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Logic of Equality and Uninterpreted Functions (EUF) (KS
Ch 4)

Boolean combinations of equality predicates (or quantifier-free
fragment of FO({}, {f , g , . . . , h}, {c , d , . . . , e})).

EUF syntax

(Formula) ϕ ::= Atom | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ
(Atom) Atom ::= Term = Term
(Term) Term ::= Var | Const | F (Term)

Example formula ϕ1

(x1 = x2) ∧ (x2 = x3) ∧ (F (x1) 6= F (x3)).

Example formula ϕ2

F (x) = F (G (y)) ∨ x = y
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Questions we want to answer

Given an EUF formula ϕ:

Satisfiability: Does there exist M = (D, I ,A), D = Z (or any
infinite domain), such that M � ϕ.

Validity: Does M � ϕ, for every M = (D, I ,A) and D = Z (or
any infinite domain).

Exercise:

Give examples of satisfiable, unsatisfiable, valid EUF formulas.

What is the relation between satisfiabililty and validity?
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Importance of EUF logic

Many practical applications. Arguing correctness of:

Assertions in programs

Program transformation, compilation

Pipelining in a hardware circuit.
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Checking Assertions in Programs

main() {

int x, y = 1;

while (x != 0) {

x = foo(x);

y = foo(y);

}

}

// assert y == 0

int foo (int) {

// complex function

...

}

Potential loop invariant: x = y

Using Floyd-Hoare Logic, the assertion is true if
following Verification Conditions are valid
(∀x∀y∀x ′∀y ′(...) is implicit):

C1: (x = 1 ∧ y = 1) → x = y
C2: (x = y ∧ x 6= 0 ∧ x ′ = foo(x) ∧ y ′ = foo(y)) → x ′ = y ′

C3: (x = y ∧ ¬(x 6= 0)) → y = 0.

Question can be answered by viewing as validity of an

EUF formula.
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Program Transformation

Example: Are these programs equivalent?

S1: z := (x1 + y1) * (x2 + y2); T1: u1 := (x1 + y1);

T2: u2 := (x2 + y2);

T3: z := u1 * u2;

We want to check whether (forall x1, x2, y1, y2, z1, z2, u1, u2)

(z1 = (x1 + y1) ∗ (x2 + y2) ∧
u1 = x1 + y1 ∧ u2 = x2 + y2 ∧ z2 = u1 ∗ u2)
→ z1 = z2.

Since reasoning about 32 bit ints and addition and multiplication is
difficult, we could instead check whether the EUF formula:

(z1 = G (F (x1, y1),F (x2, y2)) ∧
u1 = F (x1, y1) ∧ u2 = F (x2 + y2) ∧ z2 = G (u1, u2))
→ z1 = z2.

is valid. Gives a sufficient proof technique.
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How do we decide satisfiability of EUF formulas?

Strategies we will look at:

EUF (with consts)

EUF

DNF

SAT/UNSAT

Shostak

E

PL

SAT/UNSAT

Bryant (Equality Graph)

Ackermann / Bryant’s reductions

(Solving EUF Conjuncts)

DPLL
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Getting rid of constants (KS Sec 4.1.3)

Consider EUF formulas intrepreted in given domain like R or Z,
with interpreted constants like 1.2 or 3.

Given ϕ in EUF with intepreted consts, replace each constant k in
ϕ by a new variable ck and add conjuncts saying that ck 6= ck ′ for
each pair of distinct constants k, k ′.

Example: Replace ϕ:

(y = z ∧ z 6= 1) ∨ ((x 6= z) ∧ x = 2)

by equisatisfiable ϕ′:

[(y = z ∧ z 6= c1) ∨ ((x 6= z) ∧ x = c2)] ∧ (c1 6= c2).

Claim: ϕ is satisfiable iff ϕ′ is.
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A Brute-Force Algorithm

Given EUF formula ϕ:

1 Let V be the variables in ϕ, and let k be the number of
distinct subterms in ϕ.

2 Let U = {1, . . . , k}
3 For each possible model M with domain U, check if M � ϕ.

4 If some M satisfies ϕ, output SAT; else output UNSAT.
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Example

Example

(x1 = x2 ∨ x2 = x3) ∧ (F (x1) 6= F (x2) ∨ F (x2) 6= F (x3))
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M

∧

F (x1) 6= F (x2)

∨ ∨

x1 = x2 x2 = x3 F (x2) 6= F (x3)

Claim: If M satisfies ϕ, then we can construct M ′ such that
M ′ � ϕ, and M ′ has domain U.
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Example

Example
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Congruence Closure Algorithm (Shostak 1978) (KS
Sec 4.3)

Given EUF formula ϕ as conjunction of literals:

1 Consider all subterms t of ϕ.

2 If (t1 = t2) is a predicate in ϕ, put t1, t2 in the same
equivalence class. All other terms in their own singleton
equivalence classes.

3 If two classes share a term, merge them.

4 Apply congruence closure: If t1 and t2 are in the same
equivalence class, then merge the equivalence classes of F (t1)
and F (t2).

5 If there is a disequality t1 6= t2 in ϕ, with t1 and t2 in the
same equivalence class, return UNSAT. Else return SAT.
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Congruence Closure Example I

Example I

Is the following formula satisfiable?

(x1 = x2) ∧ (x2 = x3) ∧ (x4 = x5) ∧ (x5 6= x1) ∧ (F (x1) 6= F (x3)).

Applying congruence closure algorithm:

1 Initial classes: {x1, x2} {x2, x3} {x4, x5} {F (x1)} {F (x3)}.
2 Merge classes with shared terms:
{x1, x2, x3} {x4, x5} {F (x1)} {F (x3)}.

3 Apply congruence closure:
{x1, x2, x3} {x4, x5} {F (x1),F (x3)}.

4 Check for disequalities within a class: Yes, so return UNSAT.
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Congruence Closure Example II

Example II

Is the following formula satisfiable?

(x1 = x2)∧ (x2 = x3)∧ (x4 = x5)∧ (x5 6= x1)∧ (F (F (x2)) 6= F (x4)).

Applying congruence closure algorithm:

1 Initial classes:
{x1, x2} {x2, x3} {x4, x5} {F (x2)} {F (F (x2))} {F (x4)}.

2 Merge classes with shared terms:
{x1, x2, x3} {x4, x5} {F (x2)} {F (F (x2))} {F (x4)}.

3 Apply congruence closure:
{x1, x2, x3} {x4, x5} {F (x2)} {F (F (x2))} {F (x4)}.

4 Check for disequalities within a class: No, so return SAT.
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Exercise

Exercise

Apply Shostak’s congruence closure algorithm to check
satisfiability of the following EUF formula:

x = f (f (f (f (f (x))))) ∧ x = f (f (f (x))) ∧ x 6= f (x)



Motivation Solving EUF Congruence Closure Ackermann’s Reduction Equality graphs Bryant’s Approach Simplication using Equality Graphs

Congruence Closure Correctness

Correctness?

Argue by induction on number of applications of Step 3, that
in any satisfying model M, all terms in one equiv class must
be mapped to the same element of domain: that is
M(t) = M(t ′) for each t, t ′ in an equiv class. Hence if we
return UNSAT we are correct.

Conversely, define a model M comprising equivalence classes:

M = (D, I ,A) where D is set of equiv classes {e1, e2, . . . , ek},
I : f (e) 7→ e′ if there is a term t in e with f (t) in e′. If no such
term, f (e) 7→ e. Argue that this interpretation is well-defined.

Argue that M(t) coincides with the class of t. Hence M � ϕ.

Running time of Shostak’s algo is O(n log n) using a union-find
data-structure. Brute-force algo is O(nn) time. Note that number
of subterms in ϕ is at most |ϕ|.
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Ackermann’s Reduction (KS Sec 11.2.1)

Given EUF formula ϕ output E formula:

ϕflat ∧ FCϕ,

where ϕflat replaces function application terms like F (G (x)) by
new variable fgx etc, and FC encodes functional consistency:

(x = y → fx =⇒ fy) ∧ (fx = gfy → ffx = fgfy) ∧ · · ·

Claim: ϕ is sat iff ϕflat ∧ FCϕ is sat.
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Example

Ackermann’s reduction

(x1 6= x2) ∨ (F (x1) = F (x2)) ∨ (F (x1) 6= F (x3))

Equality logic formula ϕE is:

[(x1 6= x2) ∨ (fx1 = fx2) ∨ (fx1 6= fx3)] (ϕflat)
∧ (x1 = x2 → fx1 = fx2) (FCϕ)
∧ (x2 = x3 → fx2 = fx3)
∧ (x1 = x3 → fx1 = fx3).



Motivation Solving EUF Congruence Closure Ackermann’s Reduction Equality graphs Bryant’s Approach Simplication using Equality Graphs

Exercise

Exercise

Give Ackermann’s reduction for this formula

(x1 = x2) ∧ F (F (G (x1))) 6= F (F (G (x2))).
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Equality graph induced by an E formula (KS Sec 11.3)

Let ϕ be a E formula. Then the equality graph Gϕ induced by ϕ is
an undirected graph with nodes as variables and “- - -”edge (xi , xj)
iff the literal xi = xj occurs in ϕ, and “—”edge (xi , xj) iff the
literal xi 6= xj occurs in ϕ.

x3

x2 x5

x4x1

Contradictory cycles (cycle with exactly one disequality edge).

Is an abstraction of the original formula.

Can be used to simplify an E formula.
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Contradictory Cycles

A conjunction ϕ of equality constraints is satisfiable iff the equality
graph Gϕ induced by ϕ has no contradictory cycles.

x

z w

yx

z w

y

Proof (Exercise).
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Solving E-formulas: DNF approach

Example ϕ

x = y ∧ [(y = z ∧ ¬(x = z)) ∨ (y = z ∧ ¬(x = w))].

e(ϕ): exy ∧ [(eyz ∧ ¬exz) ∨ (eyz ∧ ¬exw )].

Convert e(ϕ) to DNF and check each disjunct using equality graph.
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Solving E-formulas: DPLL(T) approach (KS Sec 3.4)

Example ϕ

x = y ∧ [(y = z ∧ ¬(x = z)) ∨ (y = z ∧ ¬(x = w))].

e(ϕ): exy ∧ [(eyz ∧ ¬exz) ∨ (eyz ∧ ¬exw )].

Check satisfiabilty of e(ϕ) using DPLL:
1 If e(ϕ) is SAT, check if satisfying assignment is T -valid;

If T -valid, then return SAT;
If not T -valid, add negation of the assignment as conflicting
clause to e(ϕ), and go back Step 1.

2 If UNSAT, report UNSAT.
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Bryant’s Graph-Based reduction of E to PL (KS Sec 11.5)

Given E formula ϕ output PL formula:

e(ϕ) ∧ Btrans ,

where e(ϕ) replaces each literal xi = xj by a propositional symbol
pij , and Btrans encodes transitivity constraints based on the
non-polar graph induced by ϕ.

Claim: ϕ is equisatisfiable with e(ϕ) ∧ Btrans .
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Bryant’s Graph-Based reduction of E to PL (KS Sec 11.5)

Given E formula ϕ output PL formula:

e(ϕ) ∧ Btrans ,

where e(ϕ) replaces each literal xi = xj by a propositional symbol
pij , and Btrans encodes transitivity constraints based on the
non-polar graph induced by ϕ.
Claim: ϕ is equisatisfiable with e(ϕ) ∧ Btrans .
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Bryant’s Graph-Based reduction: Example

Example ϕ

x = y ∧ [(y = w ∧ w = z ∧ ¬(x = z)) ∨ (y = w ∧ ¬(w = z))].

e(ϕ): exy ∧ [(ewy ∧ ewz ∧ ¬exz) ∨ (ewy ∧ ¬ewz)].

G NP
ϕ :

x

z w

y

Btrans :

(exy ∧ ewy ∧ ewz) =⇒ exz ∧
(ewy ∧ ewz ∧ exz) =⇒ exy ∧
(ewz ∧ exz ∧ exy ) =⇒ ewy ∧
(exz ∧ exy ∧ ewy ) =⇒ ewz
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Bryant’s Graph-Based reduction: Using chordal graph

Make G NP
ϕ chordal (every simple cycle of ≥ 4 vertices has a chord).

x

z w

y

Sufficient to check no contradictary triangles [Bryant-Velev CAV
2000):

Btrans :

(exy ∧ eyz) =⇒ exz ∧
(eyz ∧ exz) =⇒ exy ∧
(exz ∧ exy ) =⇒ eyz ∧
(ewy ∧ ewz) =⇒ eyz ∧
(ewz ∧ eyz) =⇒ ewy ∧
(eyz ∧ ewy ) =⇒ ewz .
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Using equality graph to simplify E formulas

Given E formula ϕ:

1 Construct equality graph Gϕ for ϕ.

2 If a literal does not occur as part of a contradictory cycle in
Gϕ, set it to true. Obtain ϕ′ in this way.

3 Simplify ϕ′ and go back to Step 2.

4 Ouput ϕ′ as equisatisfiable to ϕ.
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Equality graph: example

Example

(u1 6= f1 ∨ y1 6= y2 ∨ f1 = f2) ∧
(x1 6= x2 ∨ u2 6= f2 ∨ g1 = g2) ∧
(u1 = f1 ∧ u2 = f2 ∧ z = g1 ∧ z 6= g2).

x1 x2 y1 y2

f1 f2 u2 g1 g2

z

u1

(u1 6= f1 ∨ true ∨ true) ∧
(true ∨ u2 6= f2 ∨ g1 = g2) ∧
(u1 = f1 ∧ u2 = f2 ∧ z = g1 ∧ z 6= g2).

Simplifies to:

u1 = f1 ∧ u2 = f2 ∧ z = g1 ∧ z 6= g2.
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Equality graph: example contd.

u1 = f1 ∧ u2 = f2 ∧ z = g1 ∧ z 6= g2.

f1 f2 u2 g1 g2

z

u1

true ∧ true ∧ true ∧ true.

Simplifies to:
true.
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