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Chapter 1
Completeness of First-Order Natural Deduction
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1.1 Soundness and Completeness in Logic
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The Miracle of Logic

» Purely formal derivations are true in the real world!

World of Logics Real World

V x (human x — mortal x)

it's true!

A
7

human Socrates
it's true!
J R
=7 ”k
mortal Socrates it must be true -
it's proven!
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Soundness and Completeness

» Definition 1.1. Let £ := (£, M,F) be a logical system, then we call a calculus
C for L,

» sound (or correct), iff 7 E A, whenever HcA, and
» complete, iff HcA, whenever H = A.

» Goal: Find calculi C, such that -cA iff EA (provability and validity coincide)

» To TRUTH through PROOF (CALCULEMUS [Leibniz ~1680])
O L
o)
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1.2 Recap: First-Order Natural Deduction
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Natural Deduction in Sequent Calculus Formulation

» Idea: Represent hypotheses explicitly. (lift calculus to judgments)

» Definition 2.1. A judgment is a meta-statement about the provability of
propositions.

> Definition 2.2. A sequent is a judgment of the form H A about the
provability of the formula A from the set H of hypotheses. We write A for () A.

> Idea: Reformulate NI} inference rules so that they act on sequents.

> Example 2.3.We give the sequent style version of 777:

— Ax ——Ax
AABAAB AABAAB — Ax
NE, ——  AE ABA

AABB " AABA _
Al AB=A

AANBBAA —_— =
_ A=B=A
AANB=BAA

> Note: Even though the antecedent of a sequent is written like a sequences, it
is actually a set. In particular, we can permute and duplicate members at will.
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Sequent-Style Rules for Natural Deduction

> Definition 2.4. The following inference rules make up the propositional
sequent style natural deduction calculus ADP:

rB
m AX m Wedken m TND
rATB rAnB rAnB
Tars ra b re &
ra_, rs rAVBrACIBC _
rAVvB ' TAVB rc
ras _, rA=BTA__
rA=B rB
rAF r——A
—a ra £
r-ATA rr
F=rF FETa
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First-Order Natural Deduction in Sequent Formulation

» Rules for connectives from ./\/Df

> Definition 2.5 (New Quantifier Rules). The inference rules of the first-order
sequent style ND calculus D! consist of those from ADP plus the following
quantifier rules:

FAXhoe(f)  TYXA
VXA rAlE]
B < sk
Al -, FIXATAEIC cergnew
[ 9X.A rc
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1.3 Abstract Consistency and Model Existence
(Overview)
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Model Existence Method (Overview)

> Recap: A completeness proof for a calculus C for a logical system S := (L, F)
typically comes in two parts:
1. analyzing C-consistency (sets that cannot be refuted in C),
2. constructing =-models for C-consistent sets.
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Model Existence Method (Overview)

> Recap: A completeness proof for a calculus C for a logical system S := (L, F)
typically comes in two parts:
1. analyzing C-consistency (sets that cannot be refuted in C),
2. constructing =-models for C-consistent sets.

> Idea: Re-package the argument, so that the model-construction for S can be
re-used for multiple calculi ~ the abstract consistency/model-existence method:
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Model Existence Method (Overview)

> Recap: A completeness proof for a calculus C for a logical system S := (L, F)
typically comes in two parts:
1. analyzing C-consistency (sets that cannot be refuted in C),
2. constructing =-models for C-consistent sets.

> Idea: Re-package the argument, so that the model-construction for S can be
re-used for multiple calculi ~ the abstract consistency/model-existence method:

1. Definition 3.15. Abstract consistency class V = family of V-consistent sets.
2. Definition 3.16. A V-Hintikka set is a C-maximally V-consistent.
3. Theorem 3.17 (Hintikka Lemma). V-Hintikka set are satisfiable.
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Model Existence Method (Overview)

> Recap: A completeness proof for a calculus C for a logical system S := (L, F)
typically comes in two parts:
1. analyzing C-consistency (sets that cannot be refuted in C),
2. constructing =-models for C-consistent sets.

> ldea: Re-package the argument, so that the model-construction for S can be
re-used for multiple calculi ~ the abstract consistency/model-existence method:

1. Definition 3.22. Abstract consistency class V = family of V-consistent sets.

2. Definition 3.23. A V-Hintikka set is a C-maximally V-consistent.

3. Theorem 3.24 (Hintikka Lemma). V-Hintikka set are satisfiable.

4. Theorem 3.25 (Extension Theorem). If & is V-consistent, then ® can be extended
to a V-Hintikka set.

. Corollary 3.26 (Henkins theorem). If & is V-consistent, then ® is satisfiable.

(6]

Nichael Kohlh C 1 of First-Order Natural Deduction 7 2025-03-06




Model Existence Method (Overview)

> Recap: A completeness proof for a calculus C for a logical system S := (L, F)
typically comes in two parts:
1. analyzing C-consistency (sets that cannot be refuted in C),
2. constructing =-models for C-consistent sets.

> ldea: Re-package the argument, so that the model-construction for S can be
re-used for multiple calculi ~ the abstract consistency/model-existence method:

1. Definition 3.29. Abstract consistency class V = family of V-consistent sets.

2. Definition 3.30. A V-Hintikka set is a C-maximally V-consistent.

3. Theorem 3.31 (Hintikka Lemma). V-Hintikka set are satisfiable.

4. Theorem 3.32 (Extension Theorem). If & is V-consistent, then ® can be extended
to a V-Hintikka set.

. Corollary 3.33 (Henkins theorem). If & is V-consistent, then ® is satisfiable.
Lemma 3.34 (Application). Let C be a calculus, if ® is C-consistent, then ® is

V-consistent.

. Corollary 3.35 (Completeness). C is complete.

o o

~
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Model Existence Method (Overview)

> Recap: A completeness proof for a calculus C for a logical system S := (L, F)
typically comes in two parts:
1. analyzing C-consistency (sets that cannot be refuted in C),
2. constructing =-models for C-consistent sets.

> ldea: Re-package the argument, so that the model-construction for S can be
re-used for multiple calculi ~ the abstract consistency/model-existence method:

1. Definition 3.36. Abstract consistency class V = family of V-consistent sets.

2. Definition 3.37. A V-Hintikka set is a C-maximally V-consistent.

3. Theorem 3.38 (Hintikka Lemma). V-Hintikka set are satisfiable.

4. Theorem 3.39 (Extension Theorem). If ® is V-consistent, then ® can be extended
to a V-Hintikka set.

. Corollary 3.40 (Henkins theorem). If & is V-consistent, then ® is satisfiable.
Lemma 3.41 (Application). Let C be a calculus, if ® is C-consistent, then ® is

V-consistent.

. Corollary 3.42 (Completeness). C is complete.

> Note: Only the last two are C-specific, the rest only depend on S.

o o

~
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Consistency and Refutability: Some General Definitions

> Definition 3.43. We call a pair of propositions A and —A a contradiction.

> A formula set ® is C-refutable, if C can derive a contradiction from it.
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Consistency and Refutability: Some General Definitions

> Definition 3.48. We call a pair of propositions A and —A a contradiction.
> A formula set ® is C-refutable, if C can derive a contradiction from it.

> Definition 3.49. Let C be a calculus, then a logsys/proposition set ® is called
C-consistent, iff there is a logsys/proposition B, that is not derivable from ® in
C.
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Consistency and Refutability: Some General Definitions

> Definition 3.53. We call a pair of propositions A and —A a contradiction.
> A formula set ® is C-refutable, if C can derive a contradiction from it.

> Definition 3.54. Let C be a calculus, then a logsys/proposition set ® is called
C-consistent, iff there is a logsys/proposition B, that is not derivable from ® in
C.

» Definition 3.55. We call a calculus C reasonable, iff implication elimination
and conjunction introduction are admissible in C and A A —A =B is a C-theorem.

» Theorem 3.56. C-inconsistency and C-refutability coincide for reasonable
calculi.

» Remark 3.57. We will use that C-irrefutable = C-consistent below.

Michael Kohlh C 1 of First-Order Natural Deduction 8 2025-03-06




Consistency and Refutability: Some General Definitions

> Definition 3.58. We call a pair of propositions A and —A a contradiction.
> A formula set ® is C-refutable, if C can derive a contradiction from it.

> Definition 3.59. Let C be a calculus, then a logsys/proposition set ® is called
C-consistent, iff there is a logsys/proposition B, that is not derivable from ® in
C.

» Definition 3.60. We call a calculus C reasonable, iff implication elimination
and conjunction introduction are admissible in C and A A —A =B is a C-theorem.

» Theorem 3.61. C-inconsistency and C-refutability coincide for reasonable
calculi.

» Remark 3.62. We will use that C-irrefutable = C-consistent below.

> A\ C-consistency (syntactic) and satisfiability (semantics) are fundamentally
different!

> Relating them is the meat of the abstract consistency/model-existence method.
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1.4 Abstract Consistency and Model Existence
for Propositional Logic
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Abstract Consistency

» Definition 4.1. Let V be a collection of sets. We call V closed under
subsets, iff for each ® € V, all subsets ¥ C & are elements of V.
» Definition 4.2 (Notation). We will use ®xA for & U {A}.

» Definition 4.3. A collection V of sets of propositional formulae is called an
propositional abstract consistency class (ACC?), iff it is closed under
subsets, and for each & ¢ V
Vo) PE®dor—P&dfor Pelp
Vo) —=A € & implies ®+A € V
W) AV B € @ implies ®xA € V or ®+«B € V
V.) ~(AVB) € & implies ® U {-A, B} € V

» Example 4.4. The empty collection is an ACCC.

» Example 4.5. The collection {0, {Q},{PV Q},{PV Q,Q}} is an ACC".

> Example 4.6. The collection of satisfiable sets is an ACCP.
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Compact Collections

> Definition 4.7. We call a collection V of sets compact, iff for any set ® we
have
® €V, iff W e V for every finite subset W of ®.
» Lemma 4.8. IfV is compact, then V is closed under subsets.
» Proof:
1. Suppose SC T and T € V.
2. Every finite subset A of S is a finite subset of T.
3. As V is compact, we know that A € V.
4. Thus S € V.
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Compact Abstract Consistency Classes |

» Lemma 4.9. Any ACCY can be extended to a compact one.

» Proof:

1. We choose V' := {® C wify(Vy) | every finite subset of ® is in V}.

2. Now suppose that ® € V. V is closed under subsets, so every finite subset
of ® isin V and thus ® € V’. Hence V C V'.

3. Next let us show that V' is compact.
3.1. Suppose ® € V' and V is an arbitrary finite subset of ®.
3.2. By definition of V' all finite subsets of ® are in V and therefore
VeV,
3.3. Thus all finite subsets of ® are in V' whenever ® is in V',
3.4. On the other hand, suppose all finite subsets of ® are in V'.
3.5. Then by the definition of V'’ the finite subsets of ® are also in V, so
® € V. Thus V' is compact.

4. Note that V' is closed under subsets by the Lemma above.
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Compact Abstract Consistency Classes |

5. Now we show that if V satisfies V., then V' does too.
5.1. To show V, let ® € V' and suppose there is an atom A, such that
{A,-A} C ®. Then {A,-A} € V contradicting V..
5.2. To show V., let ® € V' and =——A € &, then ®xA € V'.
5.2.1. Let W be any finite subset of ®«A, and © := (W\{A})x——A.
5.2.2. © is a finite subset of ®, so © € V.
5.2.3. Since V is an abstract consistency class and ——A € ©, we get
©xA €V by V..
5.2.4. We know that ¥ C ©xA and V is closed under subsets, so V € V.
5.2.5. Thus every finite subset W of ®xA is in V and therefore by definition
dxA € V.
5.3. the other cases are analogous to that of V..
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V-Hintikka set

» Definition 4.10. Let V be an abstract consistency class, then we call a set
H € V a V-Hintikka set, iff H is C-maximal in V, i.e. for all A with H+A € V
we already have A € H.

» Theorem 4.11 (Hintikka Properties). Let V be an abstract consistency class
and H be a V-Hintikka set then
Hc) For all A € wito(Vo) we have A ¢ H or A & H
,Hﬂ) If ——A € H then Ac H
Hy) IFAVBEH thenAcHorBeH
H,) If (AVB) € H then -A, B € H

» Remark: Hintikka sets are usually defined by the properties #. above, but
here we (more generally) characterize them by C-maximality and regain the
same properties.
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V-Hintikka set

» Proof: We prove the properties in turn

1. H. goes by induction on the structure of A
1.1. AcVy Then AZH or —A ¢ H by V..
1.2. A=-B
1.2.1. Let us assume that =B € H and ——B € #H,
1.2.2. then H«B € V by V., and therefore B € H by maximality.
1.2.3. So both B and —B are in H, which contradicts the induction
hypothesis.
1.3. A =BV C is similar to the previous case

2. We prove H_, by maximality of H in V.
2.1. If =—A € H, then HxA € V by V..
2.2. The maximality of 1 now gives us that A € H.

3. The other . can be proven analogously.
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Extension Theorem

» Theorem 4.12. IfV is an abstract consistency class and ® € V, then there is
a V-Hintikka setH with ® C H.

» Proof:

1
2

3.

~N o OB

. Wilog. we assume that V is compact(otherwise pass to compact extension)
. We choose an enumeration Ay, ... of the set wify(V))
and construct a sequence of sets H; with Hg := ® and

oo H, if HpxA, &€V
at+l H,*A, if HyxA, € V

. Note that all H; € V, choose H := | J; - Hi

. W C H finite implies there is a j € N such that ¥ C Hj,

. so W eV as Vis closed under subsets and H € V as V is compact.

. Let H+B € V, then thereis a j € N with B = A;, so that B € Hj;; and
Hix1 ©H

. Thus H is V-maximal
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Valuation

> Definition 4.13. A function v: wifo(Vy) — Dy is called a (propositional)
valuation, iff

> y(-A)=T,iffv(A)=F
> V(AAB)=T,iffv(A)=Tand v(B) =T

> Lemma 4.14. If v: wifo(Vy) — Dy is a valuation and ® C wifo(Vy) with
v(®) = {T}, then ® is satisfiable.

» Proof sketch: vy, : Vo — Dy is a satisfying variable assignment.

> Lemma 4.15. If ¢: Vo — Dy is a variable assignment, then T, wifo(Vo) — Do
is a valuation.
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Model Existence

> Lemma 4.16 (Hintikka-Lemma). If V is an abstract consistency class and H
a V-Hintikka set, then H is satisfiable.
> Proof:
1. We define v(A) =T, iff Ac H
2. then v is a valuation by the Hintikka properties
3. and thus v|,, is a satisfying assignment.
» Theorem 4.17 (Model Existence). If V is an abstract consistency class and
& c V, then & is satisfiable.

Proof:
> 1. Thereis a V-Hintikka set H with & C #H (Extension Theorem)
2. We know that # is satisfiable. (Hintikka-Lemma)

3. In particular, ® C H is satisfiable.
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1.5 A Completeness Proof for Propositional ND
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Consistency, Refutability and V-Consistency

» Theorem 5.1 (Non-Refutability is an ACC?).
M= {® C why(Vo)| ® is not NTy-refutable} is an ACC.
» Proof- We check the properties of an ACC°

1. If ® is non-refutable, then any subset is as well, so I is closed under
subsets.

We show the abstract consistency properties V. for ® € T.
2. V.
2.1. We have to show that A & ® or =A ¢ ® for atomic A € wifo(Vo).
2.2. Equivalently, we show the contrapositive: If {A,—A} C ®, then & ¢ T.

2.3. So let {A,—A} C &, then & is NDy-refutable by construction.
24. Sod £T.

3. V., We show the contrapositive again
31 Let —A € dand PxA & T
3.2. Then we have a refutation D: ®xA-pzp F

3.3. By prepending an application of —E for =—A to D, we obtain a
refutation D': ®ppy F.
34. Thus ® ¢T.

4. The other V, can be proven analogously.
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Henkin's Theorem

> Corollary 5.2 (Henkin's Theorem). Every NTy-consistent set of propositions
is satisfiable.

» Proof:
1. Let ® be a NTy-consistent set of propositions.
2. The collection of sets of NTy-consistent propositions constitute an ACCC.
3. Thus the model existence theorem guarantees a variable assignment that
satisfies .
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Completeness of N}

» Theorem 5.3 (Completeness Theorem for N}). If ® = A, then ®Fn A.

» Proof: We prove the result by playing with negations.
1. If ® E A, then (by definition) A is satisfied by all variable assignment that
satisfy @
2. So ®x—A has no satisfying assignment.
3. Thus ®+—A is inconsistent by (the contrapositive of) Henkins Theorem.
4. So ®-p,——A by Nyl and thus ®n A by —E.
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1.6 Completeness of Propositional Tableaux
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Test Calculi: Tableaux and Model Generation

» Idea: A tableau calculus is a test calculus that
» analyzes a labeled formulae in a tree to determine satisfiability,
> its branches correspond to valuations (~ models).

> Example 6.1. Tableau calculi try to construct models for labeled formulae: E.g. the
propositional tableau calculus for PI?

Tableau refutation (Validity) | Model generation (Satisfiability)
FEPANQ=QAP EPA(QV—-R)A—-Q
-
(PAQ=QAP)f (P E\P(/?(\/Qﬁ\flg);g)
(P/\ Q)T ﬁQT
(QAP) QF
T
PT pT
VaR)T
719 |
1 | RF
No Model Herbrand valuation {PT, @, RF}
p={P—=T,Q—F R—F}

» Idea: Open branches in saturated tableaux yield satisfying assignments.
> Algorithm: Fully expand all possible tableaux, (no rule can be applied)
> Satisfiable, iff there are open branches (correspond to models)
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Analytical Tableaux (Formal Treatment of 7p)

> Idea: A test calculus where
» A labeled formula is analyzed in a tree to determine satisfiability,
» branches correspond to valuations (models)

> Definition 6.2. The propositional tableau calculus 75 has two inference rules

per connective (one for each possible label)
A(X
aFp
(ArB)T (AnB)" -AT L -AT AP
— —/ —_— - —_— J_
AT Tory AF | BF Tov AF To AT To € To
BT

Use rules exhaustively as long as they contribute new material (~ termination)

> Definition 6.3. We call any tree ( ‘ introduces branches) produced by the 7

inference rules from a set ® of labeled formulae a tableau for ®.

» Definition 6.4. Call a tableau saturated, iff no rule adds new material and a
branch closed, iff it ends in L, else open. A tableau is closed, iff all of its
branches are.

In analogy to the | at the end of closed branches, we sometimes decorate open
branches with a 0 symbol.
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Analytical Tableaux (7 continued)

» Definition 6.6 (7o-Theorem/Derivability). A is a 7o-theorem (-7, A), iff
there is a closed tableau with A™ at the root.
& C wify(Vy) derives A in Ty (7, A), iff there is a closed tableau starting with
AF and . The tableau with only a branch of A" and ®7 is called initial for
OF 1 A.
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A more Complex Ty Tableau

» Example 6.8. We construct a saturated 7, tableau for the formula
“((AVB)A=(BAC)A(=CV—A)):

“((AVB)A=(BAC)A(=CV-A)
((AVB)A—=(BAC)A(=CVv-A)N"

(AvB)"
(~(BAC)A(=CV-A))T
~(BrC)"

(~Cv-A)T
(BAC)

AT BT
ﬁCT ﬁAT ﬁCT ﬁAT
cF AF CcF AF
BF | CF | BF|CF BF | CF | BF|CF
O O 1| L 1 O 1 O

So we have four closed branches (they end in L), and four open ones (decorated
by 0), these correspond to counter-examples to validity.
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Abstract Consistency for 7y |

» Lemma 6.9. V := {®|®T has no closed Ty-tableau} is an ACC.

» Proof: We convince ourselves of the abstract consistency properties

1. For V., let P,—P € ® implies P7, PT c T,
1.1. So a single application of 7y yields a closed tableau for ®T

2. For V., let =—A € ®.
2.1. For the proof of the contrapositive we assume that ®xA has a closed
tableau 7 and show that already ¢ has one:
2.2. Applying each of 75— and 75—" once allows to extend any tableau
branch that contains ——B“ by B%.
2.3. Any branch in T that is closed with =—A®, can be closed by A%.
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Abstract Consistency for 7y |l

3. V4, Suppose AV B € & and both ®*A and $xB have closed tableaux
3.1. Consider the tableaux:

o7 o7 v T
AT BT (AV B)
AT BT
Rest! Rest?

Rest! | Rest?

4. V) Suppose, =(AV B) € & and ®{-A, =B} have closed tableau T.
4.1. We consider

o7 v
AF (AvB)"
BF AT
BF
Rest Rest

where ® = Wx«—(A V B).

Michael Kohlh C 1 of First-Order Natural Deduction 26 2025-03-06




Completeness of Ty

» Corollary 6.10. 7 is complete.

» Proof: by contradiction
1. We assume that A € wif(Vy) is valid, but there is no closed tableau for AF.
2. We have {-A} € Vas -A" = A"
3. So —A is satisfiable by the model-existence theorem (which is applicable as
V is an abstract consistency class by our Lemma above).
4. This contradicts our assumption that A is valid.
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1.7 Abstract Consistency and Model Existence
for First-Order Logic
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Abstract Consistency

> Definition 7.1. A collection V C wif,(X,,V),) of sets of formulae is called a
first-order abstract consistency class (ACC!), iff it is a ACC® and
additionally

V) If YX.A € ®, then ®x(A[2]) € V for each closed term B.
V5) If =(VX.A) € ® and c is an individual constant that does not occur in ®, then
oio(Alg]) €V
» Example 7.2. The collection {(), {Vx.p(x)}} is an ACC!. (no closed terms)
» Example 7.3. The collection & := {0), {p(a)}, {Vx.p(x)}} is not an ACC".
«~ {p(a),Vx.p(x)} is missing from ®.

> Example 7.4. The collection ® := {0, {Ix.p(x)}} is not an ACC.
e {p(c), Ix.p(x)} is missing from ® or some individual constant ¢
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Compact Abstract Consistency Classes

» Lemma 7.5. Any ACC! can be extended to a compact one.

> Proof: We extend the proof for propositional logic; we only have to look at the
two new abstract consistency properties.

1. Again, we choose V' := {® C cwiff,(%,) | every finite subset of ® isin V}.
This can be seen to be closed under subsets and compact by the same
argument as above.

2. To show Y for V/, let & € V' and VX.A € .
2.1. Let W be any finite subset of ®+(A[2]), and © := (W\{A[2]})*(VX.A).
2.2. © is a finite subset of ®, s0o © € V.
2.3. Since Vis a ACC! and A[2] € ©, we get ©+(VX.A) € V by V.
2.4. We know that W C ©x(A[£]) and V is closed under subsets, so W € V.
2.5. Thus every finite subset W of ®«(A[2]) is in V and therefore by
definition ®x(A[2]) € V'

3. The V5 case are analogous to that for V4.
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V-Hintikka set

> Theorem 7.6 (Hintikka Properties). Let V be a ACC' and H be a
V-Hintikka set, then H has all the propositional Hintikka properties plus
Hy) IFVX.A € H, then A[B] € H for each closed term B.

H3) If =(VX.A) € H then —(A[2]) € H for some closed term B.

» Proof: We prove the two new cases
1. We prove Hy by maximality of H in V.
1.1. If VX.A € H, then Hx(A[2]) € V by V.
1.2. The maximality of H now gives us that A[2] € H.
2. The proof of Hs is similar
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Extension Theorem

» Theorem 7.7. IfV is a ACC! and ® € V finite, then there is a V-Hintikka set

H with ® C H.
» Proof:
1. Wlog. assume that V compact (else use compact extension)
2. Choose an enumeration Aq,... of cwffo(X,) and c1,ca, ... of Zf)k.
3. and construct a sequence of sets H; with Hg := ® and

~N o OB

. Note that all H; € V, choose H := |,
. W C H finite implies there is a j € N such that W C Hy,

. so W eV as V closed under subsets and H € V as V is compact.

. Let H+B € V, then thereis a j € N with B =A;, so that B € H;;; and

H, if HyxA, €V
Hpp1 =4 H,U{A,, ~(B[2])} if HpxA, € Vand A, = —(VX.B)
H,xA, else

/EN

Hir1 CH

. Thus H is V-maximal
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What now?

» The next step is to take a V-Hintikka set — the extension lemma above gives us
one — and show that it is satisfiable.

» Problem: For that we have to conjure a model (A,7) out of thin air.

» Idea 1: Maybe the V-Hintikka set will help us with the interpretation
« After all it helped us with the variable assignments in PI°.

» Idea 2: For the universe we use something that is already lying around:
~> The set cwff,(X) of closed terms!

» Again, the notion of a valuation helps write things down, so we start with that.

» Tighten your seat belts and hold on.
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Valuations

> Definition 7.8. A function v: cwffo(X,) — Dy is called a (first-order)
valuation, iff v is a propositional valuation and

> y(YX.A) =T, iff v(A[%]) = T for all closed terms B.

> Lemma 7.9. If ¢: V, — U is a variable assignment, then Z,: cwff,(¥,) — Dy
is a valuation.

» Proof sketch: Immediate from the definitions.
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Valuation and Satisfiability |

» Lemma 7.10. /fv: cwif,(X,) — Dy is a valuation and ® C cwif,(X,) with
v(®) = {T}, then & is satisfiable.
» Proof: We construct a model M := (D,,T) for ¢.
1. Let D, := cwff,(%,), and
> Z(f) : DX =D (A1, .., Ak) s F(Ar, .. Ax) for Fexf
> Z(p) : D= Do; (A1,...,A) = v(p(A1,...,Ax)) for p € XP.
2. Then variable assignments into D, are ground substitutions.
3. We show Z,(A) = Ap for A € wif,(X,,V,) by induction on A:
3.1. If A= X, then Z,(A) = X by definition.
32. f A=f(A1,..,Ax), then Z,(A) = Z(f)(Zy (A1), .. .. Zp(Ap)) =

Z(F)(Arp, ..., App) = F(A1p, ..., App) = F(A1,.. ., Ak)p = Ap
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Valuation and Satisfiability |l

4. We show Z,(A) = v(Ayp) for A € wif,(X,,V,) by induction on A.
o (A

41 1f A=p(A1,.. ., Ay) then Ty(A) = Z(p)(Zp(A1), -, To(An)) =
Z(p) (A1, . .., Anp) = v(p(A1, ..., nso))zz( (Al,...,Ak)ga):z/(Np)
4.2. 1f A= B then T,(A) = T, iff 7,(B) = 1(By) = F, iff (Ag) =

43. A=BACis similar
4.4 1f A=VX.Bthen T,(A) =T, iff Z(B) = v(Byp)) = T, for all C € D,,
where ¢ = p.,[§]. This is the case, iff (Ap) = T.

5. Thus Z,(A) = v(Ap) = v(A) =T for all A € ®.

6. Hence M F A.
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Herbrand-Model

» Definition 7.11. Let ¥ := (X' ¥P) be a first-order signature, then we call
(D,T) a Herbrand model, iff

1. D = cwf,(X) —i.e. the Herbrand universe over X.
2. I(f) : Dk 5D (A1, .., Ak) = F(Aq,. .., Ax) for function constants f € ¥ !, and
3. Z(p) C D* for predicate constants p.

> Note: Variable assignments into D = cwff,(X) are naturally ground
substitutions by construction.
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Herbrand-Model

» Definition 7.15. Let & := (X' ¥P) be a first-order signature, then we call
(D,T) a Herbrand model, iff

1. D = cwf,(X) —i.e. the Herbrand universe over X.
2. I(f) : Dk 5D (A1, .., Ak) = F(Aq,. .., Ax) for function constants f € ¥ !, and
3. Z(p) C D* for predicate constants p.

» Note: Variable assignments into D = cwff,(X) are naturally ground
substitutions by construction.

» Lemma 7.16. 7(t) = ty for terms t.
Proof sketch: By induction on the structure of A.

» Corollary 7.17. A Herbrand model M can be represented by the set
Hy = {A € cwff(X) | A atomic and M E ®} of closed atoms it satisfies.
Proof: Let A = p(t1,..., tk).

1. Zo(A) =Zy(p(t, .. te)) = Z(p)((t1, - . ., tip)) = T, iff A € Hpy.
2. In the definition of Herbrand model, only the interpretation of predicate
constants is flexible, and H, determines that.
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Herbrand-Model

» Definition 7.19. Let & := (X' ¥P) be a first-order signature, then we call
(D,T) a Herbrand model, iff
1. D = cwf,(X) —i.e. the Herbrand universe over ¥.
2. I(f) : Dk 5D (A1, .., Ak) = F(Aq,. .., Ax) for function constants f € ¥ !, and
3. Z(p) C D* for predicate constants p.
> Note: Variable assignments into D = cwff,(X) are naturally ground
substitutions by construction.
» Lemma 7.20. 7,(t) = ty for terms t.
Proof sketch: By induction on the structure of A.
» Corollary 7.21. A Herbrand model M can be represented by the set
Hy = {A € cwff(X) | A atomic and M E ®} of closed atoms it satisfies.
Proof: Let A = p(t1,..., tk).
1. Zo(A) =Zy(p(t, .. te)) = Z(p)((t1, - . ., tip)) = T, iff A € Hpy.
2. In the definition of Herbrand model, only the interpretation of predicate
constants is flexible, and H, determines that.
» Theorem 7.22 (Herbrand’s Theorem). A set & of first-order propositions is
satisfiable, iff it has a Herbrand model.
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Model Existence

> Theorem 7.23 (Hintikka-Lemma). If V is an ACC' and H a V-Hintikka set,
then H is satisfiable.

» Proof:
1. we define v(A):=T, iff A € H,
2. then v is a valuation by the Hintikka set properties.
3. We have v(H) = {T}, so H is satisfiable.
> Theorem 7.24 (Model Existence). If V is an ACC' and & € V, then & is
satisfiable.

Proof:
> 1. Thereis a V-Hintikka set H with & C H (Extension Theorem)
2. We know that # is satisfiable. (Hintikka-Lemma)

3. In particular, ® C H is satisfiable.
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1.8 A Completeness Proof for First-Order ND
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Consistency, Refutability and V-consistent

» Theorem 8.1 (NVD!-Non-Refutability is an ACC!).
M= {® C cuwf,(X,)|® is not ND'-refutable} is an ACC.
» Proof: We check the two additional properties of an ACC!
1. Y: We use the contrapositive
1.1. Solet VX.Ac &, & c T, and d«(A[2]) T,
1.2. then there is a NVD'-refutation of ®x(A[2]).
1.3. Prepending VE to that, gives us a N'D'-refutation of ®.
1.4. So ® ¢ T, which is what we wanted to show for the contrapositive of
V.
2. V3 can be proven similarly using V/
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Henkin's Theorem

> Corollary 8.2 (Henkin’s Theorem). Every N'D'-consistent set of sentences
has a model.
» Proof-
1. Let ® be a AD!-consistent set of sentences.
2. The collection of sets of A/D!-consistent sentences constitute an ACC!.
3. Thus the model existence theorem guarantees a model for ®.
> Corollary 8.3 (Lowenheim&Skolem Theorem). Any satisfiable set & of
first-order sentences has a countable model.
Proof sketch: The model we constructed is countable, since the set of ground
terms is.
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Completeness and Compactness

» Theorem 8.4 (Completeness Theorem for D). If ® = A, then ®F \p:A.

» Proof: We prove the result by playing with negations.
1. If Ais valid in all models of ®, then ®*—A has no model
2. Thus ®«—A is inconsistent by (the contrapositive of) Henkins Theorem.
3. So &k \p:1——A by NDy=/ and thus & p2 A by —E.

» Theorem 8.5 (Compactness Theorem for first-order logic). If ® £ A, then
there is already a finite set W C & with W = A.

Proof: This is a direct consequence of the completeness theorem
> 1. We have ® F A, iff O p1A.
2. As a proof is a finite object, only a finite subset W C & can appear as
leaves in the proof.
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1.9 Completeness of First-Order Tableaux
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First-Order Standard Tableaux (71) are Complete

» Definition 9.1. The standard tableau calculus (77) extends g (propositional
tableau calculus) with the following quantifier rules:

(VX.A)" Ce cuff(%,) v (VX.A)" ¢ e T new
(Als))" (Alg])"

T 3
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First-Order Standard Tableaux (71) are Complete

» Definition 9.3. The standard tableau calculus (7;) extends Ty (propositional
tableau calculus) with the following quantifier rules:

(VX.A)" Ce cuff(%,) Ty (VX.A)" ¢ e T new
1
(Alg))' (Alg])"
» Theorem 9.4. 7 is refutation complete.
» Proof- We show that V := {® | ®T has no closed 7itableau} is an ACC!
1. V., V., Y, and V, as for To; W similar to the next (V) below.
2. V5: We prove the contrapositive

2.1. Let ® = Wx(3X.A), but d+(Al5]) ¢ V,
2.2. then ®x(A[s]) has a closed 7;-tableau (on the left).

T 3

el )
(3x.A)T (AX.AT
Als)"  (Alg)"

Rest Rest

The right 7;-tableau starts with ® = Wx(3X.A) and applies 7; 3 and then
continues as on the left.
3. We argue from V = ACC! to completeness as above.
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