Mathematical Logic and Theorem Proving

Assignment 5 (Linear Arithmetic, Array Logic, and Nelson-Oppen

(Not to be handed in)

1. Use the Fourier-Motzkin elimination technique to check the feasibility of the following system of constraints. Also use the technique to find a solution if it is feasible.

$$1 \le x \tag{1}$$

$$x + y + z \le 9 \tag{2}$$

$$z \le 4 \tag{3}$$

$$z - 4y \le 2 \tag{4}$$

2. Use the Omega Test technique to check the integer feasibility of the following system of constraints. Also use the technique to find an integer solution if there is one.

$$2y \le x + z \tag{1}$$

$$2 + x - 3z \le 8y \tag{2}$$

$$2y = 3 - 2x + 5z \tag{3}$$

- 3. Consider the $QF(\Sigma_A)$ formulas below. For each of them say by inspection whether they are satisfiable or not. Then apply the decision procedure to check their satisfiability. (10)
 - (a) $a\langle i \triangleleft e \rangle[j] = e \land i \neq j \land a[j] \neq e$
 - (b) $i_1 = j \land a[j] = v_1 \land a\langle i_1 \triangleleft v_1 \rangle \langle i_2 \triangleleft v_2 \rangle [j] \neq a[j].$
- 4. Consider the APF(Σ_A) formulas below. For each of them say by inspection whether they are satisfiable or not. Then apply the decision procedure to check their satisfiability. (10)
 - (a) $\forall i (a \langle i \triangleleft e \rangle [i] \neq e)$
 - (b) $a[k] \neq b[k] \land \forall i(a[i] = b[i]).$
- 5. Consider the formula below in the union of the quantifier-free fragments of LIA and EUF:

$$1 < x \land x < 3 \land f(x) \neq f(1) \land f(x) \neq f(3) \land f(1) \neq f(2).$$

- (a) Tell by inspection whether the formula is satisfiable or not.
- (b) Use the Nelson-Oppen technique to check satisfiability of the given formula.
- 6. Consider the formula below in the union of the quantifier-free fragments of LIA and Basic Array Logic:

$$a[i] > 1 \land a[i] + x < 2 \land x > 0 \land x = i \land a\langle x \triangleleft 2\rangle[i] \neq 1.$$

- (a) Tell by inspection whether the formula is satisfiable or not.
- (b) Use the Nelson-Oppen technique to check satisfiability of the given formula.