Maximality and completeness

Heinz-Dieter Ebbinghaus, Jörg Flum, Wolfgang Thomas, Mathematical logic, Sections V.1,V.2,V.4,XI.5

Kamal Lodaya

Bharat Gyan Vigyan Samiti Karnataka, IISc

January 2025

1 Story so far

2 Maximality

- 3 Building a theory of state
- 4 Resolution

Rules (Gerhard Gentzen 1934)

Two structural rules and five connective rules.

- Antecedent rule (Ant):
 Premiss: 1 Γ₁ A. Side condition: Γ₁ ⊂ Γ₂.
 Conclusion: Γ₂ A.
- Assumption rule (Ass):
 Side condition A ∈ Γ. Conclusion: Γ A.
- Disjunction rule for antecedent (Or-A):
 Two premisses: 1 Γ A C; 2 Γ B C. Concl: Γ (A ∨ B) C.
- Disjunction rules for succedent (Or-S):
 Premiss: 1 Γ A. Two conclusions: Γ (A ∨ B); Γ (B ∨ A).
- Proof by cases (PC):
 Two premisses: 1 Γ A B; 2 Γ ¬A B. Conclusion: Γ B.
- Proof by contradiction (Ctr):
 Two premisses: 1 Γ ¬A B; 2 Γ ¬A ¬B. Conclusion: Γ A.

Derivations, derivability (Gerhard Gentzen 1934)

A derivability $Th \vdash_G A$ of calculus G has antecedent theory and succedent formula. A derivation is a finite sequence of steps, EFT IV.1 restricts antecedents to finite lists Γ . A step has a sequent Γ B, following from \geq 0 previous sequents by applying a rule of G.

Theorem (Soundness) If $Th \vdash_G A$, then $Th \models A$.

If for some B, $Th \vdash_G B$ as well as $Th \vdash_G \neg B$, then Th is called inconsistent ($Inc_G Th$). Otherwise consistent ($Con_G Th$).

Lemma (Consistency (EFT, Section IV.7))

```
(Explosion) Inc Th iff (if and only if) for every A, Th \vdash A.

(Closure) Th \vdash A iff Inc (Th \cup \{\neg A\}).

(Extension) If Con Th then Con (Th \cup \{A\}) or Con (Th \cup \{\neg A\}).
```

State (Adolf Lindenbaum 1927, Marshall Stone 1934)

Definition

Theory H is maximal consistent if for every A, Con $(H \cup \{A\})$ iff $A \in H$.

Lemma (Maximality)

For maximal consistent theory H:

- **1** Either $A \in H$ or $\neg A \in H$. By (Extension), either $H \cup \{A\}$ or $H \cup \{\neg A\}$ is consistent.
- 2 If $H \vdash A$, then $A \in H$. By (Closure), Inc $(H \cup \{\neg A\})$. By (1), $A \in H$.
- 3 $A \lor B$ in H iff A in H or B in HRight to left by Or-S. Left to right: if $A \lor B$, $\neg A \in H$ then $B \in H$ by (DS).
- 4 If $A \rightarrow B$, $A \in H$, then B in H (MP)

Lindenbaum construction (EFT, Theorem V.2.2)

Lemma (Adolf Lindenbaum 1927, Alfred Tarski 1935)

Let Pr be countable. Every consistent theory Th can be extended to a maximal consistent theory H.

Proof.

Enumerate all *Pr*-formulas A_1, A_2, \ldots Start with $H_0 = Th$.

$$H_i = \left\{ \begin{array}{l} H_{i-1} \cup \{A_i\}, \text{ if } Con\left(H_{i-1} \cup \{A_i\}\right) \\ H_{i-1}, \text{ otherwise} \end{array} \right.$$
 Note that every H_i is consistent by construction.

Claim: $H = \bigcup_{i \in \mathbb{N}} H_i$ is maximal consistent.

If H were inconsistent with $H \vdash B, H \vdash \neg B$, from finite $\Gamma_1, \Gamma_2 \subset H$ and derivations of sequents Γ_1 B and $\Gamma_2 \neg B$, then all formulas of $\Gamma_1 \cup \Gamma_2$ appear by some stage N of the enumeration and get added to H_{N+1} which would make it inconsistent.

If H were not maximal, say $H \cup \{A\}$ was consistent and $A = A_i$ was left out of H_i , for some stage i. Then by the construction, $H_{i-1} \cup \{A_i\}$ was inconsistent, a contradiction.

Way to completeness (Kurt Gödel 1930)

Converse to Soundness theorem is the Completeness/Adequacy theorem: if $Th \models A$, then $Th \vdash A$.

We prove the contrapositive. Suppose not $Th \vdash A$. For contrapositive we have to show not $Th \models A$.

By Consistency Lemma (Closure), $Th \cup \{\neg A\}$ is consistent.

By Duality Exercise, sufficient to show that $Th \cup \{\neg A\}$ is satisfiable.

That is, it is sufficient to show:

Theorem (Model construction)

For all theories Th, if Con Th then Sat Th.

A similar argument shows the Soundness Theorem implies:

If *Sat Th* then *Con Th*. Thus *Con Th* iff *Sat Th* is the proof-theoretic counterpart of satisfiability. Algorithm to check consistency.

Truth lemma (Leon Henkin 1949)

Using Lindenbaum Lemma, model construction reduces to:

Lemma (Truth, EFT, Thm V.1.10)

Maximal consistent theories H are satisfiable.

Proof.

Define model $s: p[s] \stackrel{\text{def}}{=} T$ iff $p \in H$. By induction on formulas we prove $s \models A$ iff $A \in H$ (truth iff membership).

Base (propositional variables): by definition of *s*.

For induction step, assume smaller formulas satisfy hypothesis.

- $s \models \neg A$ iff not $(s \models A)$ iff $A \notin H$ (induction hypothesis) iff $\neg A \in H$ (Maximality 1).
- $s \models (A \lor B)$ iff $s \models A$ or $s \models B$ iff $A \in H$ or $B \in H$ (induction hypothesis) iff $(A \lor B) \in H$ (Maximality 3).

- Thus Model Construction Theorem proved using Duality Exercise, Lindenbaum Lemma, Truth Lemma.
- The lemmas used the combination of consistency and maximality to build a state (an assignment).

Consider consistent theory *Th*:

$$\{(\neg(p \land \neg q)) \lor ((\neg p) \land r), \neg \neg q, r \land q, \neg t\}.$$

Can extend it to a downwards consistent theory H_1 :

$$\{(\neg(p \land \neg q)) \lor ((\neg p) \land r), \neg(p \land \neg q), \neg p, \neg \neg q, q, r \land q, r, \neg t\}.$$

Satisfying model s for H_1 from one maximal consistent set:

$$p[s] = F, q[s] = T, r[s] = T, t[s] = F.$$

Can extend it to another downwards consistent theory H_2 :

$$\{(\neg(p \land \neg q)) \lor ((\neg p) \land r), ((\neg p) \land r), \neg p, r, r \land q, q, \neg t\}.$$

Satisfying model s for H_2 is the same:

$$p[s] = F, q[s] = T, r[s] = T, t[s] = F.$$

CNF expansion rules for satisfiability

Definition

- A literal ℓ is an atomic formula (positive) or its negation. Its complement is $\overline{\ell} : \overline{p} = \neg p, \ \overline{\neg p} = p$.
- A clause is a disjunction $K = [\ell_1, ..., \ell_n]$ where every ℓ_i is a literal. Empty clause [] is False.
- A PL formula in conjunctive normal form (CNF) is a clause set $Th = \langle K_1; ...; K_m \rangle$ (sometimes we write $K_1 ... K_m$) where each K_i is a clause. Empty clause set $\langle \rangle$ is True.
- The following rewrite rules convert a formula to CNF.

```
 \begin{array}{lll} (\mathsf{DoubleNeg}) \ [\dots, \neg \neg A, \dots] & \Longrightarrow \ [\dots, A, \dots], \\ (\mathsf{Or}) \ [\dots, A \lor B, \dots] & \Longrightarrow \ [\dots, A, B, \dots], \\ (\mathsf{Implies}) \ [\dots, A \to B, \dots] & \Longrightarrow \ [\dots, \neg A, B, \dots], \\ (\mathsf{NotAnd}) \ [\dots, \neg (A \land B), \dots] & \Longrightarrow \ [\dots, \neg A, \neg B, \dots], \\ (\mathsf{And}) \ [\dots, A \land B, \dots] & \Longrightarrow \ \langle [\dots, A, \dots]; [\dots, B, \dots] \rangle, \\ (\mathsf{NotOr}) \ [\dots, \neg (A \lor B), \dots] & \Longrightarrow \ \langle [\dots, \neg A, \dots]; [\dots, \neg B, \dots] \rangle, \\ (\mathsf{NotImpl}) \ [\dots, \neg (A \to B), \dots] & \Longrightarrow \ \langle [\dots, A, \dots]; [\square, \neg B, \dots] \rangle, \\ \end{array}
```

Resolution (Gentzen 1934, Alan Robinson 1968)

(Resolution) on pivot A: $\langle [B,A]; [\neg A,C] \rangle \Longrightarrow [B,C]$ resolvent. (UnitRes/One-Literal) If $[\ell]$ in clause set Th, delete clauses of Th containing ℓ (including unit clause) and occurrences in Th of complement $\overline{\ell}$. (No choice for satisfying assignment!)

```
1 [\neg(((p \land q) \lor (r \rightarrow s)) \rightarrow ((p \lor (r \rightarrow s)) \land (q \lor (r \rightarrow s))))]
2a [p \land q, r \rightarrow s]
2b [\neg((p \lor (r \to s)) \land (q \lor (r \to s)))] 1, NotImpl + Or
  3 [p, r \rightarrow s] [q, r \rightarrow s]
                                                              2a, And
 4 [\neg(p \lor (r \to s)), \neg(q \lor (r \to s))]
                                                              2b. NotAnd
5a [\neg p, \neg (q \lor (r \rightarrow s))]
5b [\neg(r \rightarrow s), \neg(q \lor (r \rightarrow s))]
                                                              4, NotOr
 6 [\neg p, \neg q] [\neg p, \neg (r \rightarrow s))]
                                                              5a, NotOr
  7 [\neg(r \rightarrow s), \neg q] [\neg(r \rightarrow s)]
                                                              5b, NotOr
                                                              3a, 7a, Res r \rightarrow s
  8 [p, \neg q]
  9 [\neg q]
                                                              6a, 8, Res p
10 [r \rightarrow s]
                                                              3b, 9, UnitRes q
                                                              7b, 10, Res_r \rightarrow s_r
11
```

Resolution is refutation-complete (Robinson 1968)

SAT ALGORITHM (Martin Davis, Hilary Putnam 1960)

Preliminary steps: Put in block form, remove repetitions from clauses, order literals, delete clauses containing literal and its complement. Apart from (UnitRes) and (Resolution), also:

(Affirmative-negative) If some literal ℓ occurs only positively/ only negatively in clause set Th, delete clauses in Th with ℓ .

Theorem (Completeness)

If a CNF formula B is unsatisfiable, there is a refutation for B. Proof by induction on number of variables in B.

- Base, no variables: must be [].
- Fix ℓ in B. If (AN),(UR) are not applicable, for all clauses $[C,\ell]$; $[D,\overline{\ell}]$, take the resolvent. Drop tautologies $[C,\ell,\overline{\ell}]$. Then the variable in ℓ does not occur in the result.

Either end with $\langle [] \rangle = \textit{false}$ (a refutation), or with $\langle \rangle = \textit{true}$, a contradiction as each rule preserved satisfiability.

