
Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Array Logic

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

07 April 2025

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Outline

1 Motivation

2 Array Logic

3 Undecidability

4 Unquantified Array Logic

5 Array Property Fragment

6 Decision Procedure for APF

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Array Logic (BM Ch 11, KS Ch 7)

Two-sorted first-order logic. One sort is domain of integers,
the other is domain of arrays (modelled as functions from
integers to integers).

Signature of the logic includes “array read” function:
read(a, i) or “a[i]” (value stored at position i in a),

and “array write” function write(a, i , v) or a〈i / v〉 (returns
new array a′ which coincides with a except at position i where
it has value e).

Example formula

[(x < m) ∧
(0 ≤ i) ∧ ∀k(((0 ≤ k) ∧ (k < i)) =⇒ (a[k] ≤ m)) ∧
a′ = a〈i / x〉]
=⇒ ∀k(((0 ≤ k) ∧ (k ≤ i)) =⇒ (a′[k] ≤ m)).

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Application: Symbolic Execution of Array Programs

Illustrating symbolic execution for integer programs: Are there
input values of x and y that lead to error being executed?

// input x, y

int z = 2 * y;

z = z + x;

if (x < y)

if (z == 12)

error();

...

...

Is
x0 < y0 ∧ 2y0 + x0 = 12

satisfiable?

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Application: Symbolic Execution of Array Programs

Are there input arrays a, b and integers i1, i2, j , v1 that lead to
error being executed?

// input array a, i1, ...

...

if (i1 == j)

...

if (i1 == i2)

...

else if (a[j] == v1)

b[j] := a[j];

a[i1] := v1;

a[i2] := v2;

if (a[j] != b[j])

error();

...

Is

i1 = j ∧ i1 6= i2 ∧ a0[j] = v1 ∧
(a0〈i1 / v1〉〈i2 / v2〉) [j] 6= (b0〈j / a0[j]〉) [j]

satisfiable?

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Application: Verifying Array Programs

Floyd-Hoare style verification of array programs (Example 1):

int m = -1;

for (i = 0; i < N; i++)

if (m < a[i])

m := a[i];

// assert for each k: (0 <= k < N) => a[k] <= m

Adequate loop invariant for this program?

∀k((0 ≤ k < i) =⇒ (a[k] ≤ m))

One of the verification conditions: Is the formula ∀a∀N∀m∀i :
[∀k((0 ≤ k < i) =⇒ a[k] ≤ m) ∧

(i < N) ∧ (i ′ = i + 1) ∧m < a[i] ∧m′ = a[i]] =⇒
∀k ((0 ≤ k < i ′) =⇒ a[k] ≤ m).

valid?

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Application: Verifying Array Programs

Floyd-Hoare style verification of array programs (Example 1):

int m = -1;

for (i = 0; i < N; i++)

if (m < a[i])

m := a[i];

// assert for each k: (0 <= k < N) => a[k] <= m

Adequate loop invariant for this program?

∀k((0 ≤ k < i) =⇒ (a[k] ≤ m))

One of the verification conditions: Is the formula ∀a∀N∀m∀i :
[∀k((0 ≤ k < i) =⇒ a[k] ≤ m) ∧

(i < N) ∧ (i ′ = i + 1) ∧m < a[i] ∧m′ = a[i]] =⇒
∀k ((0 ≤ k < i ′) =⇒ a[k] ≤ m).

valid?

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Application: Verifying Array Programs

Floyd-Hoare style verification of array programs (Example 1):

int m = -1;

for (i = 0; i < N; i++)

if (m < a[i])

m := a[i];

// assert for each k: (0 <= k < N) => a[k] <= m

Adequate loop invariant for this program?

∀k((0 ≤ k < i) =⇒ (a[k] ≤ m))

One of the verification conditions: Is the formula ∀a∀N∀m∀i :
[∀k((0 ≤ k < i) =⇒ a[k] ≤ m) ∧

(i < N) ∧ (i ′ = i + 1) ∧m < a[i] ∧m′ = a[i]] =⇒
∀k ((0 ≤ k < i ′) =⇒ a[k] ≤ m).

valid?

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Application: Verifying Array Programs

Floyd-Hoare style verification of array programs (Example 2):

for (i = 0; i < N; i++)

a[i] := 0;

// assert for each k: (0 <= k < N) => a[k] = 0

What is an adequate loop invariant for this program?

∀k((0 ≤ k < i) =⇒ (a[k] = 0))

One of the verification conditions: Is the formula ∀a∀N∀i :
[∀k((0 ≤ k < i) =⇒ (a[k] = 0)) ∧ (i < N) ∧ (i ′ = i + 1) ∧
a′ = a〈i / 0〉]
=⇒ ∀k((0 ≤ k < i ′)) =⇒ (a′[k] = 0)).

valid?

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Application: Verifying Array Programs

Floyd-Hoare style verification of array programs (Example 2):

for (i = 0; i < N; i++)

a[i] := 0;

// assert for each k: (0 <= k < N) => a[k] = 0

What is an adequate loop invariant for this program?

∀k((0 ≤ k < i) =⇒ (a[k] = 0))

One of the verification conditions: Is the formula ∀a∀N∀i :
[∀k((0 ≤ k < i) =⇒ (a[k] = 0)) ∧ (i < N) ∧ (i ′ = i + 1) ∧
a′ = a〈i / 0〉]
=⇒ ∀k((0 ≤ k < i ′)) =⇒ (a′[k] = 0)).

valid?

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Application: Verifying Array Programs

Floyd-Hoare style verification of array programs (Example 2):

for (i = 0; i < N; i++)

a[i] := 0;

// assert for each k: (0 <= k < N) => a[k] = 0

What is an adequate loop invariant for this program?

∀k((0 ≤ k < i) =⇒ (a[k] = 0))

One of the verification conditions: Is the formula ∀a∀N∀i :
[∀k((0 ≤ k < i) =⇒ (a[k] = 0)) ∧ (i < N) ∧ (i ′ = i + 1) ∧
a′ = a〈i / 0〉]
=⇒ ∀k((0 ≤ k < i ′)) =⇒ (a′[k] = 0)).

valid?

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Basic Array Logic [BM Sec 9.5]

Two-Sorted First-Order Logic, with FO signature

ΣA = (·[·], ·〈· / ·〉)

Array-Term (a): a | a〈t / t〉
Value-Term (t): x | a[t]

Atomic-Formula: Value-Term = Value-Term |
Array-Term = Array-Term

Formula: Atomic-Formula | ∃x(. . .) | ∃a(. . .) |
Boolean combination of Formulas

Interpreted in sorts integers (Z) and arrays (Z→ Z).

Example FO(ΣA) formula

[∀i(a〈k / v〉[i] = a[i])] =⇒ a[k] = v .

Note: equality of array-terms a = b is definable as ∀i(a[i] = b[i]).

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

General Array Logic [BM Sec 9.5]

FO Signature
ΣZ
A = (·[·], ·〈· / ·〉), 0, 1,+, <)

Variables x , y , . . . of sort Integers, and a, b, . . . of sort arrays.

Array-Term (a): b | a〈t / t〉
Value-Term (t): 0 | 1 | x | a[t] | t + t ′

Atomic-Formula: Value-Term < Value-Term |
Value-Term = Value-Term |
Array-Term = Array-Term

Formula: Atomic-Formula | ∃x(. . .) | ∃a(. . .) |
Boolean combination of Formulas

Example FO(ΣZ
A) formula

∀a∀b∀i∀j(0 < i < j =⇒ a[i] ≤ b[j])

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

General Array Logic is undecidable [Bradley, Manna, Sipma
VMCAI 2006]

A linear loop program is of the form
int x1, . . . , xn;
x1, . . . , xn := c1, . . . , cn; // initialization
while (x1 ≥ 0) {

if
true -> x := A1 · x;
true -> x := A2 · x;
. . .
true -> x := Am · x;

fi
}

A linear loop program terminates if all its non-deterministic
executions terminate.

Problem of deciding whether a linear loop program terminates
is undecidable (no algorithm/decision-procedure can exist)

Reduce termination of linear loop program to satisfiability of
array logic.

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Reduction

Given a linear loop program P, construct array logic formula ϕP

with array variables a1, . . . an:

∃a1 · · · ∃an∃z∀i∃j (a1[z] ≥ 0 ∧∧n
k=1 ak [z] = ci ∧∨m
l=1 ρl(i , j) ∧

a1[j] ≥ 0),

where ρl(i , j) is the formula:

Al(1, 1) · a1[i] + · · ·+ Al(1, n) · an[i] = a1[j] ∧
· · · ∧
Al(n, 1) · a1[i] + · · ·+ Al(n, n) · an[i] = an[j].

ϕP says that program P has a non-terminating execution.

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Quantifier-Free Basic Array Logic [BM Sec 9.5]

Consider array logic signature without arithmetic:

ΣA = (·[·], ·〈· / ·〉)

Consider quantifier-free formulas over ΣA.

Array-Term (a): b | a〈t / t〉
Value-Term (t): x | a[t]

Atomic-Formula: Value-Term = Value-Term

Formula: Boolean combination of Atomic-Formulas

Example QF(ΣA) formula

i1 = j ∧ i1 6= i2 ∧ a[j] = v1 ∧ a〈i1 / v1〉〈i2 / v2〉[j] 6= a[j]

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Quantifier-Free Array Logic [BM Sec 9.5]

Reduce to EUF by using the “read-over-write” rule: Repeatedly
replace F (· · · a〈i / v〉[j] · · ·) by

(i = j) ∧ F (· · · v · · ·) ∨
(i 6= j) ∧ F (· · · a[j] · · ·).

If no array writes then replace array variables a by functions fa and
array-reads a[i] by fa(i) to get an EUF formula. Use decision
procedure for EUF.

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Example

Check satisfiability of

i1 = j ∧ i1 6= i2 ∧ a[j] = v1 ∧ a〈i1 / v1〉〈i2 / v2〉[j] 6= a[j]

≡ (i1 = j ∧ i1 6= i2 ∧ a[j] = v1 ∧ i2 = j ∧ v2 6= a[j]) ∨
(i1 = j ∧ i1 6= i2 ∧ a[j] = v1 ∧ i2 6= j ∧ a〈i1 / v1〉[j] 6= a[j])

≡ (i1 = j ∧ i1 6= i2 ∧ a[j] = v1 ∧ i2 = j ∧ v2 6= a[j]) ∨
(i1 = j ∧ i1 6= i2 ∧ a[j] = v1 ∧ i2 6= j ∧ i1 = j ∧ v1 6= a[j]) ∨
(i1 = j ∧ i1 6= i2 ∧ a[j] = v1 ∧ i2 6= j ∧ i1 6= j ∧ a[j] 6= a[j]).

Check satisfiability using EUF procedure (like Shostak on each disjunct).

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Exercise

Check satisfiability of

a[x] = v ∧ x 6= y ∧ a〈y / u〉[x] 6= v .

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Array Property Formulas and Array Property Fragment
[BM Sec 11.1]

292 11 Arrays

Hashtables are another important data type. They are similar to arrays
with uninterpreted indices in that their indices, or keys, can only be compared
via equality. However, hashtables allow two new interesting operations: first, a
key/value pair can be removed; and second, a hashtable’s domain — its set of
keys that it maps to values — can be read. Section 11.3 formalizes reasoning
about hashtables in the theory TH and then presents a decision procedure
for the hashtable property fragment of TH. The procedure operates by
transforming ΣH-formulae to ΣA-formulae in the array property fragment such
that the original formula is TH-satisfiable iff the constructed formula is TA-
satisfiable.

11.1 Arrays with Uninterpreted Indices

The quantifier-free fragment of TA enables basic reasoning in the presence of
arrays. For verification purposes, it allows verifying properties of individual
elements but not of entire arrays. However, in practice, it is useful to be able to
reason about properties such as equality between arrays. Using combinations
of theories (see Chapter 10), one would also like to reason about properties
such as that all integer elements of an array are positive.

11.1.1 Array Property Fragment

In this section, we define a decidable fragment of TA that allows some quan-
tification. This fragment is called the array property fragment because it
allows specifying basic properties of arrays, not just properties of array el-
ements. The principal characteristic of the array property fragment is that
array indices can be universally quantified with some restrictions.

Example 11.1. In the ΣA-formula

∀j. ahi ⊳ vi[j] = a[j] ∧ a[i] 6= v ,

the first conjunct asserts that ahi ⊳ vi and a are equal. This formula is TA-
unsatisfiable. �

Unfortunately, the use of universal quantification must be restricted to
avoid undecidability (see Section 11.4 for further discussion). An array prop-
erty is a ΣA-formula of the form

∀i. F [i] → G[i]

in which i is a list of variables, and F [i] and G[i] are the index guard and
the value constraint, respectively. The index guard F [i] is any ΣA-formula
that is syntactically constructed according to the following grammar:11.1 Arrays with Uninterpreted Indices 293

iguard → iguard ∧ iguard | iguard ∨ iguard | atom
atom → var = var | evar 6= var | var 6= evar | ⊤

var → evar | uvar

where uvar is any universally quantified index variable, and evar is any con-
stant or unquantified (that is, implicitly existentially quantified) variable.

Additionally, a universally quantified index can occur in a value constraint
G[i] only in a read a[i], where a is an array term. The read cannot be nested;
for example, a[b[i]] is not allowed.

The array property fragment of TA then consists of formulae that are
Boolean combinations of quantifier-free ΣA-formulae and array properties.

Example 11.2. The antecedent of the implication in the ΣA-formula

F : ∀i. i 6= a[k] → a[i] = a[k]

is not a legal index guard since a[k] is not a variable (neither a uvar nor an
evar); however, a simple manipulation makes it conform:

F ′ : v = a[k] ∧ ∀i. i 6= v → a[i] = a[k]

Here, i 6= v is a legal index guard, and a[i] = a[k] is a legal value constraint.
F and F ′ are equisatisfiable.

However, no amount of manipulation can make the following formula con-
form:

G : ∀i. i 6= a[i] → a[i] = a[k] .

Thus, G is not in the array property fragment. �

Example 11.3. The array property fragment allows expressing equality be-
tween arrays, a property referred to as extensionality: two arrays are equal
precisely when their corresponding elements are equal. For given formula

F : · · · ∧ a = b ∧ · · ·
with array terms a and b, rewrite F as

F ′ : · · · ∧ (∀i. a[i] = b[i]) ∧ · · · .

F and F ′ are equisatisfiable. Moreover, the index guard in the literal is just
⊤, and the value constraint a[i] = b[i] obeys the requirement that i appear
only as an index in read terms.

Recall that the theory of arrays with extensionality T =
A (see Section 3.6)

augments TA with the following axiom:

∀a, b. (∀i. a[i] = b[i]) ↔ a = b (extensionality)

The universal quantifier of the array property fragment allows expressing
equality between arrays directly.

Subsequently, where convenient, we write equality a = b between arrays
to abbreviate ∀i. a[i] = b[i]. �

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Array Property Fragment [BM Sec 11.1]

Array Property Formulas:

∀ī(F (ī)⇒ G (ī))

with above restrictions on index guard F and value constraint G .

Array Property Fragment:

Boolean combinations of

Quantifier-Free Basic Array Formulas (QF(ΣA)).

Array Property Formulas.

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Reduction Procedure for APF(ΣA)

1 Put given formula F in Negation Normal Form (NNF)
2 Remove array writes (update terms) by replacing F (a〈i / v〉)

by
F (a′) ∧ a′[i] = v ∧ ∀j(j 6= i → a′[j] = a[j])

3 Remove existential quantification: Replace F (∃iG (i)) by
F (G (j)) for a fresh variable j . (Note that ∃i can arise due to
¬∀i(· · ·) which is allowed in APF.)

4 Construct index set I containing
a fresh variable λ (representing all other positions in an array),
terms t such that a read a[t] occurs in the formula and t is not
a univ quantified var.
terms t (vars?) that occur in comparison with univ quantified
var in index guards.

5 Replace universal quantification by finite conjunctions over I.
6 Resulting formula F6 is in QF(ΣA). Decide satisfiability using

algo for QF(ΣA).

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Example

Example 11.6 from BM

Example of APF Procedure

F : a〈l/v〉[k] = b[k] ∧ b[k] 6= v ∧ a[k] = v ∧ ∀i(i 6= l → a[i] = b[i]).

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Array Property Formulas with Arithmetic [Bradley, Manna,
Sipma VMCAI 2006]

300 11 Arrays

is essential for reasoning about programs that incrementally construct or ma-
nipulate arrays. See, for example, the programs BubbleSort and QuickSort of
Chapters 5 and 6.

The theory of integer-indexed arrays T Z
A augments the signature of

TA with the signature of TZ. It includes the axioms of both TA and TZ.

11.2.1 Array Property Fragment

As in Section 11.1, we are interested in the array property fragment of
T Z

A . An array property is again a ΣZ
A-formula of the form

∀i. F [i] → G[i] ,

where i is a list of integer variables, and F [i] and G[i] are the index guard and
the value constraint, respectively. The form of an index guard is constrained
according to the following grammar:

iguard → iguard ∧ iguard | iguard ∨ iguard | atom
atom → expr ≤ expr | expr = expr
expr → uvar | pexpr

pexpr → pexpr′

pexpr′ → Z | Z · evar | pexpr′ + pexpr′

where uvar is any universally quantified integer variable, and evar is any
existentially quantified or free integer variable.

The form of a value constraint is also constrained. Any occurrence of a
quantified index variable i must be as a read into an array, a[i], for array term
a. Array reads may not be nested; e.g., a[b[i]] is not allowed. Section 11.4
explains the need for these restrictions.

The array property fragment of T Z
A then consists of formulae that are

Boolean combinations of quantifier-free ΣZ
A-formulae and array properties.

Example 11.9. As in the basic arrays of Section 11.1, reasoning about arrays
is most useful when we can say something interesting about their elements.
Suppose array elements are interpreted in some theory T with signature Σ.
Now that both indices and elements can be interpreted in theories, we list
several interesting forms of properties and their definitions for various element
theories.

• Array equality a = b in TA:

∀i. a[i] = b[i]

• Bounded array equality beq(a, b, ℓ, u) in T Z
A :

∀i. ℓ ≤ i ≤ u → a[i] = b[i]

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Array Property Fragment [Bradley, Manna, Sipma VMCAI
2006]

Consider the fragment of FO logic of the combined signatures
ΣA = (·[·], ·〈· / ·〉) and ΣLA = (+,−, <, 0, 1) consisting of:
Boolean combinations of quantifier-free formulas over ΣA ∪ ΣLA

and Array Property formulas.

Example APF formula

l ≤ k ≤ u + 1 ∧
a′ = a〈k / 0〉 ∧
a′[k] 6= b′[k] ∧
a′[u + 1] = b[u + 1] ∧
∀i((l ≤ i ≤ u) =⇒ a[i] = b[i])

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Properties we can say in APF

∀i(a[i] = b[i]) (array equality)

∀i((l ≤ i ≤ u) =⇒ a[i] = b[i]) (bounded array equality)

∀i((l ≤ i ≤ u) =⇒ 0 ≤ a[i]) (bounded universal property)

∀i∀j(i ≤ j =⇒ a[i] ≤ a[j]) (increasing)

What we cannot say:

∀i∀j(i 6= j =⇒ a[i] 6= a[i]) (distinct elements)

∀i∀j(i < j =⇒ a[i] < a[j]) (strictly increasing)

∀i(b[a[i]] = c[i])

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Reduction Algorithm164 7 Arrays

✄

✂

�

✁

Algorithm 7.3.1: Array-Reduction

Input: An array property formula φA in NNF
Output: A formula φUF in the index and element theories with unin-

terpreted functions

1. Apply the write rule to remove all array updates from φA.
2. Replace all existential quantifications of the form ∃i ∈ TI . P (i) by P (j),

where j is a fresh variable.
3. Replace all universal quantifications of the form ∀i ∈ TI . P (i) by

�

i∈I(φ)

P (i) .

4. Replace the array read operators by uninterpreted functions and obtain
φUF ;

5. return φUF ;

In the second step of Algorithm 7.3.1, we instantiate the existential quantifier
with a new variable z ∈ N0:

(∀x ∈ N0. x < i =⇒ a[x] = 0)
∧ a�[i] = 0 ∧ ∀j �= i. a�[j] = a[j]
∧ z ≤ i ∧ a�[z] �= 0 .

(7.19)

The set I for our example is {i, z}. We therefore replace the two universal
quantifications as follows:

(i < i =⇒ a[i] = 0) ∧ (z < i =⇒ a[z] = 0)
∧ a�[i] = 0 ∧ (i �= i =⇒ a�[i] = a[i]) ∧ (z �= i =⇒ a�[z] = a[z])
∧ z ≤ i ∧ a�[z] �= 0 .

(7.20)

Let us remove the trivially satisfied conjuncts to obtain

(z < i =⇒ a[z] = 0)
∧ a�[i] = 0 ∧ (z �= i =⇒ a�[z] = a[z])
∧ z ≤ i ∧ a�[z] �= 0 .

(7.21)

We now replace the two arrays a and a� by uninterpreted functions Fa and
Fa� and obtain

(z < i =⇒ Fa(z) = 0)
∧ Fa�(i) = 0 ∧ (z �= i =⇒ Fa�(z) = Fa(z))
∧ z ≤ i ∧ Fa�(z) �= 0 .

(7.22)

By distinguishing the three cases z < i, z = i, and z > i, it is easy to see that
this formula is unsatisfiable.

Reduces APF(ΣZ
A) to EUF+LA, which can be shown to be decidable using

Nelson-Oppen combination.

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Example Reduction

Example

∀i((l ≤ i ≤ u) =⇒ a[i] = b[i]) ∧
¬(∀i((l ≤ i ≤ u + 1) =⇒ (a〈(u + 1) / b[u + 1]〉[i] = b[i])

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Proof of Correctness [BM]

Let K = J[~i 7→ ~v].

11.2 Integer-Indexed Arrays 299

for all v ∈ Dn
J . Let K = J ⊳ {i 7→ v}.

To do so, we prove the two implications represented by dashed arrows in
the following diagram:

F [projK(i)] G[projK(i)]

K |=

F [i] G[i]

(1) (2)

?

The top implication holds under K by assumption (11.1). If both implications
(1) and (2) hold under K, then the transitivity of implication implies that the
bottom implication holds under K as well.

For (1), we apply structural induction to the index guard F [i]. Atoms have
the form i = e, i 6= e, e 6= i, and i = j, for universally quantified variables i
and j and term e without universally quantified variables. When such a literal
is true under K, then so is the corresponding literal projK(i) = e, projK(i) 6= e,
e 6= projK(i), or projK(i) = projK(j), respectively, by definition of projK . For
example, if K |= i 6= e, then αK [i] is either equal to some αK [j] for some
j ∈ I such that αK [j] 6= αK [e] or equal to some other value v. In the latter
case, projK(i) = λ; that λ 6= e is asserted in F6 implies that projK(i) 6= e.

For the inductive case, observe that conjunction and disjunction are mono-
tonic on truth-values: each can only become “more true” as its arguments
switch from false to true. Thus, (1) holds.

For (2), just note that αK [a[i]] = αK [a[projK(i)]] by the construction of J .
The bottom implication thus holds under each variant K of J , so (11.2)

holds, completing the proof. �

Theorem 11.8 (⋆Complexity). Suppose T -satisfiability is in NP. For sub-
fragments of the array property fragment in which formulae have bounded-size
blocks of quantifiers, (TA ∪ T)-satisfiability is NP-complete.

NP-hardness follows from Theorem 9.23. That the problem is in NP follows
easily from the procedure: instantiating a block of n universal quantifiers
quantifying subformula G over index set I produces |I|n new subformulae,
each of length polynomial in the length of G. Hence, the output of Step 6 is
of length only a polynomial factor greater than the input to the procedure for
fixed n.

11.2 Integer-Indexed Arrays

Software engineers usually think of arrays as integer-indexed segments of
memory. Reasoning about indices as integers provides the power of comparison
via ≤, which enables reasoning about subarrays and properties such as that a
(sub)array is sorted or partitioned. In particular, reasoning about subarrays

Motivation Array Logic Undecidability Unquantified Array Logic Array Property Fragment Decision Procedure for APF

Overview

QF(ΣA) Decidable Reduce to EUF

FO(ΣA) ?

QF(ΣZ
A) Decidable Nelson-Oppen on QF(ΣA)+LIA

FO(ΣZ
A) Undecidable Reduction from linear loop progs.

APF(ΣA) Decidable Reduce to QF(ΣA)

APF(ΣZ
A) Decidable Reduce to QF(ΣZ

A)

	Motivation
	Array Logic
	Undecidability
	Unquantified Array Logic
	Array Property Fragment
	Decision Procedure for APF

