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Soundness of Sequent Calculus

Theorem (Soundness for sequents)

If ` Γϕ then Γ � ϕ.

Theorem (Soundness for derivations)

If X ` ϕ then X � ϕ.
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Completeness of Sequent Calculus

Theorem (Completeness for sequents)

If Γ � ϕ then ` Γϕ.

Theorem (Completeness for derivations)

If X � ϕ then X ` ϕ.

Completeness (of a Bernays-Hilbert style proof system) was shown
by Gödel in 1928. The proof we do is due to Henkin (1949).
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Consistency

Fix an FO-signature S .

Definition (Consistency)

We say a set of S-formulas is consistent if it is not the case that
X ` ψ and X ` ¬ψ, for some S-formula ψ.

Examples:

{r(x), r(y)} is consistent (why?)

{r(x),¬r(x)} is inconsistent (why?)

Observation: Every satisfiable set of formulas must be consistent.
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Some Surprising Facts about Consistency

Lemma (Consistency)

1 X is inconsistent iff for all ϕ, X ` ϕ.

2 X is consistent iff there is some ϕ, such that X 6` ϕ.

3 X is consistent iff all finite subsets of X are consistent.

For all formulas ϕ:

4 X ` ϕ iff X ∪ {¬ϕ} is inconsistent.

5 X ` ¬ϕ iff X ∪ {ϕ} is inconsistent.

6 If X is consistent, either X ∪ {ϕ} is consistent or X ∪ {¬ϕ} is
consistent.
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Completeness of Sequent Calculus

Theorem (Completeness for derivations)

If X � ϕ then X ` ϕ.

Sufficient to show:

Theorem

If a set of formulas T is consistent, then it is satisfiable.

(Because X 6` ϕ
implies X ∪ {¬ϕ} is consistent (by Consistency Lemma (4))
implies X ∪ {¬ϕ} is satisfiable
implies X 6� ϕ.)
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Key Idea of Proof

For a consistent set X , construct a term model, in which X is
satisfied.

Basic plan:

Show how to construct a term model MX based on X .

(Henkin’s Theorem) If X is negation complete and contains
witnesses, then

MX � ϕ iff X ` ϕ.

Show that for consistent X with finitely many free vars, we
can extend X to X ′ which is negation-complete and contains
witnesses.

Now follows that X ′ (and hence X ) is satisfiable.

Reduce case of X with infinitely many free vars to finite case
by using new constants.
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Term Model

Let X be a consistent set of S-formulas. First attempt:

Definition

Define MX = (D, I ,A) where

D = T S is the set of all S-terms

I is given by:

I (c) = c
I (f ) is given by: I (f )(t) = f (t)
I (r) = {(t1, . . . , tn) | X ` r(t1, . . . , tn)}.

A(x) = x .
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Term Model

Example term model for S = (f (1)):

x y z · · ·

D = T S

f (x) f (y) f (z)

f (f (x)) f (f (y)) f (f (z))

· · ·

· · ·

· · ·

f

Issue with this: Can never satisfy f (x) = f (y) when x and y are
distinct variables.

Solution: Use equivalence classes of terms as domain elements.
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Term Model: Better Attempt

Let X be a consistent set of S-formulas. Define equivalence ∼X

(or simply ∼) on S-terms:

Definition (Equiv on terms)

t ∼X t ′ iff X ` t = t ′.

Define [t]∼ (or simply [t]) to be equivalence class of a term t
under ∼.

Definition (Term Model)

Define MX = (D, I ,A) where

D is equiv classes of ∼, i.e. D = {[t] | t ∈ T S}
I is given by:

I (c) = [c]
I (f ) is given by: I (f )([t1], . . . , [tn]) = [f (t1, . . . , tn)]
I (r) = {([t1], . . . , [tn]) | X ` r(t1, . . . , tn)}.

A(x) = [x ].
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Example Term Model

Example term model for S = (f (1)), X = {x = y}:

x y z · · ·

D = T S

f (y) f (z)

f (f (x)) f (f (y)) f (f (z))

· · ·

· · ·

f (x)

f

· · ·
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Issues still to fix

Exercise

Consider S = (r (1)). Describe MX and tell whether it satisfies the
formulas in X :

X = {r(x) ∨ r(y)}
X = {∃x r(x)}.

These sets of formulas are not satisfied in their term models.
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Negation Complete and Witnessing

Definition (Negation Complete)

A set of formulas X is negation complete if for each formula ϕ, we
have X ` ϕ or X ` ¬ϕ.

Definition (Witnessing)

A set of formulas X is said to contain witnesses if for each formula
∃xϕ, there is a term t such that X ` (∃xϕ→ ϕ[ tx ])
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Henkin’s Theorem

Theorem (Henkin)

Let X be a consistent, negation complete and witnessing set of
formulas. Then

MX � ϕ iff X ` ϕ.
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Proof of Henkin’s Theorem

By induction on structure of ϕ:

For ϕ = t = t ′

For ϕ = r(t1, . . . , tn)

For ϕ = ¬ψ
For ϕ = ψ ∨ χ
For ϕ = ∃xψ.
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Extending consistent sets to negation complete and witnessing

Claim: Negation Complete

Every consistent set of formulas X can be extended to a consistent
negation complete set of formulas X ′.

Claim: Witnessing

Every consistent set of formulas X with a finite number of free
vars can be extended to a consistent witnessing set of formulas X ′.

Hence, as a corollary of Henkin’s theorem:

Theorem (Consistent Satisfiability for finitely many free vars)

Every consistent set X with finitely many free vars, is satisfiable (in
the term model MX ′

for the consistent, negation complete and
witnessing extension X ′ of X ).
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Proof of Negation Complete Claim

Claim: Negation Complete

Every consistent set of formulas X can be extended to a consistent
negation complete set of formulas X ′.

Proof: Consider enumeration of all S-formulas ϕ0, ϕ1, . . ., and
define Y0 = X and

Yn+1 =

{
Yn ∪ {ϕn} if Yn ∪ {ϕn} is consistent
Yn otherwise

with Y =
⋃

i≥0 Yi .
Argue that Y is consistent.
Y is negation complete: Consider ϕ = ϕn, and suppose Y 6` ¬ϕ.
Then Yn ∪ {ϕ} must be consistent (by Consistency Lemma).
Hence Yn+1 = Yn ∪ {ϕn}. Hence ϕ ∈ Y and Y ` ϕ.
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Proof of Witnessing Claim

Claim: Witnessing

Every consistent set of formulas X with a finite number of free
vars can be extended to a consistent witnessing set of formulas X ′.

Proof: Let
∃x0ϕ0, ∃x1ϕ1, . . .

be an enumeration of all formulas beginning with ∃. For each
∃xnϕn define witnessing formula

ψn = ∃xnϕn → ϕn[
yn
xn

]

where yn is smallest index var which does not occur free in X ,
∃x0ϕ0, . . . ,∃xnϕn. Define Yn = X ∪ {ψo , . . . , ψn−1}. Argue that
X ′ =

⋃
n≥0 Yn is consistent by showing that each Yn is consistent.

(X ′ is clearly witnessing).
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Each Yn is Consistent

If not, let Yn+1 be the first inconsistent Yi . Consider an arbitrary
formula ϕ. Then Yn+1 ` ϕ, and hence for some Γ ⊆ Yn:

...
7. Γ (¬∃xnϕn ∨ ϕn[ ynxn ]) ϕ

8. Γ ¬∃xnϕn ϕ (derived Or-rule on 7)
9. Γ ϕn[ ynxn ] ϕ (derived Or-rule on 7)

10. Γ ∃xnϕn ϕ (by ∃-Ant on 9, yn not free in Γ, ∃xnϕn, ϕ)
11. Γ ϕ (by (PC) on 8,10)

Hence Γ (and hence Yn) must be inconsistent, which is a
contradiction.

My derived Or rule:

Γ (ψ ∨ χ) ϕ

Γ ψ ϕ

Γ (ψ ∨ χ) ϕ

Γ χ ϕ
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Case of infinitely many free vars

Consider consistent X (with possibly infinitely many free vars)

Consider a new signature S ′ = S ∪ {c0, c1, . . .}, where ci ’s are
new constants.

For each S-formula ϕ define S ′-formula ϕ′ obtained from ϕ by
substituting cn for each free xn in ϕ.

Let X ′ = {ϕ′ | ϕ ∈ X}.
Argue that X ′ is consistent

By Henkin’s theorem for finite free vars case, X ′ (which
contains no free vars) is satisfiable, say in a model
M = (D, I ,A).

Argue that X is satisfied in M.
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Consistent Sets are Satisfiable

Theorem (Consistent Satisfiability)

Every consistent set X is satisfiable in a term model.
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