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Logical Consequence

For a set T of S-formulas, we say an S-model M satisfies T ,
written “M � T”, iff M � ϕ for each ϕ ∈ T .

For a set T of S-formulas, and an S-formula ϕ, we say ϕ is a
logical consequence of T , written

T � ϕ,

iff for every S-model M, whenever M � T we have M � ϕ.

Examples

{∃y∀x(op(x , y) = e)} � ∀x∃y(op(x , y) = e)

{∀x∃y(op(x , y) = e)} 6� ∃y∀x(op(x , y) = e)

{∀x∃y(op(x , y) = e), ∀x(x = e)} � ∃y∀x(op(x , y) = e)
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Free Variables in a Formula

A variable occurs “free” in a formula if it is not “in the scope” of
any quantifier in the formula. Var x is free in ϕ if there is an
occurence of x with no ∃x or ∀x ancestor in the formula tree of ϕ.

Example (free occurrences of vars are underlined)

∃x(r(x , y) ∧ ∀y(¬(y = x) ∨ r(y , z))).

A variable can occur both free and bound (like y).

Let var(t) denote the variables that occur in a term t. The set of
vars that occur free in ϕ can be defined inductively by:

free(t = t ′) = var(t) ∪ var(t ′)
free(r(t1, . . . , tn)) = var(t1) ∪ · · · ∪ var(tn)
free(¬ϕ) = free(ϕ)
free(ϕ ∨ ψ) = free(ϕ) ∪ free(ψ)
free(∃xϕ) = free(ϕ)− {x}
free(∀xϕ) = free(ϕ)− {x}.
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Exercise

Exercise

What are the variables that occur free in

r(y , x)→ ∀y(¬(y = z))?
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Sentences and LSn

Let S be an FO signature and n ∈ N. Then LSn denotes the set of
S-formulas whose free variables are among {v0, . . . , vn−1}. That is:

LSn = {ϕ ∈ LS | free(ϕ) ⊆ {v0, . . . , vn−1}}.

A sentence is a formula without any free variables (equivalently
formulas in LS0 ).

Example (r (2), f (2), c)-sentence

∀x∃y(r(x , y) ∧ f (x , y) = c)

Sentences don’t need the assignment component (A) of a model
M = (D, I ,A), to determine their truth in the model.
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Coincidence Lemma

Lemma

Let ϕ be an S-formula, and let M1 = (D, I1,A1) and
M2 = (D, I2,A2) be two S-structures with a common domain, such
that M1 and M2 agree on all the free variables and symbols in ϕ.
Then

M1 � ϕ iff M2 � ϕ.

Proof: Argue that

For all S-terms t, if M1 and M2 agree on symbols and vars in
t, then M1(t) = M2(t). (By induction on structure of t.)

For all S-formulas ϕ, if M1 and M2 have the same domain
and agree on symbols and free vars in ϕ, then M1 � ϕ iff
M2 � ϕ. (By induction on structure of ϕ.)
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Isomorphic Structures

Two S-structures M = (D, I ,A) and M ′ = (D ′, I ′,A′) are said to
be isomorphic if there exists a bijection π : D → D ′ such that

(d1, . . . , dn) ∈ I (r) iff (π(d1), . . . , π(dn)) ∈ I ′(r).

π(I (f )(d1, . . . , dn)) = I ′(f )(π(d1), . . . , π(dn))

I ′(c) = π(I (c)).

In this case we write M ∼= M ′.

Natural numbers

The model (N,+, 0) is isomporphic to (2 · N,+, 0).
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FO cannot Distinguish Isomoporphic Structures

Theorem (Isomorphic Structures)

If M and M ′ are S-structures such that M ∼= M ′, then

M � ϕ iff M ′ � ϕ

for all S-sentences ϕ.

Proof: Let π : D → D ′ be an isomorphism. For a D-assignment A
consider the D ′-assignment A′ = π ◦A (first A then π). Argue that

for all S-terms t: π(((D, I ),A)(t)) = ((D ′, I ′),A′)(t).

for all S-formulas ϕ: ((D, I ),A) � ϕ iff ((D ′, I ′),A′) � ϕ.
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Theories

An S-theory is a set of S-sentences T which is closed under logical
consequence.

The theory of a set of S-formulas T , written “Th(T )”, is the set
of S-sentences that are logical consequences of T . That is:

Th(T ) = {ϕ ∈ LS0 | T � ϕ}.

Theory of Groups Th(Φgr )

Let Φgr be the set of formulas (group axioms):

∀x∀y∀z (op(op(x , y), z) = op(x , op(y , z)) (1)

∀x (op(x , e) = x) (2)

∀x∃y (op(x , y) = e) (3)

Then Th(Φgr )

Contains ∀x∃y(op(y , x) = e), but

Does not contain ∀x∀y(op(x , y) = op(y , x)).
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Exercise

Exercise

Consider the axioms of equivalence relations, Φeq, over the
signature Seq = (r (2)):

∀x r(x , x)

∀x∀y (r(x , y)→ r(y , x))

∀x∀y∀z ((r(x , y) ∧ r(y , z))→ r(x , z))

Which of the following sentences are in Th(Φeq)?

∀x∃y r(x , y)

∀x∀y(∃z (r(x , z) ∧ r(y , z))→ ∀w(r(x ,w)→ r(y ,w))).
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Theory of a Structure

The theory of an S-structure M, written “Th(M)”, is the set of
S-sentences that are true in M:

Th(M) = {ϕ ∈ LS0 | M � ϕ}.

Theory of Arithmetic Th(N,+, ·, 0, 1)

Contains ∀x(x · 0 = 0), but

Does not contain ∃y∀x(x < y) (here “< (x , y)” is shorthand
for ∃z((z 6= 0) ∧ (x + z = y)))
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Logical Definability (EFT Secs. III.6, VI.3-4)

Are there sets of FO-sentences that characterize

A class of structures (like groups, equivalence relations,
torsion groups, etc)

A particular structure like N = (N,+, ·, 0, 1)

Relations like “<” in reals, via an FO-formula ϕ(x , y)?
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Elementary Definability

“Elementary” = “FO-definable”

Let S be an FO-signature.

Definition (Elementary)

A class of S-structures C is called elementary if there is an
S-sentence ϕ such that C = {M | M � ϕ}.

Definition (∆-Elementary)

A class of S-structures C is called ∆-elementary if there is a set of
S-sentences Φ such that C = {M | M � Φ}.

Definition (Elementary Equivalence)

Two S-structures M and M ′ are called elementarily equivalent if
Th(M) = Th(M ′).
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Some Elementarily Definable Classes of Structures

Cardinality Properties:

Class of models with 1-element domains is elementary:
∃x∀y(y = x)

ϕ≥2 = ∃v0∃v1(¬v0 = v1) says that “there are at least two
elements in the domain”.

“are at least n elements in the domain”?

Class of models with infinite domains is ∆-elementary: Take
Φ∞ = {ϕ≥2, ϕ≥3, . . .}
“finitely many elements in the domain”?

Not ∆-elementary! (Proof 2 slides ahead)

As a consequence, “infiniteness” cannot be elementary.
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Exercise

Exercise

Characterize using FO sentences:

r is an equivalence relation with at least two equivalence
classes

r is an equivalence relation with an equivalence class
containing at least two elements.



Logical Consequence Free Variables Isomorphic Structures Theories Logical Definability

Compactness

We will later show as an easy consequence of the proof of Gödel’s
Completeness Theorem:

Theorem (Compactness)

If a set of formulas X is unsatisfiable, then there must be a finite
subset of X that is unsatisfiable.
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Non-∆-Elementariness of finiteness

Suppose the class C of all finite S-structures was ∆-elementary via
a set of sentences Φ.

Consider Ψ = Φ ∪ Φ∞.

Ψ must be unsatisfiable.

By Compactness Theorem, a finite subset X0 of Ψ must also
be unsat.

But we can easily construct a model for X0 (if ϕ≥17 is largest
sentence from Φ∞ in X0, then a model M with a domain of
17 elements will satisfy X0).

This is a contradiction. Hence C could not have been
∆-elementary.
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Non ∆-elementariness of N = (N,+, ·, 0, 1)

The class of models that are isomorphic to N = (N,+, ·, 0, 1) is
not ∆-elementary.

A non-standard model for arithmetic is a model M which not
isomorphic to N , but is elementarily equivalent to N (i.e.
Th(M) = Th(N )).

Theorem (Skolem)

There is a non-standard countable model for arithmetic.

Proof: Consider the set of formulas

Ψ = Th(N ) ∪ {¬(x = 0),¬(x = 1),¬(x = 2), . . .}.

Here “2” denotes the term (1 + 1), etc.
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Non ∆-elementariness of N = (N,+, ·, 0, 1) (Proof ctd)

Since every finite subset of Ψ is sat (in N itself) Ψ must be
sat in a model M = (D, I ,A).

Follows that N and M are elementarily equivalent.

But M cannot be isomorphic to N (as any isomporphism π
from N to D must map 2 to 2, etc; and hence A(x) would not
be the image of any element under π).
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Non ∆-elementariness of classes of groups

The class of finite groups is not ∆-elementary.

The class of torsion groups (where every element x is such
that xn = x◦x · · · ◦x = e for some n) is not ∆-elementary.
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