Theories

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

03 February 2025

Logical Definability

Outline

Logical Consequence

- 1 Logical Consequence
- 2 Free Variables
- 3 Isomorphic Structures
- **4** Theories
- **5** Logical Definability

Logical Consequence

- For a set T of S-formulas, we say an S-model M satisfies T, written " $M \models T$ ", iff $M \models \varphi$ for each $\varphi \in T$.
- For a set T of S-formulas, and an S-formula φ , we say φ is a logical consequence of T, written

$$T \vDash \varphi$$
,

iff for every S-model M, whenever $M \models T$ we have $M \models \varphi$.

Examples

- $\{\exists y \forall x (op(x, y) = e)\} \models \forall x \exists y (op(x, y) = e)$
- $\{\forall x \exists y (op(x, y) = e)\} \not\models \exists y \forall x (op(x, y) = e)$
- $\{\forall x \exists y (op(x, y) = e), \forall x (x = e)\} \models \exists y \forall x (op(x, y) = e)$

A variable occurs "free" in a formula if it is not "in the scope" of any quantifier in the formula. Var x is free in φ if there is an occurrence of x with no $\exists x$ or $\forall x$ ancestor in the formula tree of φ .

Example (free occurrences of vars are underlined)

$$\exists x (r(x,\underline{y}) \land \forall y (\neg (y=x) \lor r(y,\underline{z}))).$$

A variable can occur both free and bound (like y).

Let var(t) denote the variables that occur in a term t. The set of vars that occur free in φ can be defined inductively by:

$$\begin{array}{lll} \mathit{free}(t=t') & = & \mathit{var}(t) \cup \mathit{var}(t') \\ \mathit{free}(r(t_1,\ldots,t_n)) & = & \mathit{var}(t_1) \cup \cdots \cup \mathit{var}(t_n) \\ \mathit{free}(\neg \varphi) & = & \mathit{free}(\varphi) \\ \mathit{free}(\varphi \lor \psi) & = & \mathit{free}(\varphi) \cup \mathit{free}(\psi) \\ \mathit{free}(\exists x \varphi) & = & \mathit{free}(\varphi) - \{x\} \\ \mathit{free}(\forall x \varphi) & = & \mathit{free}(\varphi) - \{x\}. \end{array}$$

Exercise

What are the variables that occur free in

$$r(y,x) \rightarrow \forall y(\neg(y=z))$$
?

Sentences and L_n^S

Logical Consequence

Let S be an FO signature and $n \in \mathbb{N}$. Then L_n^S denotes the set of S-formulas whose free variables are among $\{v_0, \ldots, v_{n-1}\}$. That is:

$$L_n^{\mathcal{S}} = \{\varphi \in L^{\mathcal{S}} \mid \mathit{free}(\varphi) \subseteq \{\mathit{v}_0, \ldots, \mathit{v}_{n-1}\}\}.$$

A sentence is a formula without any free variables (equivalently formulas in L_0^S).

Example $(r^{(2)}, f^{(2)}, c)$ -sentence

$$\forall x \exists y (r(x,y) \land f(x,y) = c)$$

Sentences don't need the assignment component (A) of a model M = (D, I, A), to determine their truth in the model.

Coincidence Lemma

Lemma

Logical Consequence

Let φ be an S-formula, and let $M_1 = (D, I_1, A_1)$ and $M_2 = (D, I_2, A_2)$ be two S-structures with a common domain, such that M_1 and M_2 agree on all the free variables and symbols in φ . Then

$$M_1 \vDash \varphi \text{ iff } M_2 \vDash \varphi.$$

Proof: Argue that

- For all S-terms t, if M_1 and M_2 agree on symbols and vars in t, then $M_1(t) = M_2(t)$. (By induction on structure of t.)
- For all S-formulas φ , if M_1 and M_2 have the same domain and agree on symbols and free vars in φ , then $M_1 \models \varphi$ iff $M_2 \vDash \varphi$. (By induction on structure of φ .)

Isomorphic Structures

Logical Consequence

Two S-structures M=(D,I,A) and M'=(D',I',A') are said to be isomorphic if there exists a bijection $\pi:D\to D'$ such that

- $(d_1,\ldots,d_n)\in I(r)$ iff $(\pi(d_1),\ldots,\pi(d_n))\in I'(r)$.
- $\pi(I(f)(d_1,\ldots,d_n)) = I'(f)(\pi(d_1),\ldots,\pi(d_n))$
- $I'(c) = \pi(I(c)).$

In this case we write $M \cong M'$.

Natural numbers

The model $(\mathbb{N},+,0)$ is isomporphic to $(2\cdot\mathbb{N},+,0)$.

FO cannot Distinguish Isomoporphic Structures

Theorem (Isomorphic Structures)

If M and M' are S-structures such that $M \cong M'$, then

$$M \vDash \varphi \text{ iff } M' \vDash \varphi$$

for all S-sentences φ .

Logical Consequence

Proof: Let $\pi: D \to D'$ be an isomorphism. For a D-assignment A consider the D'-assignment $A' = \pi \circ A$ (first A then π). Argue that

- for all S-terms $t: \pi(((D, I), A)(t)) = ((D', I'), A')(t)$.
- for all S-formulas φ : $((D, I), A) \models \varphi$ iff $((D', I'), A') \models \varphi$.

Theories

Logical Consequence

An S-theory is a set of S-sentences T which is closed under logical consequence.

The theory of a set of S-formulas T, written "Th(T)", is the set of S-sentences that are logical consequences of T. That is:

$$Th(T) = \{ \varphi \in L_0^S \mid T \vDash \varphi \}.$$

Theory of Groups $Th(\Phi_{gr})$

Let Φ_{gr} be the set of formulas (group axioms):

$$\forall x \forall y \forall z \ (op(op(x,y),z) = op(x,op(y,z)) \tag{1}$$

$$\forall x \ (op(x,e) = x) \tag{2}$$

$$\forall x \exists y \ (op(x, y) = e) \tag{3}$$

Then $Th(\Phi_{gr})$

- Contains $\forall x \exists y (op(y, x) = e)$, but
- Does not contain $\forall x \forall y (op(x, y) = op(y, x))$.

Exercise

Logical Consequence

Exercise

Consider the axioms of equivalence relations, Φ_{eq} , over the signature $S_{eq} = (r^{(2)})$:

$$\forall x \, r(x, x)$$

$$\forall x \forall y \, (r(x, y) \to r(y, x))$$

$$\forall x \forall y \forall z \, ((r(x, y) \land r(y, z)) \to r(x, z))$$

Which of the following sentences are in $Th(\Phi_{eq})$?

- $\forall x \exists y \ r(x,y)$
- $\forall x \forall y (\exists z (r(x,z) \land r(y,z)) \rightarrow \forall w (r(x,w) \rightarrow r(y,w))).$

Theory of a Structure

Logical Consequence

The theory of an S-structure M, written "Th(M)", is the set of S-sentences that are true in M:

$$Th(M) = \{ \varphi \in L_0^S \mid M \vDash \varphi \}.$$

Theory of Arithmetic $\mathit{Th}(\mathbb{N},+,\cdot,0,1)$

- Contains $\forall x(x \cdot 0 = 0)$, but
- Does not contain $\exists y \forall x (x < y)$ (here "< (x, y)" is shorthand for $\exists z ((z \neq 0) \land (x + z = y)))$

Logical Definability (EFT Secs. III.6, VI.3-4)

Are there sets of FO-sentences that characterize

- A class of structures (like groups, equivalence relations, torsion groups, etc)
- A particular structure like $\mathcal{N} = (\mathbb{N}, +, \cdot, 0, 1)$
- Relations like "<" in reals, via an FO-formula $\varphi(x,y)$?

Elementary Definability

Logical Consequence

"Elementary" = "FO-definable"

Let S be an FO-signature.

Definition (Elementary)

A class of S-structures \mathcal{C} is called elementary if there is an S-sentence φ such that $\mathcal{C} = \{M \mid M \vDash \varphi\}$.

Definition (\triangle -Elementary)

A class of S-structures $\mathcal C$ is called Δ -elementary if there is a set of S-sentences Φ such that $\mathcal C=\{M\mid M\vDash\Phi\}.$

Definition (Elementary Equivalence)

Two S-structures M and M' are called elementarily equivalent if Th(M) = Th(M').

Some Elementarily Definable Classes of Structures

Cardinality Properties:

Logical Consequence

- Class of models with 1-element domains is elementary: $\exists x \forall y (y = x)$
- $\varphi_{\geq 2} = \exists v_0 \exists v_1 (\neg v_0 = v_1)$ says that "there are at least two elements in the domain".
- "are at least *n* elements in the domain"?
- Class of models with infinite domains is Δ -elementary: Take $\Phi_{\infty}=\{\varphi_{\geq 2},\varphi_{\geq 3},\ldots\}$
- "finitely many elements in the domain"?

Some Elementarily Definable Classes of Structures

Cardinality Properties:

Logical Consequence

- Class of models with 1-element domains is elementary: $\exists x \forall y (y = x)$
- $\varphi_{\geq 2} = \exists v_0 \exists v_1 (\neg v_0 = v_1)$ says that "there are at least two elements in the domain".
- "are at least *n* elements in the domain"?
- Class of models with infinite domains is Δ -elementary: Take $\Phi_{\infty}=\{\varphi_{\geq 2},\varphi_{\geq 3},\ldots\}$
- "finitely many elements in the domain"? Not Δ -elementary! (Proof 2 slides ahead)
- As a consequence, "infiniteness" cannot be elementary.

Exercise

Exercise

Characterize using FO sentences:

- r is an equivalence relation with at least two equivalence classes
- r is an equivalence relation with an equivalence class containing at least two elements.

Compactness

We will later show as an easy consequence of the proof of Gödel's Completeness Theorem:

Theorem (Compactness)

If a set of formulas X is unsatisfiable, then there must be a finite subset of X that is unsatisfiable.

Non- Δ -Elementariness of finiteness

Logical Consequence

Suppose the class C of all finite S-structures was Δ -elementary via a set of sentences Φ .

- Consider $\Psi = \Phi \cup \Phi_{\infty}$.
- Ψ must be unsatisfiable.
- By Compactness Theorem, a finite subset X_0 of Ψ must also be unsat.
- But we can easily construct a model for X_0 (if $\varphi_{\geq 17}$ is largest sentence from Φ_{∞} in X_0 , then a model M with a domain of 17 elements will satisfy X_0).
- ullet This is a contradiction. Hence ${\mathcal C}$ could not have been Δ -elementary.

Non Δ -elementariness of $\mathcal{N} = (\mathbb{N}, +, \cdot, 0, 1)$

The class of models that are isomorphic to $\mathcal{N}=(\mathbb{N},+,\cdot,0,1)$ is not Δ -elementary.

A non-standard model for arithmetic is a model M which not isomorphic to \mathcal{N} , but is elementarily equivalent to \mathcal{N} (i.e. $Th(\mathcal{M}) = Th(\mathcal{N})$).

Theorem (Skolem)

Logical Consequence

There is a non-standard countable model for arithmetic.

Proof: Consider the set of formulas

$$\Psi = Th(\mathcal{N}) \cup \{\neg(x=0), \neg(x=1), \neg(x=\underline{2}), \ldots\}.$$

Here "2" denotes the term (1+1), etc.

Non Δ -elementariness of $\mathcal{N} = (\mathbb{N}, +, \cdot, 0, 1)$ (Proof ctd)

- Since every finite subset of Ψ is sat (in \mathcal{N} itself) Ψ must be sat in a model M = (D, I, A).
- Follows that \mathcal{N} and M are elementarily equivalent.
- But M cannot be isomorphic to \mathcal{N} (as any isomporphism π from \mathbb{N} to D must map 2 to 2, etc; and hence A(x) would not be the image of any element under π).

Logical Definability

Non Δ -elementariness of classes of groups

- The class of finite groups is **not** Δ -elementary.
- The class of torsion groups (where every element x is such that $x^n = x \circ x \cdots \circ x = e$ for some n) is not Δ -elementary.