Completeness of First-Order Natural Deduction

Michael Kohlhase

Professorship for Knowledge Representation and Processing
Computer Science
FAU Erlangen-Niirnberg
Germany
https://kwarc.info/kohlhase

2025-03-06

Contents

1 Completeness of First-Order Natural Deduction 2
1.1 Soundness and Completeness in Logic . . . . .. .. ... .. ... ... ...... 2
1.2 Recap: First-Order Natural Deduction . . . . . . ... ... ... ... ... .... 3
1.3 Abstract Consistency and Model Existence (Overview) . . . . ... ... ... ... 5
1.4 Abstract Consistency and Model Existence for Propositional Logic . . . . . .. .. 6
1.5 A Completeness Proof for Propositional ND . . . . . .. ... ... ... ...... 10
1.6 Completeness of Propositional Tableaux . . . . . .. ... .. .. ... .. ..... 12
1.7 Abstract Consistency and Model Existence for First-Order Logic . . . . ... ... 15
1.8 A Completeness Proof for First-Order ND . . . . . ... ... ... ... .. .... 20
1.9 Completeness of First-Order Tableaux . . . . . . . .. ... ... ... ....... 21


https://kwarc.info/kohlhase

1 Completeness of First-Order Natural Deduction

In this section we show the completeness of the first-order natural deduction calculus using the
abstract consistency/model-existence method. This method has the advantage that it provides a
model-existence theorem that can be re-used for multiple calculi for a given logical system and
allows to re-use work in situations where logical systems extend each other (like propositional logic
and PREDLOG).

We will first recap propositional ND and show its completeness, essentially re-packaging the
ideas from the proof earlier in this lecture and then extend it of first-order ND. In this we only
to have to look at the four inference rules that AD' introduces on top of ADy. That makes the
completeness proof relatively easy and manageable.

1.1 Soundness and Completeness in Logic

Within the world of logics, one can derive new propositions (the conclusions, here: Socrates is
mortal) from given ones (the premises, here: Every human is mortal and Sokrates is human). Such
derivations are proofs.

In particular, logics can describe the internal structure of real-life facts; e.g. individual things,
actions, properties. A famous example, which is in fact as old as it appears, is illustrated in the
slide below.

The Miracle of Logic

> Purely formal derivations are true in the real world!
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O
eV
AY
V x (human x — mortal x) ;}') S
9 i ¥
=
it's true! —

A

human Socrates /‘:"_ ===
AN

it's true!
o
) =

>
-1
v ’. , @
mortal Socrates it must be true -- Nramdd it's true!

o , \
it's proven!
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If a formal system is correct, the conclusions one can prove are true (= hold in the real world)
whenever the premises are true. This is a miraculous fact (think about it!)

In general, formulae can be used to represent facts about the world as propositions; they have a
semantics that is a mapping of formulae into the real world (propositions are mapped to truth
values.) We have seen two relations on formulae: the entailment relation and the derivation
relation. The first one is defined purely in terms of the semantics, the second one is given by a
calculus, i.e. purely syntactically. Is there any relation between these relations?



Soundness and Completeness

> Definition 1.1. Let £ := (£, M, E) be a logical system, then we call a calculus C
for L,

> sound (or correct), iff 7/ = A, whenever HF-A, and
> complete, iff 7t A, whenever H F A.

> Goal: Find calculi C, such that F¢A iff EA  (provability and validity coincide)

> To TRUTH through PROOF (CALCULEMUS [Leibniz ~1680])
O EI9
o)
Q—C
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Ideally, both relations would be the same, then the calculus would allow us to infer all facts
that can be represented in the given formal language and that are true in the real world, and only
those. In other words, our representation and inference is faithful to the world.

A consequence of this is that we can rely on purely syntactical means to make predictions
about the world. Computers rely on formal representations of the world; if we want to solve a
problem on our computer, we first represent it in the computer (as data structures, which can be
seen as a formal language) and do syntactic manipulations on these structures (a form of calculus).
Now, if the provability relation induced by the calculus and the validity relation coincide (this will
be quite difficult to establish in general), then the solutions of the program will be correct, and
we will find all possible ones.

1.2 Recap: First-Order Natural Deduction

Natural Deduction in Sequent Calculus Formulation

> ldea: Represent hypotheses explicitly. (lift calculus to judgments)

> Definition 1.2. A judgment is a meta-statement about the provability of propo-
sitions.

> Definition 1.3. A sequent is a judgment of the form H A about the provability
of the formula A from the set H of hypotheses. We write A for () A.

> ldea: Reformulate AN} inference rules so that they act on sequents.

> Example 1.4.We give the sequent style version of 777:




— Ax ——Ax
AANBAAB AANBAAB Ax
— ANE, —— A\E; ABA
AANBB AANBA — =1
AT AB=A
AANBBAA —_— =]
=] A=B=A
AANB=BANA

> Note: Even though the antecedent of a sequent is written like a sequences, it is
actually a set. In particular, we can permute and duplicate members at will.
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Sequent-Style Rules for Natural Deduction

> Definition 1.5. The following inference rules make up the propositional sequent
style natural deduction calculus ND°:

TAA Ax TAB weaken TAV A T'ND
FATB TANB TANB
TAAB T A ! I B ’

ra rs_, rFAVBTACTIBC

TAVB ' ' TAvB rc
rAB TA=BTA
TA-B B
TAF I A
=7/ —-F
r A ra =
T -ATA Ia
FI FE ——
T F ETa
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First-Order Natural Deduction in Sequent Formulation

> Rules for connectives from /\@E

> Definition 1.6 (New Quantifier Rules). The inference rules of the first-order
sequent style ND calculus AND! consist of those from ADC plus the following
quantifier rules:

I' A X & free(T) VI vx.A VE
I'VX.A I AlB]
B o sk
T AlE] a7 I' X .A FA[X}CCEZO new 1B
I' 3X.A rcC
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1.3 Abstract Consistency and Model Existence (Overview)

We will now come to an important tool in the theoretical study of reasoning calculi: the abstract
consistency /model-existence method. This method for analyzing calculi was developed by Jaako
Hintikka, Raymond Smullyan, and Peter Andrews in 1950-1970 as an encapsulation of similar
constructions that were used in completeness arguments in the decades before. The basis for
this method is Smullyan’s Observation [Smu63| that completeness proofs based on Hintikka sets
only certain properties of consistency and that with little effort one can obtain a generalization
“Smullyan’s Unifying Principle”.

The basic intuition for this method is the following: typically, a logical system £ := (£,F) has
multiple calculi, human-oriented ones like the natural deduction calculi and machine-oriented ones
like the automated theorem proving calculi. All of these need to be analyzed for completeness (as
a basic quality assurance measure).

A completeness proof for a calculus C for S typically comes in two parts: one analyzes C-consistency
(sets that cannot be refuted in C), and the other constructs =-models for C-consistent sets.

In this situtation the abstract consistency/model-existence method encapsulates the model
construction process into a meta-theorem: the model-existence theorem. This provides a set of
syntactic (abstract consistency) conditions for calculi that are sufficient to construct models.

With the model-existence theorem it suffices to show that C-consistency is an abstract consis-
tency property (a purely syntactic task that can be done by a C-proof transformation argument)
to obtain a completeness result for C.

Model Existence Method (Overview)

>> Recap: A completeness proof for a calculus C for a logical system S := (L,F)
typically comes in two parts:
1. analyzing C-consistency (sets that cannot be refuted in C),
2. constructing [=-models for C-consistent sets.
> ldea: Re-package the argument, so that the model-construction for S can be
re-used for multiple calculi ~ the abstract consistency/model-existence method:
1. Definition 1.7. Abstract consistency class V = family of V-consistent sets.
2. Definition 1.8. A V-Hintikka set is a C-maximally V-consistent.
3. Theorem 1.9 (Hintikka Lemma). V-Hintikka set are satisfiable.
4

. Theorem 1.10 (Extension Theorem). If ® is V-consistent, then ® can be
extended to a V-Hintikka set.

. Corollary 1.11 (Henkins theorem). If ® is V-consistent, then ® is satisfiable.

o1

6. Lemma 1.12 (Application). Let C be a calculus, if ® is C-consistent, then ® is
V-consistent.

7. Corollary 1.13 (Completeness). C is complete.

> Note: Only the last two are C-specific, the rest only depend on S.

s e e
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The proof of the model-existence theorem goes via the notion of a V-Hintikka set, a set of
formulae with very strong syntactic closure properties, which allow to read off models. Jaako



Hintikka’s original idea for completeness proofs was that for every complete calculus C and every
C-consistent set one can induce a V-Hintikka set, from which a model can be constructed. This
can be considered as a first model-existence theorem. However, the process of obtaining a V-Hin-
tikka set for a C-consistent set ® of propositions usually involves complicated calculus dependent
constructions.

In this situation, Raymond Smullyan was able to formulate the sufficient conditions for the
existence of V-Hintikka set in the form of “abstract consistency properties” by isolating the calculus
independent parts of the Hintikka set construction. His technique allows to reformulate V-Hintikka
set as maximal elements of abstract consistency classes and interpret the Hintikka set construction
as a maximizing limit process.

To carry out the abstract consistency/model-existence method, we will first have to look at the
notion of consistency.

consistency and refutability are very important notions when studying the completeness for calculi;
they form syntactic counterparts of satisfiability.

Consistency and Refutability: Some General Definitions

> Definition 1.14. We call a pair of propositions A and —A a contradiction.
> A formula set ® is C-refutable, if C can derive a contradiction from it.

> Definition 1.15. Let C be a calculus, then a logsys/proposition set @ is called
C-consistent, iff there is a logsys/proposition B, that is not derivable from @ in C.

> Definition 1.16. We call a calculus C reasonable, iff implication elimination and
conjunction introduction are admissible in C and A A =A = B is a C-theorem.

> Theorem 1.17. C-inconsistency and C-refutability coincide for reasonable calculi.
> Remark 1.18. We will use that C-irrefutable = C-consistent below.

> A C-consistency (syntactic) and satisfiability (semantics) are fundamentally dif-
ferent!

> Relating them is the meat of the abstract consistency/model-existence method.

sy R e
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It is very important to distinguish the syntactic C-refutability and C-consistency from satisfiability,
which is a property of formulae that is at the heart of semantics. Note that the former have the
calculus (a syntactic device) as a parameter, while the latter does not. In fact we should actually
say S-satisfiability, where (£,F) is the current logical system.

Even the word “contradiction” has a syntactical flavor to it, it translates to “saying against
each other” from its Latin root.

1.4 Abstract Consistency and Model Existence for Propositional Logic

Abstract Consistency

> Definition 1.19. Let V be a collection of sets. We call V closed under subsets,
iff for each ® € V, all subsets ¥ C ® are elements of V.

> Definition 1.20 (Notation). We will use ®+A for ® U {A}.




> Definition 1.21. A collection V of sets of propositional formulae is called an
propositional abstract consistency class (ACC?), iff it is closed under subsets,
and for each ® € V

V.) P& ®or—P¢®for Pec)

) =—A € & implies PxA € V

Vv) AV B e & implies ®xA € V or &+B € V
) (A VB) € ®implies®U {-A,-B} € V

> Example 1.22. The empty collection is an ACC?.
> Example 1.23. The collection {(), {Q},{P VvV Q},{PV Q,Q}} is an ACCC.

> Example 1.24. The collection of satisfiable sets is an ACCC.
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So a collection of sets (we call it a collection, so that we do not have to say “set of sets” and we
can distinguish the levels) is an abstract consistency class, iff it fulfills five simple conditions, of
which the last three are closure conditions.

Think of an abstract consistency class as a collection of “consistent” sets (e.g. C-consistent
for some calculus C), then the properties make perfect sense: They are naturally closed under
subsets — if we cannot derive a contradiction from a large set, we certainly cannot from a subset,
furthermore,

V.) If both P € & and =P € ®, then & cannot be “consistent”.

V.) If we cannot derive a contradiction from ® with -—A € ® then we cannot from ®xA, since
they are logically equivalent.

The other two conditions are motivated similarly. We will carry out the proof here, since it
gives us practice in dealing with the abstract consistency properties.

The main result here is that abstract consistency classes can be extended to compact ones.
The proof is quite tedious, but relatively straightforward. It allows us to assume that all abstract
consistency classes are compact in the first place (otherwise we pass to the compact extension).
Actually we are after abstract consistency classes that have an even stronger property than just
being closed under subsets. This will allow us to carry out a limit construction in the V-Hintikka
set extension argument later.

Compact Collections

> Definition 1.25. We call a collection V of sets compact, iff for any set ® we have
® c V, iff U € V for every finite subset ¥ of ®.

> Lemma 1.26. /fV is compact, then V is closed under subsets.

> Proof:
1. Suppose SC T and T € V.
2. Every finite subset A of S is a finite subset of T'.
3. As V is compact, we know that A € V.
4. Thus S € V.
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The property of being closed under subsets is a “downwards-oriented” property: We go from large
sets to small sets, compactness (the interesting direction anyways) is also an “upwards-oriented”
property. We can go from small (finite) sets to large (infinite) sets. The main application for
the compactness condition will be to show that infinite sets of formulae are in a collection V by
testing all their finite subsets (which is much simpler).

Compact Abstract Consistency Classes

> Lemma 1.27. Any ACC? can be extended to a compact one.

> Proof:

1. We choose V' := {® C wffy(Vy) | every finite subset of ® is in V}.
2. Now suppose that ® € V. V is closed under subsets, so every finite subset of
® isin V and thus ® € V'. Hence V C V',
3. Next let us show that V'’ is compact.
3.1. Suppose ® € V' and ¥ is an arbitrary finite subset of ®.
3.2. By definition of V' all finite subsets of ® are in V and therefore ¥ € V',
3.3. Thus all finite subsets of ® are in V' whenever ® is in V.
3.4. On the other hand, suppose all finite subsets of ® are in V'.
3.5. Then by the definition of V’ the finite subsets of ® are also in V, so
® € V'. Thus V' is compact.
4. Note that V' is closed under subsets by the Lemma above.
5. Now we show that if V satisfies V., then V' does too.
5.1. To show V., let ® € V’ and suppose there is an atom A, such that
{A,—A} C ®. Then {A,~A} € V contradicting V..
5.2. To show V_, let ® € V' and -——A € ®, then ®xA c V'.
5.2.1. Let ¥ be any finite subset of ®+A, and © := (V\{A})x——A.
5.2.2. © is a finite subset of ®, so © € V.
5.2.3. Since V is an abstract consistency class and ——A € O, we get
OxA € V by V...
5.2.4. We know that ¥ C ©x*A and V is closed under subsets, so ¥ € V.
5.2.5. Thus every finite subset ¥ of ®xA is in V and therefore by definition
DA € V.
5.3. the other cases are analogous to that of V..
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Hintikka sets are sets of formulae with very strong analytic closure conditions. These are motivated
as maximally consistent sets i.e. sets that already contain everything that can be consistently
added to them.

V-Hintikka set

> Definition 1.28. Let V be an abstract consistency class, then we call a set H € V
a V-Hintikka set, iff H is C-maximal in V, i.e. for all A with HxA € V we
already have A € H.

> Theorem 1.29 (Hintikka Properties). Let V be an abstract consistency class
and H be a V-Hintikka set then

H.) For all A € wffy(Vy) we have A & H or A ¢ H




H-) If -—A € H then A ¢ H
Hy)IFAVBeH then AcHorBeH
Hp) If=(AVB) € H then -A,-B c H

> Remark: Hintikka sets are usually defined by the properties .. above, but here we
(more generally) characterize them by C-maximality and regain the same properties.
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V-Hintikka set

> Proof: We prove the properties in turn

1. H. goes by induction on the structure of A
1.1. A€V, Then A ¢ H or =A & H by V..
12. A=-B
1.2.1. Let us assume that =B € H and ——B € H,
1.2.2. then H+B € V by V., and therefore B € H by maximality.
1.2.3. So both B and —B are in H, which contradicts the induction hy-
pothesis.
1.3. A = B V C is similar to the previous case
2. We prove H_, by maximality of H in V.
2.1. If =—A € H, then HxA € V by V_.
2.2. The maximality of H now gives us that A € H.
3. The other .. can be proven analogously.
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The following theorem is one of the main results in the abstract consistency/model-existence
method. For any V-consistentset ® it allows us to construct a V-Hintikka setH with ® € H.

Extension Theorem

> Theorem 1.30. /f V is an abstract consistency class and ® € V, then there is a
V-Hintikka setH with ® C H.

> Proof-

1. Wlog. we assume that V is compact (otherwise pass to compact extension)
2. We choose an enumeration Ay, ... of the set wffy (Vo)
3. and construct a sequence of sets H; with Hg := ® and

S H, if H,xA, ¢V
ntl H,*xA, if HyxA, €V

. Note that all H; € V, choose H := [ J,_,H;

. W C H finite implies there is a j € N such that ¥ C H;,

.50 ¥ € V as V is closed under subsets and H € V as V is compact.

. Let H+B € V, then there isa j € N with B = A, so that B € H;,; and
H; .1 CH

8. Thus H is V-maximal

~N O G




iy T e
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Note that the construction in the proof above is non-trivial in two respects. First, the limit
construction for H is not executed in our original abstract consistency class V, but in a suitably
extended one to make it compact — the original would not have contained H in general. Second,
the set H is not unique for ®, but depends on the choice of the enumeration of wffy(Vy). If we pick
a different enumeration, we will end up with a different 7. Say if A and —A are both V-consistent
with @, then depending on which one is first in the enumeration H, will contain that one; with all
the consequences for subsequent choices in the construction process.

Valuation

> Definition 1.31. A function v: wffy(Vy) — Dy is called a (propositional) valua-
tion, iff

>v(-A)=T,iffv(A)=F
>V(AAB)=T,iffv(A)=Tand »(B)=T

> Lemma 1.32. If v: wifo(Vo) — Dy is a valuation and ® C wffy(Vy) with v(P) =
{T}, then ® is satisfiable.

> Proof sketch: ”|v0 : Vo — Dy is a satisfying variable assignment.

> Lemma 1.33. If ¢: Vy — Dy is a variable assignment, then Z,: wffy(Vy) — Dy is
a valuation.

sy e e
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Now, we only have to put the pieces together to obtain the model existence theorem we are
after.

Model Existence

> Lemma 1.34 (Hintikka-Lemma). /f V is an abstract consistency class and H a
V-Hintikka set, then H is satisfiable.

> Proof:

1. We define v(A) :=T, iff A e H
2. then v is a valuation by the Hintikka properties
3. and thus v, is a satisfying assignment.

> Theorem 1.35 (Model Existence). If V is an abstract consistency class and
® €V, then ® is satisfiable.

Proof:
> 1. There is a V-Hintikka set H with ® C H (Extension Theorem)
2. We know that # is satisfiable. (Hintikka-Lemma)

3. In particular, ® C H is satisfiable.
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1.5 A Completeness Proof for Propositional ND

With the model existence proof we have introduced in the last subsection, the completeness proof

10



for propositional natural deduction is rather simple, we only have to check that ND-consistency
is an ACCY.

Consistency, Refutability and V-Consistency

> Theorem 1.36 (Non-Refutability is an ACC?).
[:={® C wfy(Vy) | ® is not NDy-refutable} is an ACCP.

> Proof: We check the properties of an ACC

1. If ® is non-refutable, then any subset is as well, so I" is closed under subsets.
We show the abstract consistency properties V. for ® € T'.
2.V,
2.1. We have to show that A ¢ ® or —A ¢ ® for atomic A € wffy(Vy).
2.2. Equivalently, we show the contrapositive: If {A,—~A} C ®, then ® ¢ T.
2.3.So let {A,—A} C ®, then ® is ND))-refutable by construction.
24.S0 ¢ ¢7T.
3. V.. We show the contrapositive again
3.1. Let ~—A € ® and PxA ¢ T
3.2. Then we have a refutation D: &+« Ak p F'
3.3. By prepending an application of —F for =—A to D, we obtain a refutation
D': B F.
3.4. Thus & ¢ T.
4. The other V., can be proven analogously.

siedly R e
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This directly yields two important results that we will use for the completeness analysis.

Henkin's Theorem

> Corollary 1.37 (Henkin's Theorem). Every N)-consistent set of propositions is
satisfiable.

> Proof:

1. Let ® be a NI})-consistent set of propositions.
2. The collection of sets of A/D)-consistent propositions constitute an ACCC.

3. Thus the model existence theorem guarantees a variable assignment that sat-
isfies ®.

iy e wean
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Now, the completeness result for propositional natural deduction is just a simple argument
away. We also get a compactness theorem (almost) for free: logical systems with a complete
calculus are always compact.

Completeness of ND),

> Theorem 1.38 (Completeness Theorem for ND})). If ® E A, then ®F,p A.

> Proof: We prove the result by playing with negations.
1.1f ® E A, then (by definition) A is satisfied by all variable assignment that

11



satisfy @
2. So ®x—A has no satisfying assignment.
3. Thus ®x—A is inconsistent by (the contrapositive of) Henkins Theorem.
4. So ®Fpm ——A by NI and thus @ A by —F.

siedly e Weasr
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1.6 Completeness of Propositional Tableaux

Just to show that the model existence theorem helps us with other calculi, we now introduce
the propositional tableau calculus, a calculus for propositional logic that is optimized for ease of
implementation.

Test Calculi: Tableaux and Model Generation

> ldea: A tableau calculus is a test calculus that

> analyzes a labeled formulae in a tree to determine satisfiability,

> its branches correspond to valuations (~ models).

> Example 1.39. Tableau calculi try to construct models for labeled formulae: E.g. the
propositional tableau calculus for PI?

Tableau refutation (Validity) | Model generation (Satisfiability)
EPANQ=QANP EPA(QV-R)N—-Q
2
(PAQ=QAP) (P(Ap(f(vQﬂflg);Q)
(PAQ)! ~oT
QA P)F oF
p' P
Q' T
P QF (QV—R)
L T QT “RT
1 | RF
No Model Herbrand valuation {PT,QF, R"}
p={P—=T,Q—F R—F}

>> ldea: Open branches in saturated tableaux yield satisfying assignments.

> Algorithm: Fully expand all possible tableaux, (no rule can be applied)
> Satisfiable, iff there are open branches (correspond to models)
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Tableau calculi develop a formula in a tree-shaped arrangement that represents a case analysis
on when a formula can be made true (or false). Therefore the formulae are decorated with upper
indices that hold the intended truth value.

On the left we have a refutation tableau that analyzes a negated formula (it is decorated with
the intended truth value F). Both branches contain an elementary contradiction L.

On the right we have a model generation tableau, which analyzes a positive formula (it is
decorated with the intended truth value T). This tableau uses the same rules as the refutation
tableau, but makes a case analysis of when this formula can be satisfied. In this case we have a
closed branch and an open one. The latter corresponds a model.

Now that we have seen the examples, we can write down the tableau rules formally.

12



Analytical Tableaux (Formal Treatment of 7))

> ldea: A test calculus where

> A labeled formula is analyzed in a tree to determine satisfiability,

> branches correspond to valuations (models)

> Definition 1.40. The propositional tableau calculus 7, has two inference rules

per connective (one for each possible label)
AO(
aF B
(AAB)' (AAB)" -AT . AT AP
A Vo =T ——=— Tom - 7T

AT To AF | BF To AF Y AT To uE To

BT
Use rules exhaustively as long as they contribute new material ~ (~ termination)

> Definition 1.41. We call any tree ( ‘ introduces branches) produced by the 7y
inference rules from a set ® of labeled formulae a tableau for ®.

> Definition 1.42. Call a tableau saturated, iff no rule adds new material and a
branch closed, iff it ends in L, else open. A tableau is closed, iff all of its branches
are.

In analogy to the | at the end of closed branches, we sometimes decorate open
branches with a O symbol.
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These inference rules act on tableaux have to be read as follows: if the formulae over the line
appear in a tableau branch, then the branch can be extended by the formulae or branches below
the line. There are two rules for each primary connective, and a branch closing rule that adds the
special symbol L (for unsatisfiability) to a branch.

We use the tableau rules with the convention that they are only applied, if they contribute new
material to the branch. This ensures termination of the tableau procedure for propositional logic
(every rule eliminates one primary connective).

Definition 1.43. We will call a closed tableau with the labeled formula A® at the root a tableau
refutation for A%.

The saturated tableau represents a full case analysis of what is necessary to give A the truth

value o since all branches are closed (contain contradictions) this is impossible.

Analytical Tableaux (7, continued)

> Definition 1.44 (7)-Theorem/Derivability). A is a 7j-theorem (Fr A), iff
there is a closed tableau with AT at the root.
@ C wffy(Vy) derives A in Ty (PF7, A), iff there is a closed tableau starting with

AF and ®". The tableau with only a branch of AF and ®7 is called initial for
OF A,
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Definition 1.45. We will call a tableau refutation for A" a tableau proof for A, since it refutes
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the possibility of finding a model where A evaluates to F. Thus A must evaluate to T in all
models, which is just our definition of validity.

Thus the tableau procedure can be used as a calculus for propositional logic. In contrast to the
propositional Hilbert calculus it does not prove a theorem A by deriving it from a set of axioms,
but it proves it by refuting its negation — here in form of a F label. Such calculi are called negative
or test calculi. Generally test calculi have computational advantages over positive ones, since they
have a built-in sense of direction.

We have rules for all the necessary connectives (we restrict ourselves to A and —, since the others
can be expressed in terms of these two via the propositional identities above. For instance, we can
write AV B as 7(-wAA—-B),and A=Bas -AVB,....)

A more Complex 7 Tableau

> Example 1.46. We construct a saturated 7 tableau for the formula =((AV B) A
“(BAC)A(-CV—-A)):
F

—((AVB)AN=(BAC)A(=CV mél))T

(AVB)A—(BAC)A(~CV —A))

(AvB)"
(~(BAC) A (-CV-A)T
~(BArC)T
(~C Vv -A)"
(BACO)T
AT BT
“CT "AT “C—r ﬁ14T
cr AF cr AF
BF CF BF CF BF CF BF CF
O | O 1] L 1] 0O 1] DO

So we have four closed branches (they end in L), and four open ones (decorated by
0), these correspond to counter-examples to validity.
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We encapsulate all of the technical difficulties of the problem in a technical Lemma. From that,
the completeness proof is just an application of the high-level theorems we have just proven.

Abstract Consistency for 7

> Lemma 1.47. V := {®|®" has no closed Ty-tableau} is an ACCY.

> Proof: We convince ourselves of the abstract consistency properties
1. For V., let P,—~P € & implies P7, PT ¢ ®T.
1.1. So a single application of 75 vyields a closed tableau for &'
2. For V., let =——A € ®.
2.1. For the proof of the contrapositive we assume that ®*A has a closed
tableau 7 and show that already ® has one:
2.2. Applying each of 75— and 7" once allows to extend any tableau branch
that contains -——B“ by B,
2.3. Any branch in T that is closed with == A%, can be closed by A%.
3. Y4, Suppose AV B c ® and both ®+A and ®+B have closed tableaux
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3.1. Consider the tableaux:

\I/T
(AvB)"
AT BT
Rest! | Rest?

o o
AT BT
Rest? Rest?

4. V), Suppose, -(AV B) € ® and ®{—A,-B} have closed tableau T.
4.1. We consider

\I/T

@T F

AF (A v FB)

BF A
B F

Rest
Rest
where & = Ux—(A VvV B).
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Observation: If we look at the completeness proof below, we see that the Lemma above is the
only place where we had to deal with specific properties of the 7.

So if we want to prove completeness of any other calculus with respect to propositional logic,
then we only need to prove an analogon to this Lemma and can use the rest of the machinery we
have already established “off the shelf”.

This is one great advantage of the “abstract consistency/model-existence method”; the other is
that the method can be applied to other logics as well. In particular, if these logic are extensions,
then we can re-use the work we did already and only cover the additions.

Completeness of T

> Corollary 1.48. 7 is complete.

> Proof: by contradiction
1. We assume that A € wffy())) is valid, but there is no closed tableau for AF.
2. We have {-A} ¢ Vas -A" = A"
3. So —A is satisfiable by the model-existence theorem (which is applicable as V
is an abstract consistency class by our Lemma above).
4. This contradicts our assumption that A is valid.
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We leave the soundness result for the first order natural deduction calculus to the reader and
turn to the completeness result, which is much more involved and interesting.

1.7 Abstract Consistency and Model Existence for First-Order Logic

We will now extend the notion of abstract consistency class from propositional logic to PRED-
LOG. For that we will have to introduce abstract consistency properties for the quantifiers the
characterize PREDLOG.

Abstract Consistency

> Definition 1.49. A collection V C wff,(X,,V,) of sets of formulae is called a
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first-order abstract consistency class (ACC!), iff it is a ACC® and additionally

V) If VX A € @, then ®+(A[2]) € V for each closed term B.

Vi) If =(VX.A) € ® and c is an individual constant that does not occur in @,
then ®+—(Al£]) € V

> Example 1.50. The collection {(), {Vx.p(z)}} is an ACC. (no closed terms)

> Example 1.51. The collection ® := {0, {p(a)}, {Vz.p(z)}} is not an ACC.
e {p(a),Vx.p(x)} is missing from ®.

> Example 1.52. The collection ® := {(), {3z.p(x)}} is not an ACC'.
«~ {p(c),Jx.p(x)} is missing from ® or some individual constant ¢
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Again, the conditions are very natural: Take for instance V4, it says that if a set ® that contains
a sentence —(VX.A) is “consistent”, then we should be able to extend it by —(A[%]) for any new
individual constant ¢ without losing this property; in other words, a complete calculus should be
able to recognize —(VX.A) and —(A[£]) to be equivalent.

Compact Abstract Consistency Classes

> Lemma 1.53. Any ACC! can be extended to a compact one.

> Proof: We extend the proof for propositional logic; we only have to look at the two
new abstract consistency properties.

1. Again, we choose V' := {® C cuf,(3,) |every finite subset of ® isin V}.
This can be seen to be closed under subsets and compact by the same argument
as above.

2. To show W, for V/, let ® € V' and VX.A € ®.

2.1. Let ¥ be any finite subset of ®+(A[Z]), and © := (V\{A[Z]})*(VX.A).
2.2. © is a finite subset of ®, so © € V.
2.3. Since V is a ACC! and A[2] € O, we get O+(VX.A) € V by W,.
2.4. We know that ¥ C ©x(A[2Z]) and V is closed under subsets, so ¥ € V.
2.5. Thus every finite subset ¥ of ®+(A[2]) isin V and therefore by definition
ox(A[Z]) e V.
3. The V5 case are analogous to that for V4.
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Hintikka sets are sets of sentences with very strong analytic closure conditions. These are motivated
as maximally consistent sets i.e. sets that already contain everything that can be consistently
added to them.

V-Hintikka set

> Theorem 1.54 (Hintikka Properties). Let V be a ACC! and H be a V-Hintikka
set, then H has all the propositional Hintikka properties plus

Hy) IFYX.A € H, then A[B] € H for each closed term B.
Ha) If ~(VX.A) € H then ~(A[2]) € H for some closed term B.
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> Proof: We prove the two new cases

1. We prove Hy by maximality of H in V.

1.1 If YX.A € H, then H+(A[B]) € V by V.

1.2. The maximality of H now gives us that A[B] € H.
2. The proof of H3 is similar
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The following theorem is one of the main results in the abstract consistency/model-existence
method. For any V-consistent set ® it allows us to construct a V-Hintikka set H with ® € H.

Extension Theorem

> Theorem 1.55. IfV is a ACC! and ® € V finite, then there is a V-Hintikka set

H with ® C H.
> Proof:
1. Wlog. assume that V compact (else use compact extension)
2. Choose an enumeration Ay, ... of cuwff,(X,) and ¢1,ca, ... of Zék.

3. and construct a sequence of sets H; with Hy := ® and

H, ifH,xA, ¢V
Hy = H, U{A,, ~(B[%])} if H,*A, € Vand A,, = ~(VX.B)
H,*xA, else

. Note that all H; € V, choose H := [, H;

. W C H finite implies there is a j € N such that ¥ C H;,

.50 ¥ € V as V closed under subsets and H € V as V is compact.

. Let H+B € V, then there isa j € N with B = A, so that B € H;,; and
Hjpmn CH

8. Thus H is V-maximal

~N O G~
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Note that the construction in the proof above is non-trivial in two respects. First, the limit
construction for H is not executed in our original abstract consistency class V, but in a suitably
extended one to make it compact — the original would not have contained A in general. Second,
the set H is not unique for @, but depends on the choice of the enumeration of cwff,(3,). If we pick
a different enumeration, we will end up with a different 7. Say if A and —A are both V-consistent
with @, then depending on which one is first in the enumeration H, will contain that one; with all
the consequences for subsequent choices in the construction process.

What now?

D> The next step is to take a V-Hintikka set — the extension lemma above gives us
one — and show that it is satisfiable.

> Problem: For that we have to conjure a model (A,7) out of thin air.

> Idea 1: Maybe the V-Hintikka set will help us with the interpretation

« After all it helped us with the variable assignments in PI7.
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> Idea 2: For the universe we use something that is already lying around:

~> The set cuff,(¥) of closed terms!
> Again, the notion of a valuation helps write things down, so we start with that.

> Tighten your seat belts and hold on.

sy R e
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Valuations

> Definition 1.56. A function v: cwff,(3,) — Dy is called a (first-order) valuation,
iff 1 is a propositional valuation and

> v(VX.A) =T, iff v(A[2]) = T for all closed terms B.

> Lemma 1.57. If ¢: V, — U is a variable assignment, then Z: cuff,(3,) — Dy is
a valuation.

> Proof sketch: Immediate from the definitions.

sl TR R
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Note: A valuation is a weaker notion of evaluation in first-order logic; the other direction is also
true, even though the proof of this result is much more involved: The existence of a first-order
valuation that makes a set of sentences true entails the existence of a model that satisfies it.

Valuation and Satisfiability

> Lemma 1.58. Ifv: cwff,(3,) — Dy is a valuation and ® C cuff,(X,) with v(®) =
{T}, then ® is satisfiable.

> Proof: We construct a model M := (D,,Z) for ®.
1. Let D, := cuwff,(%2,), and
>Z(f): D* =D, (A, ..., Ap) = f(Aq,...,Ay) for fe X/
>Z(p) : DF 5Dy (Aq,...,Ap) = v(p(Aq,...,Ay)) for p € 2P
2. Then variable assignments into D, are ground substitutions.
3. We show 7, (A) = Ay for A € wff,(¥,,V,) by induction on A:
3.1.If A= X, then Z,(A) = X by definition.
32.1f A = f(Aq,...,Ag), then Z,(A) = Z(f)(Zy(A1),.... Zy(Ay)) =
Z(f)(Argp, ..., Anp) = f(Arp,...  Anp) = f(A1,.. ., Ag)p = Ap
4. We show Z,(A) = v(Ap) for A € wff,(3,,V,) by induction on A.
41.1f A = p(Aq,...,Ag) then Z,(A) = Z(p)(ZTy(Ar)..... Iy(Ay)) =
I(p)(Arp,.... App) = v(p(A1p, ... . Anp)) = V(p(Ar, ..., Ag)p) =
v(Ayp)
42 If A=-Bthen Z,(A)=T,iff Z7,(B) = v(By) = F, iff v(Ap) =T.
43. A =B AC is similar
44 1f A=VX BthenZ,(A)=T,iff Z,(B) =v(By) =T, forall C € D,,
where 1) = ,[<]. This is the case, iff 7(Agp) = T.
5. Thus Z,(A) = v(Ap) =v(A) =T for all A € ®.
6. Hence M F A.
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Herbrand-Model

> Definition 1.59. Let ¥ := (%/ %) be a first-order signature, then we call (D, T)
a Herbrand model, iff
1. D = cuff,(¥) —i.e. the Herbrand universe over .

2.Z(f): D* - D;(A1,..,A)— f(A4,..., Ag) for function constants f € %7,
and

3. Z(p) C D* for predicate constants p.

> Note: Variable assignments into D = cuff,(X) are naturally ground substitutions
by construction.

> Lemma 1.60. 7,(t) =ty for terms t.
Proof sketch: By induction on the structure of A.

> Corollary 1.61. A Herbrand model M can be represented by the set H = {A €
cuff(X) | A atomic and M E ®} of closed atoms it satisfies.
Proof: Let A = p(i1,..., 1)

1. Ty(A) = Ty (pltrs . 14) = Z(0) (16, . o)) = T, iff A € Hog.
2. In the definition of Herbrand model, only the interpretation of predicate con-
stants is flexible, and H, determines that.

> Theorem 1.62 (Herbrand’s Theorem). A set ® of first-order propositions is
satisfiable, iff it has a Herbrand model.
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Now, we only have to put the pieces together to obtain the model existence theorem w
after.

€ are

Model Existence

> Theorem 1.63 (Hintikka-Lemma). If V is an ACC' and H a V-Hintikka set,
then H is satisfiable.
> Proof:

1. we define v(A):=T, iff A € H,
2. then v is a valuation by the Hintikka set properties.
3. We have v(H) = {T}, so H is satisfiable.

> Theorem 1.64 (Model Existence). If V is an ACC' and ® € V, then ® is

satisfiable.
Proof:
> 1. There is a V-Hintikka set H with ® C #H (Extension Theorem)
2. We know that # is satisfiable. (Hintikka-Lemma)

3. In particular, ® C H is satisfiable.
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1.8 A Completeness Proof for First-Order ND

With the model existence proof we have introduced in the last section, the completeness proof
for first-order natural deduction is rather simple, we only have to check that ND-consistency is an

ACC!.

Consistency, Refutability and V-consistent

> Theorem 1.65 (\D'-Non-Refutability is an ACC?).
= {®C cuf,(X,)|® is not ND'-refutable} is an ACCL.

> Proof: We check the two additional properties of an ACC!
1. W: We use the contrapositive
1.1.So let YX.A € ®, ® c T, and ®+(A[2]) ¢ T,
1.2. then there is a ND'-refutation of ®x(A[4]).
1.3. Prepending VF to that, gives us a N/D'-refutation of ®.
1.4. So ® ¢ T, which is what we wanted to show for the contrapositive of W% .
2. V5 can be proven similarly using VI
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This directly yields two important results that we will use for the completeness analysis.

Henkin's Theorem

> Corollary 1.66 (Henkin’s Theorem). Every N'D'-consistent set of sentences has
a model.

> Proof:

1. Let ® be a AD'-consistent set of sentences.
2. The collection of sets of A/D'-consistent sentences constitute an ACC!.
3. Thus the model existence theorem guarantees a model for &.

> Corollary 1.67 (Léwenheim&Skolem Theorem). Any satisfiable set ® of first-
order sentences has a countable model.

Proof sketch: The model we constructed is countable, since the set of ground terms

IS.
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Now, the completeness result for first-order natural deduction is just a simple argument away.
We also get a compactness theorem (almost) for free: logical systems with a complete calculus are
always compact.

> Completeness and Compactness

> Theorem 1.68 (Completeness Theorem for ND!). If ® E A, then ®p1 A.
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> Proof: We prove the result by playing with negations.
1. If A is valid in all models of ®, then ®x—A has no model
2. Thus ®+—A is inconsistent by (the contrapositive of) Henkins Theorem.
3. So ®F \p1——A by NDyI and thus & p1 A by —F.

> Theorem 1.69 (Compactness Theorem for first-order logic). If ® F A, then
there is already a finite set ¥ C ® with W = A.

Proof: This is a direct consequence of the completeness theorem

> 1. We have ® F A, iff OF p1 A
2. As a proof is a finite object, only a finite subset ¥ C ® can appear as leaves
in the proof.
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1.9 Completeness of First-Order Tableaux

Only because we can, we will now take a a brief excusion into first-order tableaux, briefly
introduce the standard tableaux calculus and sketch the completeness proof in one slide. Just to
show how easy things become.

Note that the standard tableau calculus for first-order logic 7; is not what we would nor-
mally use for practical automated theorem proving systems — that would need the introduction of
unification — but it at least shows another completeness proof easily.

We will now extend the propositional tableau techniques to first-order logic. We only have to add
two new rules for the universal quantifier (in positive and negative polarity).

First-Order Standard Tableaux (7;) are Complete

> Definition 1.70. The standard tableau calculus (7;) extends 7, (propositional
tableau calculus) with the following quantifier rules:

(VX.A)" cengF new
F

)
(vX.A) Cecufi(2) .,

=
(Alg)’ (Al£))

> Theorem 1.71. 7 is refutation complete.

> Proof: We show that V := {®|®" has no closed 7tableau} is an ACC?

1. V., V., Y, and V, as for Ty; W similar to the next (V) below.

2. V5. We prove the contrapositive
2.1. Let ® = Ux(JX.A), but +(Al£]) 4V,
2.2. then ®x(A[%]) has a closed T;-tableau (on the left).

vl T
(3X.A)" (AxX.A)"
Algh"  Aalg)’

Rest Rest

The right 7;-tableau starts with ® = U«(3X.A) and applies 71 9 and then
continues as on the left.
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3. We argue from V = ACC! to completeness as above.
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The rule 77 V operationalizes the intuition that a universally quantified formula is true, iff all of
the instances of the scope are. To understand the 7; 3 rule, we have to keep in mind that 3X.A
abbreviates —(VX.—A), so that we have to read (VX.A)" existentially — i.e. as (3X.—A)", stating
that there is an object with property —A. In this situation, we can simply give this object a name:

¢, which we take from our (infinite) set of witness constants ng, which we have given ourselves

expressly for this purpose when we defined first-order syntax. In other words (ﬁA[ﬁ])T = (A[%])F

holds, and this is just the conclusion of the 77 3 rule.
Problem: The rule 77V displays a case of “don’t know indeterminism™ to find a refutation we
have to guess a formula C from the (usually infinite) set cuwff,(3,).

For proof search, this means that we have to systematically try all, so 7; V is infinitely branching
in general.
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