Array Logic

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

07 April 2025

Outline

- Motivation
- 2 Array Logic
- 3 Undecidability
- 4 Unquantified Array Logic
- **5** Array Property Fragment
- 6 Decision Procedure for APF

Array Logic (BM Ch 11, KS Ch 7)

- Two-sorted first-order logic. One sort is domain of integers, the other is domain of arrays (modelled as functions from integers to integers).
- Signature of the logic includes "array read" function:
 read(a, i) or "a[i]" (value stored at position i in a),
- and "array write" function write(a, i, v) or $a\langle i \triangleleft v \rangle$ (returns new array a' which coincides with a except at position i where it has value e).

Example formula

Motivation

$$\begin{aligned} & [(x < m) \land \\ & (0 \le i) \land \forall k (((0 \le k) \land (k < i)) \implies (a[k] \le m)) \land \\ & a' = a \langle i \triangleleft x \rangle] \\ & \implies \forall k (((0 \le k) \land (k \le i)) \implies (a'[k] \le m)). \end{aligned}$$

Application: Symbolic Execution of Array Programs

Illustrating symbolic execution for integer programs: Are there input values of x and y that lead to error being executed?

```
// input x, y
int z = 2 * y;
z = z + x;
if (x < y)
   if (z == 12)
        error();
        ...</pre>
```

```
Is x_0 < y_0 \wedge 2y_0 + x_0 = 12 satisfiable?
```

Application: Symbolic Execution of Array Programs

Are there input arrays a, b and integers i_1 , i_2 , j, v_1 that lead to error being executed?

```
// input array a, i1, ...
if (i1 == j)
...
if (i1 == i2)
...
else if (a[j] == v1)
b[j] := a[j];
a[i1] := v1;
a[i2] := v2;
if (a[j] != b[j])
error();
...
```

```
Is  \begin{split} i_1 &= j \wedge i_1 \neq i_2 \wedge a_0[j] = v_1 \wedge \\ & \left( a_0 \langle i_1 \triangleleft v_1 \rangle \langle i_2 \triangleleft v_2 \rangle \right) [j] \neq \left( b_0 \langle j \triangleleft a_0[j] \rangle \right) [j] \end{split}  satisfiable?
```

Floyd-Hoare style verification of array programs (Example 1):

```
int m = -1;
for (i = 0; i < N; i++)
  if (m < a[i])
    m := a[i];
// assert for each k: (0 <= k < N) => a[k] <= m
Adequate loop invariant for this program?</pre>
```

Floyd-Hoare style verification of array programs (Example 1):

```
int m = -1;

for (i = 0; i < N; i++)

if (m < a[i])

m := a[i];

// assert for each k: (0 <= k < N) => a[k] <= m

Adequate loop invariant for this program?

\forall k((0 \le k < i)) \implies (a[k] \le m))
```

Floyd-Hoare style verification of array programs (Example 1):

```
int m = -1;
for (i = 0; i < N; i++)
  if (m < a[i])
    m := a[i];
// assert for each k: (0 <= k < N) => a[k] <= m</pre>
```

Adequate loop invariant for this program?

$$\forall k((0 \le k < i) \implies (a[k] \le m))$$

One of the verification conditions: Is the formula $\forall a \forall N \forall m \forall i$:

```
 [ \forall k((0 \le k < i)) \Longrightarrow a[k] \le m) \land 
 (i < N) \land (i' = i + 1) \land m < a[i] \land m' = a[i] ] \Longrightarrow 
 \forall k \quad ((0 \le k < i') \Longrightarrow a[k] \le m).
```

Floyd-Hoare style verification of array programs (Example 2):

```
for (i = 0; i < N; i++)
  a[i] := 0;
// assert for each k: (0 <= k < N) => a[k] = 0
```

What is an adequate loop invariant for this program?

Floyd-Hoare style verification of array programs (Example 2):

```
for (i = 0; i < N; i++)
  a[i] := 0;
// assert for each k: (0 <= k < N) => a[k] = 0
```

What is an adequate loop invariant for this program?

$$\forall k((0 \le k < i) \implies (a[k] = 0))$$

Floyd-Hoare style verification of array programs (Example 2):

```
for (i = 0; i < N; i++)
  a[i] := 0;
// assert for each k: (0 <= k < N) => a[k] = 0
```

What is an adequate loop invariant for this program?

$$\forall k((0 \le k < i) \implies (a[k] = 0))$$

One of the verification conditions: Is the formula $\forall a \forall N \forall i$:

Basic Array Logic [BM Sec 9.5]

Two-Sorted First-Order Logic, with FO signature

$$\Sigma_{\mathcal{A}} = (\cdot[\cdot], \cdot \langle \cdot \triangleleft \cdot \rangle)$$

- Array-Term (a): $a \mid a \langle t \triangleleft t \rangle$
- Value-Term (t): $x \mid a[t]$
- Atomic-Formula: Value-Term = Value-Term |
 Array-Term = Array-Term
- Formula: Atomic-Formula $|\exists x(...)| \exists a(...)|$ Boolean combination of Formulas Interpreted in sorts integers (\mathbb{Z}) and arrays $(\mathbb{Z} \to \mathbb{Z})$.

Example $FO(\Sigma_A)$ formula

$$[\forall i(a\langle k \triangleleft v \rangle[i] = a[i])] \implies a[k] = v.$$

Note: equality of array-terms a = b is definable as $\forall i (a[i] = b[i])$.

General Array Logic [BM Sec 9.5]

FO Signature

$$\Sigma_{\mathcal{A}}^{\mathbb{Z}} = (\cdot [\cdot], \cdot \langle \cdot \triangleleft \cdot
angle), 0, 1, +, <)$$

- Variables x, y, \ldots of sort Integers, and a, b, \ldots of sort arrays.
- Array-Term (a): $b \mid a \langle t \triangleleft t \rangle$
- Value-Term (t): 0 | 1 | x | a[t] | t + t'
- Atomic-Formula: Value-Term < Value-Term | Value-Term = Value-Term | Array-Term = Array-Term
- Formula: Atomic-Formula $|\exists x(...)| \exists a(...)|$ Boolean combination of Formulas

Example $FO(\Sigma_{\Delta}^{\mathbb{Z}})$ formula

$$\forall a \forall b \forall i \forall j (0 < i < j \implies a[i] \leq b[j])$$

General Array Logic is undecidable [Bradley, Manna, Sipma VMCAI 2006]

• A linear loop program is of the form

```
\begin{array}{l} \text{int } x_1, \dots, x_n; \\ x_1, \dots, x_n := c_1, \dots, c_n; \ // \text{ initialization} \\ \text{while } (x_1 \geq 0) \ \{ \\ \text{if} \\ true -> x := A_1 \cdot x; \\ true -> x := A_2 \cdot x; \\ \dots \\ true -> x := A_m \cdot x; \\ \text{fi} \\ \end{array}
```

- A linear loop program terminates if all its non-deterministic executions terminate.
- Problem of deciding whether a linear loop program terminates is undecidable (no algorithm/decision-procedure can exist)
- Reduce termination of linear loop program to satisfiability of array logic.

Reduction

Given a linear loop program P, construct array logic formula φ_P with array variables $a_1, \ldots a_n$:

$$\exists a_1 \cdots \exists a_n \exists z \forall i \exists j \quad (a_1[z] \ge 0 \land \\ \bigwedge_{k=1}^n a_k[z] = c_i \land \\ \bigvee_{l=1}^m \rho_l(i,j) \land \\ a_1[j] \ge 0),$$

where $\rho_l(i,j)$ is the formula:

$$A_{I}(1,1) \cdot a_{1}[i] + \cdots + A_{I}(1,n) \cdot a_{n}[i] = a_{1}[j] \wedge \cdots \wedge A_{I}(n,1) \cdot a_{1}[i] + \cdots + A_{I}(n,n) \cdot a_{n}[i] = a_{n}[j].$$

 φ_P says that program P has a non-terminating execution.

Quantifier-Free Basic Array Logic [BM Sec 9.5]

Consider array logic signature without arithmetic:

$$\Sigma_A = (\cdot [\cdot], \cdot \langle \cdot \triangleleft \cdot \rangle)$$

Consider quantifier-free formulas over Σ_A .

- Array-Term (a): $b \mid a \langle t \triangleleft t \rangle$
- Value-Term (t): $x \mid a[t]$
- Atomic-Formula: Value-Term = Value-Term
- Formula: Boolean combination of Atomic-Formulas

Example $QF(\Sigma_A)$ formula

$$i_1 = j \wedge i_1 \neq i_2 \wedge a[j] = v_1 \wedge a\langle i_1 \triangleleft v_1 \rangle \langle i_2 \triangleleft v_2 \rangle [j] \neq a[j]$$

Quantifier-Free Array Logic [BM Sec 9.5]

Reduce to EUF by using the "read-over-write" rule: Repeatedly replace $F(\cdots a \langle i \triangleleft v \rangle[j] \cdots)$ by

$$(i = j) \land F(\cdots v \cdots) \lor (i \neq j) \land F(\cdots a[j] \cdots).$$

If no array writes then replace array variables a by functions f_a and array-reads a[i] by $f_a(i)$ to get an EUF formula. Use decision procedure for EUF.

Example

Check satisfiability of

$$i_1 = j \wedge i_1 \neq i_2 \wedge a[j] = v_1 \wedge a\langle i_1 \triangleleft v_1 \rangle \langle i_2 \triangleleft v_2 \rangle [j] \neq a[j]$$

$$\equiv (i_1 = j \wedge i_1 \neq i_2 \wedge a[j] = v_1 \wedge i_2 = j \wedge v_2 \neq a[j]) \vee (i_1 = j \wedge i_1 \neq i_2 \wedge a[j] = v_1 \wedge i_2 \neq j \wedge a \langle i_1 \triangleleft v_1 \rangle [j] \neq a[j])$$

$$\equiv (i_1 = j \wedge i_1 \neq i_2 \wedge a[j] = v_1 \wedge i_2 = j \wedge v_2 \neq a[j]) \vee (i_1 = j \wedge i_1 \neq i_2 \wedge a[j] = v_1 \wedge i_2 \neq j \wedge i_1 = j \wedge v_1 \neq a[j]) \vee (i_1 = j \wedge i_1 \neq i_2 \wedge a[j] = v_1 \wedge i_2 \neq j \wedge i_1 \neq j \wedge a[j] \neq a[j]).$$

Check satisfiability using EUF procedure (like Shostak on each disjunct).

Exercise

Check satisfiability of

$$a[x] = v \land x \neq y \land a\langle y \triangleleft u \rangle [x] \neq v.$$

Array Property Formulas and Array Property Fragment [BM Sec 11.1]

Unfortunately, the use of universal quantification must be restricted to avoid undecidability (see Section 11.4 for further discussion). An **array property** is a Σ_A -formula of the form

$$\forall \overline{i}.\ F[\overline{i}] \ \rightarrow \ G[\overline{i}]$$

in which \overline{i} is a list of variables, and $F[\overline{i}]$ and $G[\overline{i}]$ are the **index guard** and the **value constraint**, respectively. The index guard $F[\overline{i}]$ is any Σ_A -formula that is syntactically constructed according to the following grammar:

```
iguard → iguard ∧ iguard | iguard ∨ iguard | atom

atom → var = var | evar ≠ var | var ≠ evar | ⊤

var → evar | uvar
```

where *uvar* is any universally quantified index variable, and *evar* is any constant or unquantified (that is, implicitly existentially quantified) variable.

Additionally, a universally quantified index can occur in a value constraint $G[\overline{i}]$ only in a read a[i], where a is an array term. The read cannot be nested; for example, a[b[i]] is not allowed.

The array property fragment of T_A then consists of formulae that are Boolean combinations of quantifier-free Σ_A -formulae and array properties.

Array Property Fragment [BM Sec 11.1]

Array Property Formulas:

$$\forall \bar{i}(F(\bar{i}) \Rightarrow G(\bar{i}))$$

with above restrictions on index guard F and value constraint G.

Array Property Fragment:

Boolean combinations of

- Quantifier-Free Basic Array Formulas $(QF(\Sigma_A))$.
- Array Property Formulas.

Reduction Procedure for $APF(\Sigma_A)$

- \bullet Put given formula F in Negation Normal Form (NNF)
- ② Remove array writes (update terms) by replacing $F(a\langle i \triangleleft v \rangle)$ by

$$F(a') \wedge a'[i] = v \wedge \forall j (j \neq i \rightarrow a'[j] = a[j])$$

- **3** Remove existential quantification: Replace $F(\exists iG(i))$ by F(G(j)) for a fresh variable j. (Note that $\exists i$ can arise due to $\neg \forall i(\cdots)$ which is allowed in APF.)
- lacktriangledown Construct index set $\mathcal I$ containing
 - ullet a fresh variable λ (representing all other positions in an array),
 - terms t such that a read a[t] occurs in the formula and t is not a univ quantified var.
 - terms *t* (vars?) that occur in comparison with univ quantified var in index guards.
- **5** Replace universal quantification by finite conjunctions over \mathcal{I} .
- Resulting formula F_6 is in $\mathrm{QF}(\Sigma_A)$. Decide satisfiability using algo for $\mathrm{QF}(\Sigma_A)$.

Example

Example 11.6 from BM

Example of APF Procedure

$$F: \ a\langle I \triangleleft v \rangle[k] = b[k] \land b[k] \neq v \land a[k] = v \land \forall i (i \neq I \rightarrow a[i] = b[i]).$$

Array Property Formulas with Arithmetic [Bradley, Manna, Sipma VMCAI 2006]

 $T_{\mathsf{A}}^{\mathbb{Z}}$. An **array property** is again a $\Sigma_{\mathsf{A}}^{\mathbb{Z}}$ -formula of the form

$$\forall \overline{i}. \ F[\overline{i}] \rightarrow G[\overline{i}],$$

where \bar{i} is a list of integer variables, and $F[\bar{i}]$ and $G[\bar{i}]$ are the **index guard** and the **value constraint**, respectively. The form of an index guard is constrained according to the following grammar:

```
\begin{array}{lll} \text{iguard} & \rightarrow & \text{iguard} \wedge \text{iguard} \mid \text{iguard} \vee \text{iguard} \mid \text{atom} \\ \text{atom} & \rightarrow & \text{expr} \leq \text{expr} \mid \text{expr} = \text{expr} \\ \text{expr} & \rightarrow & uvar \mid \text{pexpr} \\ \text{pexpr} & \rightarrow & \text{pexpr'} \\ \text{pexpr'} & \rightarrow & \mathbb{Z} \mid \mathbb{Z} \cdot evar \mid \text{pexpr'} + \text{pexpr'} \end{array}
```

where *uvar* is any universally quantified integer variable, and *evar* is any existentially quantified or free integer variable.

Array Property Fragment [Bradley, Manna, Sipma VMCAI 2006]

Consider the fragment of FO logic of the combined signatures $\Sigma_A = (\cdot[\cdot], \cdot \langle \cdot \triangleleft \cdot \rangle)$ and $\Sigma_{LA} = (+, -, <, 0, 1)$ consisting of: Boolean combinations of quantifier-free formulas over $\Sigma_A \cup \Sigma_{LA}$ and Array Property formulas.

Example APF formula

$$I \le k \le u + 1 \land$$

$$a' = a\langle k \triangleleft 0 \rangle \land$$

$$a'[k] \ne b'[k] \land$$

$$a'[u + 1] = b[u + 1] \land$$

$$\forall i((I < i < u) \implies a[i] = b[i])$$

Properties we can say in APF

- $\forall i(a[i] = b[i])$ (array equality)
- $\forall i((1 \le i \le u) \implies a[i] = b[i])$ (bounded array equality)
- $\forall i((1 \le i \le u) \implies 0 \le a[i])$ (bounded universal property)
- $\forall i \forall j (i \leq j \implies a[i] \leq a[j])$ (increasing)

What we cannot say:

- $\forall i \forall j (i \neq j \implies a[i] \neq a[i])$ (distinct elements)
- $\forall i \forall j (i < j \implies a[i] < a[j])$ (strictly increasing)
- $\bullet \ \forall i(b[a[i]] = c[i])$

Reduction Algorithm

Algorithm 7.3.1: ARRAY-REDUCTION

Input: An array property formula ϕ_A in NNF

Output: A formula ϕ_{UF} in the index and element theories with uninterpreted functions

- 1. Apply the write rule to remove all array updates from ϕ_A .
- 2. Replace all existential quantifications of the form $\exists i \in T_I$. P(i) by P(j), where j is a fresh variable.
- 3. Replace all universal quantifications of the form $\forall i \in T_I$. P(i) by

$$\bigwedge_{i\in\mathcal{I}(\phi)}P(i)\ .$$

- 4. Replace the array read operators by uninterpreted functions and obtain ϕ_{UF} ;
- 5. **return** ϕ_{UF} ;

Example Reduction

Example

$$\forall i((l \le i \le u) \implies a[i] = b[i]) \land \\ \neg (\forall i((l \le i \le u+1) \implies (a\langle (u+1) \triangleleft b[u+1] \rangle [i] = b[i])$$

Proof of Correctness [BM]

Let
$$K = J[\vec{i} \mapsto \vec{v}]$$
.

$$K \models (1) \mid \underbrace{F[\operatorname{proj}_{K}(\overline{i})]}_{?} \longrightarrow G[\operatorname{proj}_{K}(\overline{i})]$$

$$K \models (1) \mid \vdots \\ \vdots \\ F[\overline{i}] \longrightarrow G[\overline{i}]$$

Overview

$\mathrm{QF}(\Sigma_A)$	Decidable	Reduce to EUF
$FO(\Sigma_A)$?	
$\mathrm{QF}(\Sigma_{\mathcal{A}}^{\mathbb{Z}})$	Decidable	Nelson-Oppen on $\mathrm{QF}(\Sigma_{\mathcal{A}}) + LIA$
$\mathrm{FO}(\Sigma_A^\mathbb{Z})$	Undecidable	Reduction from linear loop progs.
$APF(\Sigma_A)$	Decidable	Reduce to $\mathrm{QF}(\Sigma_A)$
$\mathrm{APF}(\Sigma_A^\mathbb{Z})$	Decidable	Reduce to $\mathrm{QF}(\Sigma^{\mathbb{Z}}_{\mathcal{A}})$