Mathematical Logic and Theorem Proving

Assignment 2 (First-Order Logic)

(Total marks 90. Due on Mon 24 Feb 2025)

- 1. Consider the FO signature $S=(r^{(2)},f^{(1)})$. For each of the following formulas say whether they are satisfiable, unsatisfiable, and/or valid. (10)
 - (a) $\forall x \exists y (r(x,y) \lor f(x) = y)$
 - (b) $\forall x \forall y (r(x,y) \lor \neg r(x,y))$
 - (c) $(x = y) \to f(f(x)) = f(f(y))$.
 - (d) $\forall x \, r(x, x) \land (y = z) \land \neg r(f(y), f(z)).$
- 2. Use the formal semantics of FO formulas to show that (15)
 - (a) $\forall x \varphi$ is logically equivalent to $\neg \exists x \neg \varphi$.
 - (b) $\forall x \varphi \lor \psi$ is logically equivalent to $\forall x (\varphi \lor \psi)$, provided $x \notin free(\psi)$.
 - (c) If $x \in free(\psi)$ then the above equivalence in part (b) above does not hold.
- 3. Your friend is having trouble deciding whether the following identities are correct. Help them out by saying which is correct and which is not. Justify your answers. (20)
 - (a) $\exists x (\varphi \lor \psi) \equiv \exists x \varphi \lor \exists x \psi$
 - (b) $\exists x (\varphi \land \psi) \equiv \exists x \varphi \land \exists x \psi$
 - (c) $\forall x(\varphi \lor \psi) \equiv \forall x\varphi \lor \forall x\psi$
 - (d) $\forall x(\varphi \wedge \psi) \equiv \forall x\varphi \wedge \forall x\psi$
- 4. Consider the FO-signature of equivalence relations $S_{eq} = (r^{(2)})$. Give S_{eq} sentences which define each of the following classes of structures: (10)
 - (a) The relation r is an equivalence relation with at least two equivalence classes.
 - (b) The relation r is an equivalence relation with an equivalence class containing at least two elements.
- 5. Following up on the suggestion given by Adithya in class, consider the FO signature $S = (\{\}, \{f^{(1)}\}, \{\})$ and the S-sentence (15)

$$\varphi = \forall x \forall y (f(x) = f(y) \to x = y) \land \exists y \forall x \neg (f(x) = y).$$

- (a) What does the sentence φ state?
- (b) The sentence φ appears to characterize S-structures with infinite domains. Yet we argued in class that infiniteness is not elementarily definable. Where is the catch?

6. A set $X\subseteq \mathbb{N}$ is called a spectrum if there is an FO signature S and an $S\text{-sentence }\varphi$ such that

 $X = \{n \in \mathbb{N} \mid \text{there exists a model with exactly } n \text{ elements satisfying } \varphi\}.$

Show that the following sets are spectrums:

(20)

- (a) The set $\{1, 3, 4\}$.
- (b) The set $\{3 \cdot k \mid k \in \mathbb{N}, k \ge 1\}$ (i.e. the set of non-zero multiples of 3).
- (c) The set of squares greater than 0 (i.e. $\{1,4,9,16,\ldots\}$.