Sequent Calculus for First-Order Logic

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

24 February 2025

Outline of these lectures

Sequents

2 Sequent Calculus Rules

3 Derivations

Sequents

- A sequent is a pair (Γ, φ) , where Γ is a (possibly empty) finite sequence of formulas, and φ is a formula.
- We write (Γ, φ) as simply " $\Gamma \varphi$ ".
- (Γ, φ) or " $\Gamma \varphi$ " must be read as a claim that " φ is a logical consequence of Γ ".
- $\Gamma \varphi$ is correct if $\Gamma \vDash \varphi$ (more precisely the set of formulas in Γ entails φ).

Example Sequents

- $[r(x), \neg r(x) \lor r(y)] \ r(y)$ is a correct sequent.
- $[r(x), \neg r(x) \lor r(y)] (r(y) \land r(z))$ is **not** a correct sequent.

Assumption Rule (Ass):

provided φ belongs to Γ.

Proof by Cases Rule (PC):

$$\begin{array}{cccc}
\Gamma & \psi & \varphi \\
\Gamma & \neg \psi & \varphi \\
\hline
\Gamma & & \varphi
\end{array}$$

Antecedant Rule (Ant):

provided Γ is contained in Γ' .

Contradiction Rule (Ctr):

$$\begin{array}{cccc}
\Gamma & \neg \varphi & \psi \\
\Gamma & \neg \varphi & \neg \psi
\end{array}$$

Sequent Calculus *G***:** Rules II

Or-Antecedant Rule (a) (Or-A-(a)):

$$\begin{array}{ccc}
\Gamma & \varphi & \theta \\
\Gamma & \psi & \theta \\
\hline
\Gamma & (\varphi \lor \psi) & \theta
\end{array}$$

Or-Succeedent Rule (a) (Or-S-(a)):

$$\frac{\Gamma \quad \varphi}{\Gamma \quad (\varphi \lor \psi)}$$

Or-Succeedent Rule (b) (Or-S-(b)):

$$\frac{\Gamma \quad \varphi}{\Gamma \quad (\psi \vee \varphi)}$$

Sequent Calculus G: Rules III

 \exists -Introduction in Succedent Rule (\exists -Succ):

$$\frac{\Gamma \varphi[\frac{t}{x}]}{\Gamma \exists x \varphi}$$

Reflexivity Rule (=):

$$t=t$$

 \exists -Introduction in Antecedent Rule (\exists -Ant):

$$\frac{\Gamma \varphi[\frac{y}{x}] \psi}{\Gamma \exists x \varphi \psi}$$

provided y is not free in Γ, $\exists x \varphi$, and ψ .

Substitution Rule (Sub):

$$\frac{\Gamma \qquad \qquad \varphi[\frac{t}{x}]}{\Gamma \quad t = t' \quad \varphi[\frac{t'}{x}]}$$

∃-Succ:

$$\frac{\Gamma \varphi[\frac{t}{x}]}{\Gamma \exists x \varphi}$$

Proof: Suppose $M \models \Gamma$. Then $M \models \varphi[\frac{t}{x}]$. Hence $M[\frac{M(t)}{x}] \models \varphi$ (by Subs. Lemma) Hence $M \models \exists x \varphi$ (semantics of $\exists x \varphi$).

∃-Ant:

$$\frac{\Gamma \varphi[\frac{y}{x}] \psi}{\Gamma \exists x \varphi \psi}$$

provided y is not free in Γ , $\exists x \varphi$, and ψ .

Proof: Consider cases where (a) y = x and (b) $y \neq x$ (here consider M[d/y]).

Derivations using Sequent Calculus

A derivation of a sequent Γ φ (in the Sequent Calculus \mathcal{G}) is a sequence of sequents

$$\Gamma_0 \varphi_0$$
 $\Gamma_1 \varphi_1$
 \dots
 $\Gamma_n \varphi_n$

such that

- **2** each $\Gamma_i \varphi_i$ is obtained from the rules of \mathcal{G} , applied to sequents earlier in the sequence.

We write

$$\vdash_{\mathcal{G}} \Gamma \varphi$$
,

(or simply $\vdash \Gamma \varphi$) to mean there is a derivation of $\Gamma \varphi$ in \mathcal{G} .

Example Derivation

The following derivation shows that \vdash [] $(r(x) \lor \neg r(x))$:

- 1. [] r(x) r(x) (by (Ass) rule)
- 2. [] $r(x) (r(x) \vee \neg r(x))$ (by (Or-S(a)) applied to 1, $\neg r(x)$
- 3. [] $\neg r(x) \quad \neg r(x)$ (by (Ass) rule)
- 4. $[] \neg r(x) \quad (r(x) \lor \neg r(x)) \quad (by (Or-S(b)) \text{ applied to 3, } r(x))$
- 5. [] $(r(x) \vee \neg r(x))$ (by (PC) applied to 2,4).

Example Derivations

To show: $\vdash [e \circ e = e] \exists x(x \circ x = e)$

- 1. $[e \circ e = e]$ $e \circ e = e$ (by (Ass) rule)
- 2. $[e \circ e = e]$ $\exists x(x \circ x = e)$ (by (\exists -Succ) rule on (1) with $e \circ e = e$ viewed as $(x \circ x = e)[\frac{e}{x}]$)

Example Derivations

To show: $\vdash [e \circ e = e] \exists x (x \circ x = e)$

- 1. $[e \circ e = e]$ $e \circ e = e$ (by (Ass) rule)
- 2. $[e \circ e = e] \quad \exists x (x \circ x = e)$ (by (\exists -Succ) rule on (1) with $e \circ e = e$ viewed as $(x \circ x = e) \left[\frac{e}{x}\right]$)

To show $\neg : \vdash [\forall x (x \circ e = x)] (e \circ e = e)$

- 1. $[\neg \exists x \neg (x \circ e = x)] \neg (e \circ e = e) \neg \exists x \neg (x \circ e = x)$ by Ass
- 2. $[\neg \exists x \neg (x \circ e = x)] \neg (e \circ e = e) \neg (e \circ e = e)$ by Ass
- 3. $[\neg \exists x \neg (x \circ e = x)] \neg (e \circ e = e) \quad \exists x \neg (x \circ e = x)$ by $\exists -S(2)$, viewing $\neg (e \circ e = e)$ as $\neg (x \circ e = x) [\frac{e}{x}]$
- 4. $[\neg \exists x \neg (x \circ e = x)]$ $(e \circ e = e)$ by Ctr(1,3)

New Derivation Rules

 \forall -Rule:

$$\frac{\Gamma \quad \forall x \varphi}{\Gamma \quad \varphi[\frac{t}{x}]}$$

This rule is derivable from the rules in \mathcal{G} in the sense that if $\vdash \Gamma \ \forall x \varphi$, then we also have $\vdash \Gamma \ \varphi[\frac{t}{x}]$ (for any term t, φ , and x).

```
1. \vdots
7. \Gamma \neg \exists x \neg \varphi (Since \Gamma \neg \exists x \neg \varphi is derivable)
8. \Gamma \neg \varphi[\frac{t}{x}] \neg \exists x \neg \varphi by Ant(7)
9. \Gamma \neg \varphi[\frac{t}{x}] \neg \varphi[\frac{t}{x}] by Ass
10. \Gamma \neg \varphi[\frac{t}{x}] \exists x \neg \varphi by \exists -S(9)
11. \Gamma \varphi[\frac{t}{x}] by Ctr(8,10)
```

New Derivation Rules

∃-Rules:

$$\frac{\Gamma \quad \varphi}{\Gamma \quad \exists x \varphi}$$

1.

7. Γ φ Since Γ φ is derivable by assumption 7'. Γ $\varphi[\frac{x}{x}]$ by viewing φ as $\varphi[\frac{x}{x}]$ 8. Γ $\exists x \varphi$ by \exists -S(7)

Exercise

Exercise

Show that the following rules are derivable:

$$\frac{\Gamma \varphi \qquad \psi}{\Gamma \exists x \varphi \quad \psi}$$

provided x is not free in Γ , ψ .

$$\frac{\Gamma \qquad \varphi}{\Gamma \ x = t \quad \varphi[\frac{t}{x}]}$$

$$\frac{\Gamma \quad t = t'}{\Gamma \quad t' = t}$$

$$\Gamma \quad t_1 = t_2 \\
\Gamma \quad t_2 = t_3$$

Derivability

Let Φ be a set of formulas, and φ a formula. We say φ is *derivable* (or formally provable) from Φ , written

$$\Phi \vdash \varphi$$
,

if there exists a finite sequence Γ from Φ , such that $\vdash \Gamma \varphi$.

Example

Left Inverse in Groups

Let Φ_{gr} be the set of formulas (group axioms):

$$\forall x \forall y \forall z \ (op(op(x,y),z) = op(x,op(y,z)) \tag{1}$$

$$\forall x \ (op(x,e) = x) \tag{2}$$

$$\forall x \exists y \ (op(x, y) = e) \tag{3}$$

Then
$$\Phi_{gr} \models \forall x \exists y (op(y, x) = e)$$

Informal proof: Let (D, \circ) be a structure satistying Φ_{gr} . Let x be an arbitrary element of D. Let y be the right inverse of x (i.e. $x \circ y = e$). Let z be the right inverse of y. Then

$$y \circ x = (y \circ x) \circ e$$

$$= (y \circ x) \circ (y \circ z)$$

$$= (y \circ (x \circ y)) \circ z$$

$$= (y \circ e) \circ z$$

$$= y \circ z$$

$$= e.$$

Formal Proof in G

Let Γ_{gr} denote the list of the 3 group axioms Φ_{gr} .

1.
$$\Gamma_{gr}$$
 $\forall x (x \circ e = x)$ (Ass)

$$\begin{array}{lll} 1. & \Gamma_{gr} & \forall x(x \circ e = x) & \text{(Ass)} \\ 2. & \Gamma_{gr} & (y \circ x) \circ e = (y \circ x) & \text{(Derived \forall rule)} \\ 3. & \Gamma_{gr} & (y \circ x) = (y \circ x) \circ e & \text{(Derived term rule)} \\ 4. & \Gamma_{gr} & e = y \circ z & (y \circ x) = (y \circ x) \circ (y \circ z) & \text{Sub(3)} \end{array}$$

3.
$$\Gamma_{gr}$$
 $(y \circ x) = (y \circ x) \circ e$ (Derived term rule)

4.
$$\Gamma_{gr} e = y \circ z \quad (y \circ x) = (y \circ x) \circ (y \circ z)$$
 Sub(3

34.
$$\Gamma_{gr}$$
 $\forall x \exists y (y \circ x) = e$ (Ant).