connective rules.
• Antecedent rule (Ant):

Premiss: 1 Γ1 A. Side condition: Γ1 ⊂ Γ2.
Conclusion: Γ2 A.

• Assumption rule (Ass):
Side condition A ∈ Γ. Conclusion: Γ A.

• Disjunction rule for antecedent (Or-A):
Two premisses: 1 Γ A C;2 Γ B C. Concl: Γ (A ∨ B) C.

• Disjunction rules for succedent (Or-S):
Premiss: 1 Γ A. Two conclusions: Γ (A ∨ B); Γ (B ∨ A).

• Proof by cases (PC):
Two premisses: 1 Γ A B;2 Γ ¬A B. Conclusion: Γ B.

• Proof by contradiction (Ctr):
Two premisses: 1 Γ ¬A B;2 Γ ¬A ¬B. Conclusion: Γ A.



Derivations, derivability (Gerhard Gentzen 1934)

A derivability Th ⊢G A of calculus G
has antecedent theory and succedent
formula. A derivation is a finite se-
quence of steps, EFT IV.1 restricts an-
tecedents to finite lists Γ. A step has a
sequent Γ B, following from ≥ 0 previ-
ous sequents by applying a rule of G.

Theorem (Soundness)
If Th ⊢G A, then Th |= A.

If for some B, Th ⊢G B as well as Th ⊢G ¬B, then Th is called
inconsistent (IncG Th). Otherwise consistent (ConG Th).

Lemma (Consistency (EFT, Section IV.7))

(Explosion) Inc Th iff (if and only if) for every A, Th ⊢ A.
(Closure) Th ⊢ A iff Inc (Th ∪ {¬A}).

(Extension) If Con Th then Con (Th∪{A}) or Con (Th∪{¬A}).



State (Adolf Lindenbaum 1927, Marshall Stone 1934)

Definition
Theory H is maximal consistent if for
every A, Con (H ∪ {A}) iff A ∈ H.

Lemma (Maximality)
For maximal consistent theory H:

1 Either A ∈ H or ¬A ∈ H. By
(Extension), either H ∪ {A} or
H ∪ {¬A} is consistent.

2 If H ⊢ A, then A ∈ H. By (Closure),
Inc (H ∪ {¬A}). By (1), A ∈ H.

3 A ∨ B in H iff A in H or B in H
Right to left by Or-S. Left to right: if
A ∨ B,¬A ∈ H then B ∈ H by (DS).

4 If A → B,A ∈ H, then B in H (MP)



Lindenbaum construction (EFT, Theorem V.2.2)

Lemma (Adolf Lindenbaum 1927, Alfred Tarski 1935)
Let Pr be countable. Every consistent theory Th can be
extended to a maximal consistent theory H.

Proof.
Enumerate all Pr -formulas A1,A2, . . . . Start with H0 = Th.

Hi =

{
Hi−1 ∪ {Ai}, if Con (Hi−1 ∪ {Ai})
Hi−1, otherwise

Note that every Hi

is consistent by con-
struction.

Claim: H =
⋃

i∈N Hi is maximal consistent.

If H were inconsistent with H ⊢ B,H ⊢ ¬B, from finite
Γ1, Γ2 ⊂ H and derivations of sequents Γ1 B and Γ2 ¬B, then all
formulas of Γ1 ∪ Γ2 appear by some stage N of the enumeration
and get added to HN+1 which would make it inconsistent.

If H were not maximal, say H ∪ {A} was consistent and A = Ai
was left out of Hi , for some stage i . Then by the construction,
Hi−1 ∪ {Ai} was inconsistent, a contradiction.



Way to completeness (Kurt Gödel 1930)

Converse to Soundness theorem is the
Completeness/Adequacy theorem:
if Th |= A, then Th ⊢ A.

We prove the contrapositive. Suppose not Th ⊢ A. For
contrapositive we have to show not Th |= A.

By Consistency Lemma (Closure), Th ∪ {¬A} is consistent.
By Duality Exercise, sufficient to show that Th ∪ {¬A} is
satisfiable.
That is, it is sufficient to show:

Theorem (Model construction)
For all theories Th, if Con Th then Sat Th.
A similar argument shows the Soundness Theorem implies:
If Sat Th then Con Th. Thus Con Th iff Sat Th is the proof-theoretic
counterpart of satisfiability. Algorithm to check consistency.



Truth lemma (Leon Henkin 1949)
Using Lindenbaum Lemma, model
construction reduces to:

Lemma (Truth, EFT, Thm V.1.10)
Maximal consistent theories H are
satisfiable.

Proof.
Define model s: p[s] def

= T iff p ∈ H.
By induction on formulas we prove
s |= A iff A ∈ H (truth iff membership).
Base (propositional variables): by
definition of s.
For induction step, assume smaller formulas satisfy hypothesis.

• s |= ¬A iff not (s |= A) iff A /∈ H (induction hypothesis) iff
¬A ∈ H (Maximality 1).

• s |= (A ∨ B) iff s |= A or s |= B iff A ∈ H or B ∈ H (induction
hypothesis) iff (A ∨ B) ∈ H (Maximality 3).



Review

• Thus Model Construction Theorem proved using Duality
Exercise, Lindenbaum Lemma, Truth Lemma.

• The lemmas used the combination of consistency and
maximality to build a state (an assignment).

Consider consistent theory Th:
{(¬(p ∧ ¬q)) ∨ ((¬p) ∧ r),¬¬q, r ∧ q,¬t}.

Can extend it to a downwards consistent theory H1:
{(¬(p ∧ ¬q)) ∨ ((¬p) ∧ r),¬(p ∧ ¬q),¬p,¬¬q,q, r ∧ q, r ,¬t}.

Satisfying model s for H1 from one maximal consistent set:
p[s] = F ,q[s] = T , r [s] = T , t [s] = F .

Can extend it to another downwards consistent theory H2:
{(¬(p ∧ ¬q)) ∨ ((¬p) ∧ r), ((¬p) ∧ r),¬p, r , r ∧ q,q,¬t}.

Satisfying model s for H2 is the same:
p[s] = F ,q[s] = T , r [s] = T , t [s] = F .



CNF expansion rules for satisfiability

Definition
• A literal ℓ is an atomic formula (positive) or its negation. Its

complement is ℓ : p = ¬p, ¬p = p.
• A clause is a disjunction K = [ℓ1, . . . , ℓn] where every ℓi is a

literal. Empty clause [] is False.
• A PL formula in conjunctive normal form (CNF) is a clause

set Th = ⟨K1; . . . ;Km⟩ (sometimes we write K1 . . .Km)
where each Ki is a clause. Empty clause set ⟨⟩ is True.

• The following rewrite rules convert a formula to CNF.

(DoubleNeg) [. . . ,¬¬A, . . . ] =⇒ [. . . ,A, . . . ],
(Or) [. . . ,A ∨ B, . . . ] =⇒ [. . . ,A,B, . . . ],
(Implies) [. . . ,A → B, . . . ] =⇒ [. . . ,¬A,B, . . . ],
(NotAnd) [. . . ,¬(A ∧ B), . . . ] =⇒ [. . . ,¬A,¬B, . . . ],
(And) [. . . ,A ∧ B, . . . ] =⇒ ⟨[. . . ,A, . . . ]; [. . . ,B, . . . ]⟩,
(NotOr) [. . . ,¬(A ∨ B), . . . ] =⇒ ⟨[. . . ,¬A, . . . ]; [. . . ,¬B, . . . ]⟩,
(NotImpl) [. . . ,¬(A → B), . . . ] =⇒ ⟨[. . . ,A, . . . ]; [. . . ,¬B, . . . ]⟩.



Resolution (Gentzen 1934, Alan Robinson 1968)

(Resolution) on pivot A: ⟨[B,A]; [¬A,C]⟩ =⇒ [B,C] resolvent.
(UnitRes/One-Literal) If [ℓ] in clause set Th, delete clauses of
Th containing ℓ (including unit clause) and occurrences in Th of
complement ℓ. (No choice for satisfying assignment!)

1 [¬(((p ∧ q) ∨ (r → s)) → ((p ∨ (r → s)) ∧ (q ∨ (r → s))))]
2a [p ∧ q, r → s]
2b [¬((p ∨ (r → s)) ∧ (q ∨ (r → s)))] 1,NotImpl + Or

3 [p, r → s] [q, r → s] 2a,And
4 [¬(p ∨ (r → s)),¬(q ∨ (r → s))] 2b,NotAnd

5a [¬p,¬(q ∨ (r → s))]
5b [¬(r → s),¬(q ∨ (r → s))] 4,NotOr

6 [¬p,¬q] [¬p,¬(r → s))] 5a,NotOr
7 [¬(r → s),¬q] [¬(r → s)] 5b,NotOr
8 [p,¬q] 3a,7a,Res r → s
9 [¬q] 6a,8,Res p

10 [r → s] 3b,9,UnitRes q
11 [] 7b,10,Res r → s



Resolution is refutation-complete (Robinson 1968)

SAT ALGORITHM (Martin Davis, Hilary Putnam 1960)
Preliminary steps: Put in block form, remove repetitions from
clauses, order literals, delete clauses containing literal and its
complement. Apart from (UnitRes) and (Resolution), also:
(Affirmative-negative) If some literal ℓ occurs only positively/
only negatively in clause set Th, delete clauses in Th with ℓ.

Theorem (Completeness)
If a CNF formula B is unsatisfiable, there is a refutation for B.
Proof by induction on number of variables in B.

• Base, no variables: must be [].
• Fix ℓ in B. If (AN),(UR) are not applicable, for all clauses

[C, ℓ]; [D, ℓ], take the resolvent. Drop tautologies [C, ℓ, ℓ].
Then the variable in ℓ does not occur in the result.

Either end with ⟨[]⟩ = false (a refutation), or with ⟨⟩ = true, a
contradiction as each rule preserved satisfiability.
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