Consistency and Completeness for First-Order Logic

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

26 February 2025

Outline of these lectures

- 1 Overview of Soundness and Completeness
- 2 Consistency
- 3 Completeness
- **4** Term Model

Theorem (Soundness for sequents)

If $\vdash \Gamma \varphi$ *then* $\Gamma \vDash \varphi$.

Theorem (Soundness for derivations)

If $X \vdash \varphi$ *then* $X \vDash \varphi$.

Completeness

Theorem (Completeness for sequents)

If $\Gamma \vDash \varphi$ *then* $\vdash \Gamma \varphi$.

Theorem (Completeness for derivations)

If $X \vDash \varphi$ then $X \vdash \varphi$.

Completeness (of a Bernays-Hilbert style proof system) was shown by Gödel in 1928. The proof we do is due to Henkin (1949).

Consistency

Fix an FO-signature S.

Definition (Consistency)

We say a set of S-formulas is consistent if it is not the case that $X \vdash \psi$ and $X \vdash \neg \psi$, for some S-formula ψ .

Examples:

- $\{r(x), r(y)\}$ is consistent (why?)
- $\{r(x), \neg r(x)\}\$ is inconsistent (why?)

Consistency

Fix an FO-signature S.

Definition (Consistency)

We say a set of S-formulas is consistent if it is not the case that $X \vdash \psi$ and $X \vdash \neg \psi$, for some S-formula ψ .

Examples:

- $\{r(x), r(y)\}$ is consistent (why?)
- $\{r(x), \neg r(x)\}\$ is inconsistent (why?)

Observation: Every satisfiable set of formulas must be consistent.

Some Surprising Facts about Consistency

Lemma (Consistency)

- **1** *X* is inconsistent iff for all φ , $X \vdash \varphi$.
- **2** X is consistent iff there is some φ , such that $X \not\vdash \varphi$.
- 3 X is consistent iff all finite subsets of X are consistent.

For all formulas φ :

- **4** $X \vdash \varphi$ iff $X \cup \{\neg \varphi\}$ is inconsistent.
- **3** $X \vdash \neg \varphi$ iff $X \cup \{\varphi\}$ is inconsistent.
- **1** If X is consistent, either $X \cup \{\varphi\}$ is consistent or $X \cup \{\neg \varphi\}$ is consistent.

Completeness

Completeness of Sequent Calculus

Theorem (Completeness for derivations)

If $X \vDash \varphi$ then $X \vdash \varphi$.

Sufficient to show:

Theorem

If a set of formulas T is consistent, then it is satisfiable.

(Because $X \not\vdash \varphi$ implies $X \cup \{\neg \varphi\}$ is consistent (by Consistency Lemma (4)) implies $X \cup \{\neg \varphi\}$ is satisfiable implies $X \not\models \varphi$.)

Key Idea of Proof

For a consistent set X, construct a term model, in which X is satisfied.

Basic plan:

- Show how to construct a term model M^X based on X.
- (Henkin's Theorem) If X is negation complete and contains witnesses, then

$$M^X \vDash \varphi \text{ iff } X \vdash \varphi.$$

- Show that for consistent X with finitely many free vars, we can extend X to X' which is negation-complete and contains witnesses.
- Now follows that X' (and hence X) is satisfiable.
- Reduce case of X with infinitely many free vars to finite case by using new constants.

Completeness

Overview of Soundness and Completeness

Let X be a consistent set of S-formulas. First attempt:

Definition

Define $M^X = (D, I, A)$ where

- $D = T^S$ is the set of all S-terms
- I is given by:
 - \bullet I(c) = c
 - I(f) is given by: I(f)(t) = f(t)
 - $I(r) = \{(t_1, \ldots, t_n) \mid X \vdash r(t_1, \ldots, t_n)\}.$
- A(x) = x.

Term Model

Example term model for $S = (f^{(1)})$:

Example term model for $S = (f^{(1)})$:

Issue with this: Can never satisfy f(x) = f(y) when x and y are distinct variables.

Solution: Use equivalence classes of terms as domain elements.

Let X be a consistent set of S-formulas. Define equivalence \sim_X (or simply \sim) on S-terms:

Definition (Equiv on terms)

$$t \sim_X t'$$
 iff $X \vdash t = t'$.

Define $[t]_{\sim}$ (or simply [t]) to be equivalence class of a term t under \sim .

Definition (Term Model)

Define $M^X = (D, I, A)$ where

- *D* is equiv classes of \sim , i.e. $D = \{[t] \mid t \in T^S\}$
- I is given by:
 - I(c) = [c]
 - I(f) is given by: $I(f)([t_1], \dots, [t_n]) = [f(t_1, \dots, t_n)]$ • $I(r) = \{([t_1], \dots, [t_n]) \mid X \vdash r(t_1, \dots, t_n)\}.$
- 4(1) [1]

Example Term Model

Example term model for $S = (f^{(1)})$, $X = \{x = y\}$:

Issues still to fix

Exercise

Consider $S = (r^{(1)})$. Describe M^X and tell whether it satisfies the formulas in X:

- $X = \{r(x) \vee r(y)\}$
- $X = \{\exists x \, r(x)\}.$

Exercise

Consider $S = (r^{(1)})$. Describe M^X and tell whether it satisfies the formulas in X:

- $X = \{ r(x) \lor r(y) \}$
- $X = \{\exists x \, r(x)\}.$

These sets of formulas are not satisfied in their term models.

Definition (Negation Complete)

A set of formulas X is negation complete if for each formula φ , we have $X \vdash \varphi$ or $X \vdash \neg \varphi$.

Definition (Witnessing)

A set of formulas X is said to contain witnesses if for each formula $\exists x \varphi$, there is a term t such that $X \vdash (\exists x \varphi \rightarrow \varphi[\frac{t}{\varphi}])$

Theorem (Henkin)

Let X be a consistent, negation complete and witnessing set of formulas. Then

$$M^X \vDash \varphi \text{ iff } X \vdash \varphi.$$

Overview of Soundness and Completeness

By induction on structure of φ :

- For $\varphi = t = t'$
- For $\varphi = r(t_1, \ldots, t_n)$
- For $\varphi = \neg \psi$
- For $\varphi = \psi \vee \chi$
- For $\varphi = \exists x \psi$.

Extending consistent sets to negation complete and witnessing

Claim: Negation Complete

Every consistent set of formulas X can be extended to a consistent negation complete set of formulas X'.

Claim: Witnessing

Overview of Soundness and Completeness

Every consistent set of formulas X with a finite number of free vars can be extended to a consistent witnessing set of formulas X'.

Hence, as a corollary of Henkin's theorem:

Theorem (Consistent Satisfiability for finitely many free vars)

Every consistent set X with finitely many free vars, is satisfiable (in the term model $M^{X'}$ for the consistent, negation complete and witnessing extension X' of X).

Claim: Negation Complete

Every consistent set of formulas X can be extended to a consistent negation complete set of formulas X'.

Proof: Consider enumeration of all S-formulas $\varphi_0, \varphi_1, \ldots$, and define $Y_0 = X$ and

$$Y_{n+1} = \left\{ egin{array}{ll} Y_n \cup \{\varphi_n\} & \mbox{if } Y_n \cup \{\varphi_n\} \mbox{ is consistent} \\ Y_n & \mbox{otherwise} \end{array}
ight.$$

with $Y = \bigcup_{i>0} Y_i$.

Argue that Y is consistent.

Y is negation complete: Consider $\varphi = \varphi_n$, and suppose $Y \not\vdash \neg \varphi$.

Then $Y_n \cup \{\varphi\}$ must be consistent (by Consistency Lemma).

Hence $Y_{n+1} = Y_n \cup \{\varphi_n\}$. Hence $\varphi \in Y$ and $Y \vdash \varphi$.

Claim: Witnessing

Every consistent set of formulas X with a finite number of free vars can be extended to a consistent witnessing set of formulas X'.

Proof: Let

$$\exists x_0 \varphi_0, \exists x_1 \varphi_1, \dots$$

be an enumeration of all formulas beginning with \exists . For each $\exists x_n \varphi_n$ define witnessing formula

$$\psi_n = \exists x_n \varphi_n \to \varphi_n \left[\frac{y_n}{x_n} \right]$$

where y_n is smallest index var which does not occur free in X, $\exists x_0 \varphi_0, \ldots, \exists x_n \varphi_n$. Define $Y_n = X \cup \{\psi_o, \ldots, \psi_{n-1}\}$. Argue that $X' = \bigcup_{n \geq 0} Y_n$ is consistent by showing that each Y_n is consistent. (X' is clearly witnessing).

Each Y_n is Consistent

If not, let Y_{n+1} be the first inconsistent Y_i . Consider an arbitrary formula φ . Then $Y_{n+1} \vdash \varphi$, and hence for some $\Gamma \subseteq Y_n$:

7.
$$\Gamma\left(\neg\exists x_n\varphi_n\vee\varphi_n\left[\frac{y_n}{x_n}\right]\right)$$
 φ

9.
$$\Gamma \varphi_n[\frac{y_n}{x_n}]$$
 φ (derived Or-rule on 7)

10.
$$\Gamma \exists x_n \varphi_n$$
 φ (by \exists -Ant on 9, y_n not free in $\Gamma, \exists x_n \varphi_n$,

11.
$$\Gamma$$
 φ (by (PC) on 8,10)

Hence Γ (and hence Y_n) must be inconsistent, which is a contradiction.

My derived Or rule:

$$\begin{array}{c|cccc} \Gamma & (\psi \lor \chi) & \varphi & & \Gamma & (\psi \lor \chi) & \varphi \\ \hline \Gamma & \psi & \varphi & & \Gamma & \chi & \varphi \end{array}$$

Consider consistent X (with possibly infinitely many free vars)

- Consider a new signature $S' = S \cup \{c_0, c_1, \ldots\}$, where c_i 's are new constants.
- For each S-formula φ define S'-formula φ' obtained from φ by substituting c_n for each free x_n in φ .
- Let $X' = \{ \varphi' \mid \varphi \in X \}$.
- Argue that X' is consistent
- By Henkin's theorem for finite free vars case, X' (which contains no free vars) is satisfiable, say in a model M = (D, I, A).
- Argue that X is satisfied in M.

Consistent Sets are Satisfiable

Theorem (Consistent Satisfiability)

Every consistent set X is satisfiable in a term model.