Substitution and Prenex Normal Form

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

19 February 2025

Outline

Substitution

2 Prenex Normal Form

Substitution in Formulas

(EFT III.8)

Let φ be an S-formula with a free var x. Let t be an S-term. Then the substitution of t for x in φ , written $\varphi[t/x]$, is the S-formula obtained by replacing each free occurrence of x in φ by t.

If M=(D,I,A) is a model, the formula $\varphi[t/x]$ should say the same thing about the domain element M(t) in M that φ says about A(x) in M.

Example

Let φ be the formula

$$\exists z(z+z=x).$$

• Then $\varphi[y/x]$ is the formula

$$\exists z(z+z=y).$$

• What should $\varphi[z/x]$ be?

Substitution in Formulas

(EFT III.8)

Let φ be an S-formula with a free var x. Let t be an S-term. Then the substitution of t for x in φ , written $\varphi[t/x]$, is the S-formula obtained by replacing each free occurrence of x in φ by t.

If M=(D,I,A) is a model, the formula $\varphi[t/x]$ should say the same thing about the domain element M(t) in M that φ says about A(x) in M.

Example

Let φ be the formula

$$\exists z(z+z=x).$$

• Then $\varphi[y/x]$ is the formula

$$\exists z(z+z=y).$$

• What should $\varphi[z/x]$ be? Not the formula $\exists z(z+z=z)$,

Substitution in Formulas

(EFT III.8)

Let φ be an S-formula with a free var x. Let t be an S-term. Then the substitution of t for x in φ , written $\varphi[t/x]$, is the S-formula obtained by replacing each free occurrence of x in φ by t.

If M=(D,I,A) is a model, the formula $\varphi[t/x]$ should say the same thing about the domain element M(t) in M that φ says about A(x) in M.

Example

Let φ be the formula

$$\exists z(z+z=x).$$

• Then $\varphi[y/x]$ is the formula

$$\exists z(z+z=y).$$

• What should $\varphi[z/x]$ be? Not the formula $\exists z(z+z=z)$, but something like

$$\exists u(u+u=z).$$

Illustrating Substitution Lemma

$$\varphi$$
:

$$\exists z(x+y=z+z)$$

$$\varphi[(x+w)/x, w/y]$$
:

$$\exists z((x+w)+w=z+z)$$

Substitution Definition

Let φ be an S-formula, x_1, \ldots, x_n be distinct variables, and t_1, \ldots, t_n be S-terms. Then $\varphi[t_1/x_1, \ldots, t_n/x_n]$ denotes the formula obtained by simultaneously substituting t_i for x_i in φ .

If
$$\varphi = \exists z(z + z = x \land r(x, y))$$
, what should $\varphi[y/x, w/y]$ be?

First define substitution on terms: $t[t_1, \ldots, t_n/x_1, \ldots, x_n]$.

Definition (Substitution for terms)

$$\begin{array}{lll} c[t_1/x_1, \dots, t_n/x_n] & = & c \\ x[t_1/x_1, \dots, t_n/x_n] & = & t_i \text{ if } x_i = x, \text{ else } x \\ f(t_1', \dots, t_k')[t_1/x_1, \dots, t_n/x_n] & = & f(t_1'[t_1/x_1, \dots, t_n/x_n], \dots, \\ & & t_k'[t_1/x_1, \dots, t_n/x_n]) \end{array}$$

Substitution Definition ctd.

Definition (Substitution for formulas)

$$\begin{array}{lll} (t=t')[t_1/x_1,\ldots,t_n/x_n] & = & t[t_1/x_1,\ldots,t_n/x_n] = t'[t_1/x_1,\ldots,t_n/x_n] \\ (r(t_1',\ldots,t_k'))[t_1/x_1,\ldots,t_n/x_n] & = & r(t_1'[t_1/x_1,\ldots,t_n/x_n],\ldots,t_k'[t_1/x_1,\ldots,t_n/x_n] \\ (\neg\varphi)[t_1/x_1,\ldots,t_n/x_n] & = & \neg(\varphi[t_1/x_1,\ldots,t_n/x_n]) \\ (\varphi\vee\psi)[t_1/x_1,\ldots,t_n/x_n] & = & (\varphi[t_1/x_1,\ldots,t_n/x_n])\vee\psi[t_1/x_1,\ldots,t_n/x_n] \\ (\exists x\varphi)[t_1/x_1,\ldots,t_n/x_n] & = & \exists u(\varphi[u/x,t_{i_1}/x_{i_1},\ldots,t_{i_m}/x_{i_m}]) \\ \text{where } x_{i_1},\ldots,x_{i_m} \text{ are those } x_i \text{s which occur free in } \exists x\varphi \text{ and } t_i\neq x_i, and \\ u \text{ is } x \text{ if } x \text{ does not occur in } t_{i_1},\ldots,t_{i_m}; \\ \text{otherwise } u \text{ is a var which does not occur in } \varphi,t_{i_1},\ldots,t_{i_m}. \end{array}$$

Exercise

Exercise

What is

- $r(v_0, f(v_1, v_2))[v_2/v_1, v_0/v_2, v_1/v_3]$
- $\exists v_0 r(v_0, f(v_1, v_2)) [v_4/v_0, f(v_1, v_2)/v_2]$
- $\exists v_0 r(v_0, f(v_1, v_2)) [v_0/v_1, v_2/v_2, v_4/v_0]$

Subsitution Lemma

Lemma (Substitution)

$$M \vDash \varphi[t_1/x_1, \dots, t_n/x_n]$$
iff
$$M[M(t_1)/x_1] \cdots [M(t_n)/x_n] \vDash \varphi.$$

In particular,

$$M \vDash \varphi[t/x]$$
 iff $M[M(t)/x] \vDash \varphi$.

Theorem (Prenex Normal Form)

For every FO formula φ we can construct a logically equivalent formula ψ such that:

- ψ is of the form $Q_1x_1\cdots Q_nx_n \chi$ (with $n \geq 0$), where each Q_i is " \exists " or " \forall ", and χ is quantifier-free;
- $free(\varphi) = free(\psi)$;
- ullet and the number of quantifiers in φ and ψ are the same.

Prenex Example

Prenex normal form example

$$\neg \exists x \, p(x) \, \lor \, \forall x \, r(x) \equiv$$

Prenex Example

Prenex normal form example

$$\neg \exists x \, p(x) \, \lor \, \forall x \, r(x) \equiv \, \forall x \forall y \, (\neg p(x) \lor r(y))$$

Some Useful Identities

 $\varphi \equiv \psi$ means " φ is logically equivalent to ψ ".

- **1** If $\varphi \equiv \psi$ then $\neg \varphi \equiv \neg \psi$.
- ② If $\varphi \equiv \psi$ and $\varphi' \equiv \psi'$, then $\varphi \vee \varphi' \equiv \psi \vee \psi'$.

- **1** If $x \notin free(\psi)$ then:
 - $\exists x \varphi \lor \psi \equiv \exists x (\varphi \lor \psi).$
 - $\forall x \varphi \lor \psi \equiv \forall x (\varphi \lor \psi).$

Proof of Prenex Theorem

Argue by induction on the number of quantifiers in φ (and in the inductive step, by induction on the height of φ).

Proof of Prenex Theorem

- Base case: 0 quantifiers, hence φ is quantifier-free, and we can take $\psi=\varphi$.
- Induction step: Consider φ with n+1 quantifiers. Use further induction on height of φ (P(k): If φ has n+1 quantifiers and has height k then φ has a prenex equivalent with same number of quantifiers and free vars):
 - Base case: Atomic formula, vacously true since no quantifiers.
 - Induction step: Consider cases
 - \bullet $\neg \psi$
 - $\bullet \ \psi \vee \chi$
 - ∃xψ

Prenex Proof

Illustrating Prenex Procedure

