Theories Deepak D'Souza Department of Computer Science and Automation Indian Institute of Science, Bangalore. 03 February 2025 Logical Definability #### **Outline** Logical Consequence - 1 Logical Consequence - 2 Free Variables - 3 Isomorphic Structures - **4** Theories - **5** Logical Definability Logical Consequence - For a set T of S-formulas, we say an S-model M satisfies T, written " $M \models T$ ", iff $M \models \varphi$ for each $\varphi \in T$. - For a set T of S-formulas, and an S-formula φ , we say φ is a logical consequence of T, written $$T \vDash \varphi$$, iff for every S-model M, whenever $M \models T$ we have $M \models \varphi$. ## **Examples** - $\{\exists y \forall x (op(x, y) = e)\} \models \forall x \exists y (op(x, y) = e)$ - $\{\forall x \exists y (op(x, y) = e)\} \not\models \exists y \forall x (op(x, y) = e)$ - $\{\forall x \exists y (op(x, y) = e), \forall x (x = e)\} \models \exists y \forall x (op(x, y) = e)$ A variable occurs "free" in a formula if it is not "in the scope" of any quantifier in the formula. Var x is free in φ if there is an occurrence of x with no $\exists x$ or $\forall x$ ancestor in the formula tree of φ . # **Example** (free occurrences of vars are underlined) $$\exists x (r(x,\underline{y}) \land \forall y (\neg (y=x) \lor r(y,\underline{z}))).$$ A variable can occur both free and bound (like y). Let var(t) denote the variables that occur in a term t. The set of vars that occur free in φ can be defined inductively by: $$\begin{array}{lll} \mathit{free}(t=t') & = & \mathit{var}(t) \cup \mathit{var}(t') \\ \mathit{free}(r(t_1,\ldots,t_n)) & = & \mathit{var}(t_1) \cup \cdots \cup \mathit{var}(t_n) \\ \mathit{free}(\neg \varphi) & = & \mathit{free}(\varphi) \\ \mathit{free}(\varphi \lor \psi) & = & \mathit{free}(\varphi) \cup \mathit{free}(\psi) \\ \mathit{free}(\exists x \varphi) & = & \mathit{free}(\varphi) - \{x\} \\ \mathit{free}(\forall x \varphi) & = & \mathit{free}(\varphi) - \{x\}. \end{array}$$ ## Exercise What are the variables that occur free in $$r(y,x) \rightarrow \forall y(\neg(y=z))$$? # **Sentences** and L_n^S Logical Consequence Let S be an FO signature and $n \in \mathbb{N}$. Then L_n^S denotes the set of S-formulas whose free variables are among $\{v_0, \ldots, v_{n-1}\}$. That is: $$L_n^{\mathcal{S}} = \{\varphi \in L^{\mathcal{S}} \mid \mathit{free}(\varphi) \subseteq \{\mathit{v}_0, \ldots, \mathit{v}_{n-1}\}\}.$$ A sentence is a formula without any free variables (equivalently formulas in L_0^S). # Example $(r^{(2)}, f^{(2)}, c)$ -sentence $$\forall x \exists y (r(x,y) \land f(x,y) = c)$$ Sentences don't need the assignment component (A) of a model M = (D, I, A), to determine their truth in the model. #### Coincidence Lemma ### Lemma Logical Consequence Let φ be an S-formula, and let $M_1 = (D, I_1, A_1)$ and $M_2 = (D, I_2, A_2)$ be two S-structures with a common domain, such that M_1 and M_2 agree on all the free variables and symbols in φ . Then $$M_1 \vDash \varphi \text{ iff } M_2 \vDash \varphi.$$ ### Proof: Argue that - For all S-terms t, if M_1 and M_2 agree on symbols and vars in t, then $M_1(t) = M_2(t)$. (By induction on structure of t.) - For all S-formulas φ , if M_1 and M_2 have the same domain and agree on symbols and free vars in φ , then $M_1 \models \varphi$ iff $M_2 \vDash \varphi$. (By induction on structure of φ .) # **Isomorphic Structures** Logical Consequence Two S-structures M=(D,I,A) and M'=(D',I',A') are said to be isomorphic if there exists a bijection $\pi:D\to D'$ such that - $(d_1,\ldots,d_n)\in I(r)$ iff $(\pi(d_1),\ldots,\pi(d_n))\in I'(r)$. - $\pi(I(f)(d_1,\ldots,d_n)) = I'(f)(\pi(d_1),\ldots,\pi(d_n))$ - $I'(c) = \pi(I(c)).$ In this case we write $M \cong M'$. #### Natural numbers The model $(\mathbb{N},+,0)$ is isomporphic to $(2\cdot\mathbb{N},+,0)$. # **FO** cannot Distinguish Isomoporphic Structures ## Theorem (Isomorphic Structures) If M and M' are S-structures such that $M \cong M'$, then $$M \vDash \varphi \text{ iff } M' \vDash \varphi$$ for all S-sentences φ . Logical Consequence Proof: Let $\pi: D \to D'$ be an isomorphism. For a D-assignment A consider the D'-assignment $A' = \pi \circ A$ (first A then π). Argue that - for all S-terms $t: \pi(((D, I), A)(t)) = ((D', I'), A')(t)$. - for all S-formulas φ : $((D, I), A) \models \varphi$ iff $((D', I'), A') \models \varphi$. ### **Theories** Logical Consequence An S-theory is a set of S-sentences T which is closed under logical consequence. The theory of a set of S-formulas T, written "Th(T)", is the set of S-sentences that are logical consequences of T. That is: $$Th(T) = \{ \varphi \in L_0^S \mid T \vDash \varphi \}.$$ # Theory of Groups $Th(\Phi_{gr})$ Let Φ_{gr} be the set of formulas (group axioms): $$\forall x \forall y \forall z \ (op(op(x,y),z) = op(x,op(y,z)) \tag{1}$$ $$\forall x \ (op(x,e) = x) \tag{2}$$ $$\forall x \exists y \ (op(x, y) = e) \tag{3}$$ Then $Th(\Phi_{gr})$ - Contains $\forall x \exists y (op(y, x) = e)$, but - Does not contain $\forall x \forall y (op(x, y) = op(y, x))$. ### **Exercise** Logical Consequence ### **Exercise** Consider the axioms of equivalence relations, Φ_{eq} , over the signature $S_{eq} = (r^{(2)})$: $$\forall x \, r(x, x)$$ $$\forall x \forall y \, (r(x, y) \to r(y, x))$$ $$\forall x \forall y \forall z \, ((r(x, y) \land r(y, z)) \to r(x, z))$$ Which of the following sentences are in $Th(\Phi_{eq})$? - $\forall x \exists y \ r(x,y)$ - $\forall x \forall y (\exists z (r(x,z) \land r(y,z)) \rightarrow \forall w (r(x,w) \rightarrow r(y,w))).$ ## Theory of a Structure Logical Consequence The theory of an S-structure M, written "Th(M)", is the set of S-sentences that are true in M: $$Th(M) = \{ \varphi \in L_0^S \mid M \vDash \varphi \}.$$ ## Theory of Arithmetic $\mathit{Th}(\mathbb{N},+,\cdot,0,1)$ - Contains $\forall x(x \cdot 0 = 0)$, but - Does not contain $\exists y \forall x (x < y)$ (here "< (x, y)" is shorthand for $\exists z ((z \neq 0) \land (x + z = y)))$ # Logical Definability (EFT Secs. III.6, VI.3-4) Are there sets of FO-sentences that characterize - A class of structures (like groups, equivalence relations, torsion groups, etc) - A particular structure like $\mathcal{N} = (\mathbb{N}, +, \cdot, 0, 1)$ - Relations like "<" in reals, via an FO-formula $\varphi(x,y)$? ## **Elementary Definability** Logical Consequence "Elementary" = "FO-definable" Let S be an FO-signature. ## **Definition (Elementary)** A class of S-structures \mathcal{C} is called elementary if there is an S-sentence φ such that $\mathcal{C} = \{M \mid M \vDash \varphi\}$. ## Definition (\triangle -Elementary) A class of S-structures $\mathcal C$ is called Δ -elementary if there is a set of S-sentences Φ such that $\mathcal C=\{M\mid M\vDash\Phi\}.$ ## **Definition (Elementary Equivalence)** Two S-structures M and M' are called elementarily equivalent if Th(M) = Th(M'). ## Some Elementarily Definable Classes of Structures ## Cardinality Properties: Logical Consequence - Class of models with 1-element domains is elementary: $\exists x \forall y (y = x)$ - $\varphi_{\geq 2} = \exists v_0 \exists v_1 (\neg v_0 = v_1)$ says that "there are at least two elements in the domain". - "are at least *n* elements in the domain"? - Class of models with infinite domains is Δ -elementary: Take $\Phi_{\infty}=\{\varphi_{\geq 2},\varphi_{\geq 3},\ldots\}$ - "finitely many elements in the domain"? ### Some Elementarily Definable Classes of Structures ## Cardinality Properties: Logical Consequence - Class of models with 1-element domains is elementary: $\exists x \forall y (y = x)$ - $\varphi_{\geq 2} = \exists v_0 \exists v_1 (\neg v_0 = v_1)$ says that "there are at least two elements in the domain". - "are at least *n* elements in the domain"? - Class of models with infinite domains is Δ -elementary: Take $\Phi_{\infty}=\{\varphi_{\geq 2},\varphi_{\geq 3},\ldots\}$ - "finitely many elements in the domain"? Not Δ -elementary! (Proof 2 slides ahead) - As a consequence, "infiniteness" cannot be elementary. ### **Exercise** ### **Exercise** Characterize using FO sentences: - r is an equivalence relation with at least two equivalence classes - r is an equivalence relation with an equivalence class containing at least two elements. ## Compactness We will later show as an easy consequence of the proof of Gödel's Completeness Theorem: # Theorem (Compactness) If a set of formulas X is unsatisfiable, then there must be a finite subset of X that is unsatisfiable. ### Non- Δ -Elementariness of finiteness Logical Consequence Suppose the class C of all finite S-structures was Δ -elementary via a set of sentences Φ . - Consider $\Psi = \Phi \cup \Phi_{\infty}$. - Ψ must be unsatisfiable. - By Compactness Theorem, a finite subset X_0 of Ψ must also be unsat. - But we can easily construct a model for X_0 (if $\varphi_{\geq 17}$ is largest sentence from Φ_{∞} in X_0 , then a model M with a domain of 17 elements will satisfy X_0). - ullet This is a contradiction. Hence ${\mathcal C}$ could not have been Δ -elementary. ## Non Δ -elementariness of $\mathcal{N} = (\mathbb{N}, +, \cdot, 0, 1)$ The class of models that are isomorphic to $\mathcal{N}=(\mathbb{N},+,\cdot,0,1)$ is not Δ -elementary. A non-standard model for arithmetic is a model M which not isomorphic to \mathcal{N} , but is elementarily equivalent to \mathcal{N} (i.e. $Th(\mathcal{M}) = Th(\mathcal{N})$). ## Theorem (Skolem) Logical Consequence There is a non-standard countable model for arithmetic. Proof: Consider the set of formulas $$\Psi = Th(\mathcal{N}) \cup \{\neg(x=0), \neg(x=1), \neg(x=\underline{2}), \ldots\}.$$ Here "2" denotes the term (1+1), etc. ## Non Δ -elementariness of $\mathcal{N} = (\mathbb{N}, +, \cdot, 0, 1)$ (Proof ctd) - Since every finite subset of Ψ is sat (in \mathcal{N} itself) Ψ must be sat in a model M = (D, I, A). - Follows that \mathcal{N} and M are elementarily equivalent. - But M cannot be isomorphic to \mathcal{N} (as any isomporphism π from \mathbb{N} to D must map 2 to 2, etc; and hence A(x) would not be the image of any element under π). Logical Definability ## Non Δ -elementariness of classes of groups - The class of finite groups is **not** Δ -elementary. - The class of torsion groups (where every element x is such that $x^n = x \circ x \cdots \circ x = e$ for some n) is not Δ -elementary.