Completeness of First-Order Natural Deduction #### Michael Kohlhase Professorship for Knowledge Representation and Processing Computer Science FAU Erlangen-Nürnberg Germany https://kwarc.info/kohlhase 2025-03-06 Chapter 1 Completeness of First-Order Natural Deduction 1.1 Soundness and Completeness in Logic ## The Miracle of Logic Purely formal derivations are true in the real world! ### Soundness and Completeness - ▶ **Definition 1.1.** Let $\mathcal{L} := \langle \mathcal{L}, \mathcal{M}, \vDash \rangle$ be a logical system, then we call a calculus \mathcal{C} for \mathcal{L} , - **sound** (or correct), iff $\mathcal{H} \models A$, whenever $\mathcal{H} \vdash_{\mathcal{C}} A$, and - **►** complete, iff $\mathcal{H} \vdash_{\mathcal{C}} A$, whenever $\mathcal{H} \models A$. - ▶ Goal: Find calculi C, such that $\vdash_C A$ iff $\models A$ (provability and validity coincide) - ► To TRUTH through PROOF (CALCULEMUS [Leibniz \sim 1680]) 1.2 Recap: First-Order Natural Deduction ### Natural Deduction in Sequent Calculus Formulation - ▶ Idea: Represent hypotheses explicitly. (lift calculus to judgments) - ▶ **Definition 2.1.** A **judgment** is a meta-statement about the provability of propositions. - ▶ **Definition 2.2.** A **sequent** is a judgment of the form \mathcal{H} A about the provability of the formula A from the set \mathcal{H} of hypotheses. We write A for \emptyset A. - ▶ Idea: Reformulate \mathcal{ND}_0 inference rules so that they act on sequents. - **Example 2.3.**We give the sequent style version of ???: $$\frac{\overline{A \land B \ A \land B}}{\frac{A \land B \ B \land A}{A \land B \ B \land A}} \land E_{r} \qquad \frac{\overline{A \land B \ A \land B}}{\frac{A \land B \ B \land A}{A \land B \ B \land A}} \land I \qquad \frac{\overline{A \ B \ A}}{\overline{A \ B \Rightarrow A}} \Rightarrow I \qquad \frac{\overline{A \ B \ A}}{\overline{A \ B \Rightarrow A}} \Rightarrow I$$ ▶ **Note:** Even though the antecedent of a sequent is written like a sequences, it is actually a set. In particular, we can permute and duplicate members at will. ### Sequent-Style Rules for Natural Deduction ▶ **Definition 2.4.** The following inference rules make up the **propositional** sequent style natural deduction calculus \mathcal{ND}_{-}^{0} : $$\frac{\Gamma A A A A A A }{\Gamma A A B} \frac{\Gamma B}{\Gamma A B} \text{ weaken} \qquad \frac{\Gamma A \wedge B}{\Gamma A \vee \neg A} \frac{\Gamma ND}{\Gamma A \vee \neg A}$$ $$\frac{\Gamma A \Gamma B}{\Gamma A \wedge B} \wedge I \qquad \frac{\Gamma A \wedge B}{\Gamma A} \wedge E_{I} \qquad \frac{\Gamma A \wedge B}{\Gamma B} \wedge E_{r}$$ $$\frac{\Gamma A}{\Gamma A \vee B} \vee I_{I} \qquad \frac{\Gamma B}{\Gamma A \vee B} \vee I_{r} \qquad \frac{\Gamma A \vee B \Gamma A C \Gamma B C}{\Gamma C} \vee E$$ $$\frac{\Gamma A B}{\Gamma A \Rightarrow B} \Rightarrow I \qquad \frac{\Gamma A \Rightarrow B \Gamma A}{\Gamma B} \Rightarrow E$$ $$\frac{\Gamma A F}{\Gamma \neg A} \neg I \qquad \frac{\Gamma \neg \neg A}{\Gamma A} \neg E$$ $$FI \frac{\Gamma \neg A \Gamma A}{\Gamma F} \qquad FE \frac{\Gamma F}{\Gamma A}$$ ## First-Order Natural Deduction in Sequent Formulation - ► Rules for connectives from \mathcal{ND}^0_{\vdash} - ▶ Definition 2.5 (New Quantifier Rules). The inference rules of the first-order sequent style ND calculus \mathcal{ND}^1_+ consist of those from \mathcal{ND}^0_+ plus the following quantifier rules: $$\frac{\Gamma \ A \ X \not\in \operatorname{free}(\Gamma)}{\Gamma \ \forall X.A} \ \forall I \qquad \frac{\Gamma \ \forall X.A}{\Gamma \ A[\frac{B}{X}]} \ \forall E$$ $$\frac{\Gamma \ A[\frac{B}{X}]}{\Gamma \ \exists X.A} \ \exists I \qquad \frac{\Gamma \ \exists X.A \ \Gamma \ A[\frac{c}{X}] \ C \ c \in \Sigma_0^{sk} \ \text{new}}{\Gamma \ C} \ \exists E$$ 1.3 Abstract Consistency and Model Existence (Overview) - ▶ **Recap:** A completeness proof for a calculus \mathcal{C} for a logical system $\mathcal{S} := \langle \mathcal{L}, \models \rangle$ typically comes in two parts: - 1. analyzing C-consistency (sets that cannot be refuted in C), - 2. constructing \models -models for C-consistent sets. - ▶ **Recap:** A completeness proof for a calculus $\mathcal C$ for a logical system $\mathcal S := \langle \mathcal L, \vDash \rangle$ typically comes in two parts: - 1. analyzing C-consistency (sets that cannot be refuted in C), - 2. constructing \models -models for C-consistent sets. - ▶ Idea: Re-package the argument, so that the model-construction for S can be re-used for multiple calculi \rightsquigarrow the abstract consistency/model-existence method: - ▶ **Recap:** A completeness proof for a calculus $\mathcal C$ for a logical system $\mathcal S := \langle \mathcal L, \vDash \rangle$ typically comes in two parts: - 1. analyzing C-consistency (sets that cannot be refuted in C), - 2. constructing \models -models for C-consistent sets. - ▶ Idea: Re-package the argument, so that the model-construction for S can be re-used for multiple calculi \rightarrow the abstract consistency/model-existence method: - 1. **Definition 3.15. Abstract consistency class** $\nabla \triangleq \text{family of } \nabla \text{-consistent sets.}$ - 2. **Definition 3.16.** A ∇ -Hintikka set is a \subseteq -maximally ∇ -consistent. - 3. Theorem 3.17 (Hintikka Lemma). ∇-Hintikka set are satisfiable. - ▶ **Recap:** A completeness proof for a calculus $\mathcal C$ for a logical system $\mathcal S := \langle \mathcal L, \vDash \rangle$ typically comes in two parts: - 1. analyzing C-consistency (sets that cannot be refuted in C), - 2. constructing \models -models for C-consistent sets. - ▶ Idea: Re-package the argument, so that the model-construction for S can be re-used for multiple calculi \rightsquigarrow the abstract consistency/model-existence method: - 1. **Definition 3.22. Abstract consistency class** $\nabla \triangleq \text{family of } \nabla \text{-consistent sets.}$ - 2. **Definition 3.23.** A ∇ -**Hintikka set** is a \subseteq -maximally ∇ -consistent. - 3. Theorem 3.24 (Hintikka Lemma). ∇-Hintikka set are satisfiable. - Theorem 3.25 (Extension Theorem). If Φ is ∇-consistent, then Φ can be extended to a ∇-Hintikka set. - 5. Corollary 3.26 (Henkins theorem). If Φ is ∇ -consistent, then Φ is satisfiable. - ▶ **Recap:** A completeness proof for a calculus $\mathcal C$ for a logical system $\mathcal S:=\langle \mathcal L, \vDash \rangle$ typically comes in two parts: - 1. analyzing C-consistency (sets that cannot be refuted in C), - 2. constructing \models -models for C-consistent sets. - ▶ Idea: Re-package the argument, so that the model-construction for S can be re-used for multiple calculi \rightarrow the abstract consistency/model-existence method: - 1. **Definition 3.29. Abstract consistency class** $\nabla \triangleq \text{family of } \nabla \text{-consistent sets.}$ - 2. **Definition 3.30.** A ∇ -**Hintikka set** is a \subseteq -maximally ∇ -consistent. - 3. Theorem 3.31 (Hintikka Lemma). ∇-Hintikka set are satisfiable. - Theorem 3.32 (Extension Theorem). If Φ is ∇-consistent, then Φ can be extended to a ∇-Hintikka set. - 5. Corollary 3.33 (Henkins theorem). If Φ is ∇ -consistent, then Φ is satisfiable. - 6. Lemma 3.34 (Application). Let C be a calculus, if Φ is C-consistent, then Φ is ∇ -consistent. - 7. Corollary 3.35 (Completeness). C is complete. - ▶ **Recap:** A completeness proof for a calculus \mathcal{C} for a logical system $\mathcal{S} := \langle \mathcal{L}, \vDash \rangle$ typically comes in two parts: - 1. analyzing C-consistency (sets that cannot be refuted in C), - 2. constructing \models -models for C-consistent sets. - ▶ Idea: Re-package the argument, so that the model-construction for S can be re-used for multiple calculi \rightarrow the abstract consistency/model-existence method: - 1. **Definition 3.36. Abstract consistency class** $\nabla \triangleq \text{family of } \nabla \text{-consistent sets.}$ - 2. **Definition 3.37.** A ∇ -**Hintikka set** is a \subseteq -maximally ∇ -consistent. - 3. Theorem 3.38 (Hintikka Lemma). ∇-Hintikka set are satisfiable. - Theorem 3.39 (Extension Theorem). If Φ is ∇-consistent, then Φ can be extended to a ∇-Hintikka set. - 5. Corollary 3.40 (Henkins theorem). If Φ is ∇ -consistent, then Φ is satisfiable. - 6. Lemma 3.41 (Application). Let C be a calculus, if Φ is C-consistent, then Φ is ∇ -consistent. - 7. Corollary 3.42 (Completeness). C is complete. - **Note:** Only the last two are C-specific, the rest only depend on S. - ▶ **Definition 3.43.** We call a pair of propositions A and \neg A a contradiction. - \blacktriangleright A formula set Φ is \mathcal{C} -refutable, if \mathcal{C} can derive a contradiction from it. - **Definition 3.48.** We call a pair of propositions A and $\neg A$ a contradiction. - \blacktriangleright A formula set Φ is \mathcal{C} -refutable, if \mathcal{C} can derive a contradiction from it. - ▶ **Definition 3.49.** Let $\mathcal C$ be a calculus, then a logsys/proposition set Φ is called $\mathcal C$ -consistent, iff there is a logsys/proposition $\mathsf B$, that is not derivable from Φ in $\mathcal C$. - ▶ **Definition 3.53.** We call a pair of propositions A and \neg A a **contradiction**. - \blacktriangleright A formula set Φ is \mathcal{C} -refutable, if \mathcal{C} can derive a contradiction from it. - ▶ **Definition 3.54.** Let \mathcal{C} be a calculus, then a logsys/proposition set Φ is called \mathcal{C} -consistent, iff there is a logsys/proposition B , that is not derivable from Φ in \mathcal{C} . - **Definition 3.55.** We call a calculus \mathcal{C} reasonable, iff implication elimination and conjunction introduction are admissible in \mathcal{C} and A ∧ ¬A ⇒ B is a \mathcal{C} -theorem. - ► Theorem 3.56. *C*-inconsistency and *C*-refutability coincide for reasonable calculi. - ▶ Remark 3.57. We will use that C-irrefutable $\hat{=}$ C-consistent below. - ▶ **Definition 3.58.** We call a pair of propositions A and \neg A a contradiction. - \blacktriangleright A formula set Φ is \mathcal{C} -refutable, if \mathcal{C} can derive a contradiction from it. - ▶ **Definition 3.59.** Let $\mathcal C$ be a calculus, then a logsys/proposition set Φ is called $\mathcal C$ -consistent, iff there is a logsys/proposition $\mathsf B$, that is not derivable from Φ in $\mathcal C$. - **Definition 3.60.** We call a calculus \mathcal{C} reasonable, iff implication elimination and conjunction introduction are admissible in \mathcal{C} and A ∧ ¬A ⇒ B is a \mathcal{C} -theorem. - ► Theorem 3.61. *C*-inconsistency and *C*-refutability coincide for reasonable calculi. - ▶ Remark 3.62. We will use that C-irrefutable $\hat{=}$ C-consistent below. - ▶ <u>&</u> C-consistency (syntactic) and satisfiability (semantics) are fundamentally different! - ▶ Relating them is the meat of the abstract consistency/model-existence method. 1.4 Abstract Consistency and Model Existence for Propositional Logic ### Abstract Consistency - **Definition 4.1.** Let ∇ be a collection of sets. We call ∇ closed under subsets, iff for each Φ ∈ ∇ , all subsets Ψ ⊆ Φ are elements of ∇ . - **Definition 4.2 (Notation).** We will use $\Phi *A$ for $\Phi \cup \{A\}$. - Definition 4.3. A collection ∇ of sets of propositional formulae is called an propositional abstract consistency class (ACC⁰), iff it is closed under subsets, and for each Φ ∈ ∇ - ∇_c) $P \notin \Phi$ or $\neg P \notin \Phi$ for $P \in \mathcal{V}_0$ - ∇_{\neg}) $\neg \neg A \in \Phi$ implies $\Phi * A \in \nabla$ - ∇ A \vee B \in Φ implies $\Phi * A \in \nabla$ or $\Phi * B \in \nabla$ - $\nabla_{\!\!\wedge}$) $\neg(A \lor B) \in \Phi$ implies $\Phi \cup \{\neg A, \neg B\} \in \nabla$ - **Example 4.4.** The empty collection is an ACC⁰. - **Example 4.5.** The collection $\{\emptyset, \{Q\}, \{P \lor Q\}, \{P \lor Q, Q\}\}$ is an ACC⁰. - **Example 4.6.** The collection of satisfiable sets is an ACC⁰. ## Compact Collections - ▶ **Definition 4.7.** We call a collection ∇ of sets **compact**, iff for any set Φ we have - $\Phi \in \nabla$, iff $\Psi \in \nabla$ for every finite subset Ψ of Φ . - ▶ **Lemma 4.8.** If ∇ is compact, then ∇ is closed under subsets. - ► Proof: - 1. Suppose $S \subseteq T$ and $T \in \nabla$. - 2. Every finite subset A of S is a finite subset of T. - 3. As ∇ is compact, we know that $A \in \nabla$. - 4. Thus $S \in \nabla$. # Compact Abstract Consistency Classes I - ▶ **Lemma 4.9.** Any ACC⁰ can be extended to a compact one. - ► Proof: - 1. We choose $\nabla' := \{ \Phi \subseteq \textit{wff}_0(\mathcal{V}_0) \mid \text{every finite subset of } \Phi \text{ is in } \nabla \}.$ - 2. Now suppose that $\Phi \in \nabla$. ∇ is closed under subsets, so every finite subset of Φ is in ∇ and thus $\Phi \in \nabla'$. Hence $\nabla \subseteq \nabla'$. - 3. Next let us show that ∇' is compact. - 3.1. Suppose $\Phi \in \nabla'$ and Ψ is an arbitrary finite subset of Φ . - 3.2. By definition of ∇' all finite subsets of Φ are in ∇ and therefore $\Psi \in \nabla'$. - 3.3. Thus all finite subsets of Φ are in ∇' whenever Φ is in ∇' . - 3.4. On the other hand, suppose all finite subsets of Φ are in ∇' . - 3.5. Then by the definition of ∇' the finite subsets of Φ are also in ∇ , so $\Phi \in \nabla'$. Thus ∇' is compact. - 4. Note that ∇' is closed under subsets by the Lemma above. ## Compact Abstract Consistency Classes II - 5. Now we show that if ∇ satisfies ∇_* , then ∇' does too. - 5.1. To show ∇_c , let $\Phi \in \nabla'$ and suppose there is an atom A, such that $\{A, \neg A\} \subseteq \Phi$. Then $\{A, \neg A\} \in \nabla$ contradicting ∇_c . - 5.2. To show ∇ , let $\Phi \in \nabla'$ and $\neg \neg A \in \Phi$, then $\Phi * A \in \nabla'$. - 5.2.1. Let Ψ be any finite subset of $\Phi *A$, and $\Theta := (\Psi \setminus \{A\}) * \neg \neg A$. - 5.2.2. Θ is a finite subset of Φ , so $\Theta \in \nabla$. - 5.2.3. Since ∇ is an abstract consistency class and $\neg \neg A \in \Theta$, we get $\Theta * A \in \nabla$ by ∇_{\neg} . - 5.2.4. We know that $\Psi \subseteq \Theta * A$ and ∇ is closed under subsets, so $\Psi \in \nabla$. - 5.2.5. Thus every finite subset Ψ of $\Phi*A$ is in ∇ and therefore by definition $\Phi*A \in \nabla'$. - 5.3. the other cases are analogous to that of ∇ . #### ∇-Hintikka set - ▶ **Definition 4.10.** Let ∇ be an abstract consistency class, then we call a set $\mathcal{H} \in \nabla$ a ∇ -**Hintikka set**, iff \mathcal{H} is \subseteq -maximal in ∇ , i.e. for all A with $\mathcal{H}*A \in \nabla$ we already have $A \in \mathcal{H}$. - ▶ Theorem 4.11 (Hintikka Properties). Let ∇ be an abstract consistency class and \mathcal{H} be a ∇ -Hintikka set then - \mathcal{H}_c) For all $A \in wff_0(\mathcal{V}_0)$ we have $A \notin \mathcal{H}$ or $\neg A \notin \mathcal{H}$ - \mathcal{H}_{\neg}) If $\neg\neg A \in \mathcal{H}$ then $A \in \mathcal{H}$ - \mathcal{H}_{\vee}) If $A \vee B \in \mathcal{H}$ then $A \in \mathcal{H}$ or $B \in \mathcal{H}$ - \mathcal{H}_{\wedge}) If $\neg(A \lor B) \in \mathcal{H}$ then $\neg A, \neg B \in \mathcal{H}$ - ▶ Remark: Hintikka sets are usually defined by the properties \mathcal{H}_* above, but here we (more generally) characterize them by \subseteq -maximality and regain the same properties. ### ∇-Hintikka set - ▶ *Proof:* We prove the properties in turn - 1. \mathcal{H}_c goes by induction on the structure of A - 1.1. $A \in \mathcal{V}_0$ Then $A \notin \mathcal{H}$ or $\neg A \notin \mathcal{H}$ by ∇_c . - 1.2. $A = \neg B$ - 1.2.1. Let us assume that $\neg B \in \mathcal{H}$ and $\neg \neg B \in \mathcal{H}$, - 1.2.2. then $\mathcal{H}*B \in \nabla$ by ∇ , and therefore $B \in \mathcal{H}$ by maximality. - 1.2.3. So both B and $\neg B$ are in \mathcal{H} , which contradicts the induction hypothesis. - 1.3. $A = B \lor C$ is similar to the previous case - 2. We prove \mathcal{H}_{\neg} by maximality of \mathcal{H} in ∇ . - 2.1. If $\neg \neg A \in \mathcal{H}$, then $\mathcal{H} * A \in \nabla$ by ∇_{\neg} . - 2.2. The maximality of \mathcal{H} now gives us that $A \in \mathcal{H}$. - 3. The other \mathcal{H}_* can be proven analogously. #### Extension Theorem - ▶ Theorem 4.12. If ∇ is an abstract consistency class and $\Phi \in \nabla$, then there is a ∇ -Hintikka set \mathcal{H} with $\Phi \subseteq \mathcal{H}$. - ► Proof: - 1. Wlog. we assume that ∇ is compact(otherwise pass to compact extension) - 2. We choose an enumeration A_1, \ldots of the set $wff_0(\mathcal{V}_0)$ - 3. and construct a sequence of sets H_i with $H_0 := \Phi$ and $$\mathsf{H}_{n+1} := \left\{ \begin{array}{cc} \mathsf{H}_n & \text{if } \mathsf{H}_n * \mathsf{A}_n \not \in \nabla \\ \mathsf{H}_n * \mathsf{A}_n & \text{if } \mathsf{H}_n * \mathsf{A}_n \in \nabla \end{array} \right.$$ - 4. Note that all $H_i \in \nabla$, choose $\mathcal{H} := \bigcup_{i \in \mathbb{N}} H_i$ - 5. $\Psi \subseteq \mathcal{H}$ finite implies there is a $j \in \mathbb{N}$ such that $\Psi \subseteq H_j$, - 6. so $\Psi \in \nabla$ as ∇ is closed under subsets and $\mathcal{H} \in \nabla$ as ∇ is compact. - 7. Let $\mathcal{H}*\mathsf{B} \in \nabla$, then there is a $j \in \mathbb{N}$ with $\mathsf{B} = \mathsf{A}_j$, so that $\mathsf{B} \in \mathsf{H}_{j+1}$ and $\mathsf{H}_{j+1} \subseteq \mathcal{H}$ - 8. Thus \mathcal{H} is ∇ -maximal #### Valuation - ▶ **Definition 4.13.** A function ν : $\textit{wff}_0(\mathcal{V}_0) \rightarrow \mathcal{D}_0$ is called a **(propositional)** valuation, iff - \triangleright $\nu(\neg A) = T$, iff $\nu(A) = F$ - ν (A \wedge B) = T, iff ν (A) = T and ν (B) = T - ▶ Lemma 4.14. If ν : $\textit{wff}_0(\mathcal{V}_0) \to \mathcal{D}_0$ is a valuation and $\Phi \subseteq \textit{wff}_0(\mathcal{V}_0)$ with $\nu(\Phi) = \{T\}$, then Φ is satisfiable. - ▶ Proof sketch: $\nu|_{\mathcal{V}_0}: \mathcal{V}_0 \to \mathcal{D}_0$ is a satisfying variable assignment. - ▶ Lemma 4.15. If $\varphi: \mathcal{V}_0 \to \mathcal{D}_0$ is a variable assignment, then $\mathcal{I}_{\varphi}: \textit{wff}_0(\mathcal{V}_0) \to \mathcal{D}_0$ is a valuation. ### Model Existence - ▶ Lemma 4.16 (Hintikka-Lemma). If ∇ is an abstract consistency class and $\mathcal H$ a ∇ -Hintikka set, then $\mathcal H$ is satisfiable. - Proof: - 1. We define $\nu(A) := T$, iff $A \in \mathcal{H}$ - 2. then ν is a valuation by the Hintikka properties - 3. and thus $\nu|_{\gamma_{\alpha}}$ is a satisfying assignment. - ▶ Theorem 4.17 (Model Existence). If ∇ is an abstract consistency class and $\Phi \in \nabla$, then Φ is satisfiable. #### Proof: - ▶ 1. There is a ∇ -Hintikka set \mathcal{H} with $\Phi \subseteq \mathcal{H}$ - 2. We know that \mathcal{H} is satisfiable. - 3. In particular, $\Phi \subseteq \mathcal{H}$ is satisfiable. (Extension Theorem) (Hintikka-Lemma) 1.5 A Completeness Proof for Propositional ND ## Consistency, Refutability and ∇ -Consistency - ► Theorem 5.1 (Non-Refutability is an ACC⁰). - $\Gamma := \{ \Phi \subseteq \textit{wff}_0(\mathcal{V}_0) \mid \Phi \text{ is not } \mathcal{ND}_0\text{-refutable} \} \text{ is an } ACC^0.$ - ▶ *Proof:* We check the properties of an ACC⁰ - 1. If Φ is non-refutable, then any subset is as well, so Γ is closed under subsets. We show the abstract consistency properties $\nabla_{\!*}$ for $\Phi \in \Gamma.$ - 2. ∇_c - 2.1. We have to show that $A \not\in \Phi$ or $\neg A \not\in \Phi$ for atomic $A \in wff_0(\mathcal{V}_0)$. - 2.2. Equivalently, we show the contrapositive: If $\{A, \neg A\} \subseteq \Phi$, then $\Phi \notin \Gamma$. - 2.3. So let $\{A, \neg A\} \subseteq \Phi$, then Φ is \mathcal{ND}_0 -refutable by construction. - 2.4. So $\Phi \notin \Gamma$. - 3. ∇ We show the contrapositive again - 3.1. Let $\neg \neg A \in \Phi$ and $\Phi * A \notin \Gamma$ - 3.2. Then we have a refutation $\mathcal{D}: \Phi *A \vdash_{\mathcal{ND}} F$ - 3.3. By prepending an application of $\neg E$ for $\neg \neg A$ to \mathcal{D} , we obtain a refutation $\mathcal{D}' : \Phi \vdash_{\mathcal{ND}} F$. - 3.4. Thus $\Phi \notin \Gamma$. - 4. The other ∇_* can be proven analogously. #### Henkin's Theorem - ► Corollary 5.2 (Henkin's Theorem). Every ND₀-consistent set of propositions is satisfiable. - ► Proof: - 1. Let Φ be a \mathcal{ND}_0 -consistent set of propositions. - 2. The collection of sets of \mathcal{ND}_0 -consistent propositions constitute an ACC 0 . - 3. Thus the model existence theorem guarantees a variable assignment that satisfies Φ . ## Completeness of $\mathcal{N}\mathcal{D}_0$ - ▶ Theorem 5.3 (Completeness Theorem for \mathcal{ND}_0). If $\Phi \models A$, then $\Phi \vdash_{\mathcal{ND}_0} A$. - ▶ *Proof:* We prove the result by playing with negations. - 1. If $\Phi \vDash A$, then (by definition) A is satisfied by all variable assignment that satisfy Φ - 2. So $\Phi * \neg A$ has no satisfying assignment. - 3. Thus $\Phi * \neg A$ is inconsistent by (the contrapositive of) Henkins Theorem. - 4. So $\Phi \vdash_{\mathcal{ND}_0} \neg \neg A$ by $\mathcal{ND}_{0} \neg I$ and thus $\Phi \vdash_{\mathcal{ND}_0} A$ by $\neg E$. 1.6 Completeness of Propositional Tableaux #### Test Calculi: Tableaux and Model Generation - ▶ Idea: A tableau calculus is a test calculus that - analyzes a labeled formulae in a tree to determine satisfiability, - its branches correspond to valuations (~ models). - ► Example 6.1. Tableau calculi try to construct models for labeled formulae: E.g. the propositional tableau calculus for PL⁰ | Tableau refutation (Validity) | Model generation (Satisfiability) | |-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | $\models P \land Q \Rightarrow Q \land P$ | $\models P \land (Q \lor \neg R) \land \neg Q$ | | $(P \wedge Q \Rightarrow Q \wedge P)^{F} \ (P \wedge Q)^{T} \ (Q \wedge P)^{F} \ P^{T} \ Q^{T} \ \perp \ \perp$ | $(P \land (Q \lor \neg R) \land \neg Q)^{T} \\ (P \land (Q \lor \neg R))^{T} \\ \neg Q^{T} \\ Q^{F} \\ P^{T} \\ (Q \lor \neg R)^{T} \\ Q^{T} \neg R^{T} \\ \bot R^{F}$ | | No Model | Herbrand valuation $\{P^{T}, Q^{F}, R^{F}\}$ | | | $\varphi := \{P \mapsto T, Q \mapsto F, R \mapsto F\}$ | - ▶ Idea: Open branches in saturated tableaux yield satisfying assignments. - ► Algorithm: Fully expand all possible tableaux, (no rule can be applied) ► Satisfiable, iff there are open branches (correspond to models) # Analytical Tableaux (Formal Treatment of \mathcal{T}_0) - ▶ Idea: A test calculus where - ► A labeled formula is analyzed in a tree to determine satisfiability, - branches correspond to valuations (models) - **Definition 6.2.** The propositional tableau calculus \mathcal{T}_0 has two inference rules per connective (one for each possible label) $$\frac{\left(\mathsf{A}\wedge\mathsf{B}\right)^\mathsf{T}}{\mathsf{A}^\mathsf{T}} \, \mathcal{T}_0 \wedge \quad \frac{\left(\mathsf{A}\wedge\mathsf{B}\right)^\mathsf{F}}{\mathsf{A}^\mathsf{F}} \, \mathcal{T}_0 \vee \qquad \frac{\neg\mathsf{A}^\mathsf{T}}{\mathsf{A}^\mathsf{F}} \, \mathcal{T}_0 \neg \mathsf{T} \quad \frac{\neg\mathsf{A}^\mathsf{F}}{\mathsf{A}^\mathsf{T}} \, \mathcal{T}_0 \neg \mathsf{F} \qquad \frac{\mathsf{A}^\alpha}{\mathsf{A}^\beta} \quad \alpha \neq \beta \\ \bot \qquad \qquad \bot$$ Use rules exhaustively as long as they contribute new material $(\sim termination)$ - ▶ **Definition 6.3.** We call any tree (\mid introduces branches) produced by the \mathcal{T}_0 inference rules from a set Φ of labeled formulae a **tableau** for Φ . - Definition 6.4. Call a tableau saturated, iff no rule adds new material and a branch closed, iff it ends in ⊥, else open. A tableau is closed, iff all of its branches are. In analogy to the \bot at the end of closed branches, we sometimes decorate open branches with a \Box symbol. # Analytical Tableaux (\mathcal{T}_0 continued) ▶ Definition 6.6 (\mathcal{T}_0 -Theorem/Derivability). A is a \mathcal{T}_0 -theorem ($\vdash_{\mathcal{T}_0} A$), iff there is a closed tableau with A^F at the root. $\Phi \subseteq \textit{wff}_0(\mathcal{V}_0)$ derives A in \mathcal{T}_0 ($\Phi \vdash_{\mathcal{T}_0} A$), iff there is a closed tableau starting with A^F and Φ^T . The tableau with only a branch of A^F and Φ^T is called initial for $\Phi \vdash_{\mathcal{T}_0} A$. ### A more Complex \mathcal{T}_0 Tableau **Example 6.8.** We construct a saturated \mathcal{T}_0 tableau for the formula $\neg((A \lor B) \land \neg(B \land C) \land (\neg C \lor \neg A))$: So we have four closed branches (they end in \bot), and four open ones (decorated by \Box), these correspond to counter-examples to validity. # Abstract Consistency for \mathcal{T}_0 I - ▶ Lemma 6.9. $\nabla := \{\Phi \mid \Phi^T \text{ has no closed } \mathcal{T}_0\text{-tableau}\}$ is an ACC^0 . - ▶ Proof: We convince ourselves of the abstract consistency properties - 1. For ∇_c , let $P, \neg P \in \Phi$ implies $P^F, P^T \in \Phi^T$. - 1.1. So a single application of $\mathcal{T}_0 \perp$ yields a closed tableau for Φ^T - 2. For ∇_{\neg} , let $\neg \neg A \in \Phi$. - 2.1. For the proof of the contrapositive we assume that $\Phi*A$ has a closed tableau \mathcal{T} and show that already Φ has one: - 2.2. Applying each of $\mathcal{T}_0 \neg^T$ and $\mathcal{T}_0 \neg^F$ once allows to extend any tableau branch that contains $\neg \neg B^{\alpha}$ by B^{α} . - 2.3. Any branch in \mathcal{T} that is closed with $\neg \neg A^{\alpha}$, can be closed by A^{α} . ### Abstract Consistency for \mathcal{T}_0 II $$\begin{array}{ccccc} \Phi^{\mathsf{T}} & \Phi^{\mathsf{T}} & \Psi^{\mathsf{T}} \\ \mathsf{A}^{\mathsf{T}} & \mathsf{B}^{\mathsf{T}} & (\mathsf{A} \vee \mathsf{B})^{\mathsf{T}} \\ \mathit{Rest}^1 & \mathit{Rest}^2 & \mathsf{A}^{\mathsf{T}} & \mathsf{B}^{\mathsf{T}} \\ & \mathit{Rest}^1 & \mathit{Rest}^2 & \mathit{Rest}^1 & \mathit{Rest}^2 \end{array}$$ - $\textbf{4. } \nabla_{\!\!\! \wedge} \textit{ Suppose, } \neg(A \vee B) \in \Phi \textit{ and } \Phi \{ \neg A, \neg B \} \textit{ have closed tableau } \mathcal{T}.$ - 4.1. We consider where $$\Phi = \Psi * \neg (A \lor B)$$. ### Completeness of \mathcal{T}_0 - ▶ Corollary 6.10. \mathcal{T}_0 is complete. - ► Proof: by contradiction - 1. We assume that $A \in wff_0(\mathcal{V}_0)$ is valid, but there is no closed tableau for A^F . - 2. We have $\{\neg A\} \in \nabla$ as $\neg A^T = A^F$. - 3. So $\neg A$ is satisfiable by the model-existence theorem (which is applicable as ∇ is an abstract consistency class by our Lemma above). - 4. This contradicts our assumption that A is valid. 1.7 Abstract Consistency and Model Existence for First-Order Logic ### **Abstract Consistency** - ▶ **Definition 7.1.** A collection $\nabla \subseteq wff_o(\Sigma_\iota, \mathcal{V}_\iota)$ of sets of formulae is called a **first-order abstract consistency class** (**ACC**¹), iff it is a ACC⁰ and additionally - ∇_{\exists}) If $\neg(\forall X.A) \in \Phi$ and c is an individual constant that does not occur in Φ , then $\Phi * \neg (A[\frac{c}{X}]) \in \nabla$ - **Example 7.2.** The collection $\{\emptyset, \{\forall x.p(x)\}\}\$ is an ACC¹. (no closed terms) - ► Example 7.3. The collection $\Phi := \{\emptyset, \{p(a)\}, \{\forall x.p(x)\}\}$ is not an ACC¹. $\leftarrow \{p(a), \forall x.p(x)\}$ is missing from Φ . - **Example 7.4.** The collection $\Phi := \{\emptyset, \{\exists x.p(x)\}\}\$ is not an ACC¹. - $\leftarrow \{p(c), \exists x.p(x)\}\$ is missing from Φ or some individual constant c # Compact Abstract Consistency Classes - ▶ **Lemma 7.5.** Any ACC¹ can be extended to a compact one. - Proof: We extend the proof for propositional logic; we only have to look at the two new abstract consistency properties. - 1. Again, we choose $\nabla' := \{ \Phi \subseteq \mathit{cwff}_o(\Sigma_\iota) \, | \, \text{every finite subset of } \Phi \text{ is in } \nabla \}.$ This can be seen to be closed under subsets and compact by the same argument as above. - - 2.1. Let Ψ be any finite subset of $\Phi*(A[\frac{B}{X}])$, and $\Theta:=(\Psi\setminus\{A[\frac{B}{X}]\})*(\forall X.A)$. - 2.2. Θ is a finite subset of Φ , so $\Theta \in \nabla$. - 2.3. Since ∇ is a ACC¹ and $A[\frac{B}{X}] \in \Theta$, we get $\Theta * (\forall X.A) \in \nabla$ by ∇_{\forall} . - 2.4. We know that $\Psi \subseteq \Theta*(A[\frac{B}{X}])$ and ∇ is closed under subsets, so $\Psi \in \nabla$. - 2.5. Thus every finite subset Ψ of $\Phi*(A[\frac{B}{X}])$ is in ∇ and therefore by definition $\Phi*(A[\frac{B}{X}]) \in \nabla'$. - 3. The ∇_{\exists} case are analogous to that for ∇_{\forall} . #### ∇-Hintikka set - ▶ Theorem 7.6 (Hintikka Properties). Let ∇ be a ACC¹ and $\mathcal H$ be a ∇ -Hintikka set, then $\mathcal H$ has all the propositional Hintikka properties plus - \mathcal{H}_{\forall}) If $\forall X.A \in \mathcal{H}$, then $A[\frac{B}{X}] \in \mathcal{H}$ for each closed term B. - \mathcal{H}_{\exists}) If $\neg(\forall X.A) \in \mathcal{H}$ then $\neg(A[\frac{B}{X}]) \in \mathcal{H}$ for some closed term B. - ▶ *Proof:* We prove the two new cases - 1. We prove \mathcal{H}_{\forall} by maximality of \mathcal{H} in ∇ . - 1.1. If $\forall X.A \in \mathcal{H}$, then $\mathcal{H}*(A[\frac{B}{X}]) \in \nabla$ by ∇_{\forall} . - 1.2. The maximality of \mathcal{H} now gives us that $A[\frac{B}{X}] \in \mathcal{H}$. - 2. The proof of \mathcal{H}_{\exists} is similar #### Extension Theorem - ▶ **Theorem 7.7.** If ∇ is a ACC^1 and $\Phi \in \nabla$ finite, then there is a ∇ -Hintikka set \mathcal{H} with $\Phi \subseteq \mathcal{H}$. - ► Proof: - 1. Wlog. assume that ∇ compact (else use compact extension) - 2. Choose an enumeration A_1, \ldots of $\mathit{cwff}_o(\Sigma_\iota)$ and c_1, c_2, \ldots of Σ_0^{sk} . - 3. and construct a sequence of sets H_i with $H_0 := \Phi$ and $$\mathsf{H}_{n+1} := \left\{ \begin{array}{c} \mathsf{H}_n & \mathrm{if} \ \mathsf{H}_n * \mathsf{A}_n \not \in \nabla \\ \mathsf{H}_n \cup \left\{ \mathsf{A}_n, \neg \left(\mathsf{B}[\frac{c_n}{X}] \right) \right\} & \mathrm{if} \ \mathsf{H}_n * \mathsf{A}_n \in \nabla \ \mathrm{and} \ \mathsf{A}_n = \neg \left(\forall X . \mathsf{B} \right) \\ \mathsf{H}_n * \mathsf{A}_n & \mathrm{else} \end{array} \right.$$ - 4. Note that all $H_i \in \nabla$, choose $\mathcal{H} := \bigcup_{i \in \mathbb{N}} H_i$ - 5. $\Psi \subseteq \mathcal{H}$ finite implies there is a $j \in \mathbb{N}$ such that $\Psi \subseteq H_j$, - 6. so $\Psi \in \nabla$ as ∇ closed under subsets and $\mathcal{H} \in \nabla$ as ∇ is compact. - 7. Let $\mathcal{H}*B \in \nabla$, then there is a $j \in \mathbb{N}$ with $B = A_i$, so that $B \in H_{i+1}$ and $H_{i+1} \subseteq \mathcal{H}$ - 8. Thus \mathcal{H} is ∇ -maximal #### What now? - ▶ The next step is to take a ∇ -Hintikka set the extension lemma above gives us one and show that it is satisfiable. - **Problem:** For that we have to conjure a model $\langle \mathcal{A}, \mathcal{I} \rangle$ out of thin air. - ▶ Idea 1: Maybe the ∇ -Hintikka set will help us with the interpretation \leftarrow After all it helped us with the variable assignments in PL^0 . - ▶ **Idea 2:** For the universe we use something that is already lying around: \sim The set $\textit{cwff}_{\iota}(\Sigma)$ of closed terms! - Again, the notion of a valuation helps write things down, so we start with that. - ► Tighten your seat belts and hold on. #### **Valuations** - ▶ **Definition 7.8.** A function ν : $\mathit{cwff}_o(\Sigma_\iota) \to \mathcal{D}_0$ is called a **(first-order)** valuation, iff ν is a propositional valuation and - $\nu(\forall X.A) = T$, iff $\nu(A[\frac{B}{X}]) = T$ for all closed terms B. - ▶ **Lemma 7.9.** If $\varphi: \mathcal{V}_{\iota} \to U$ is a variable assignment, then $\mathcal{I}_{\varphi}: \mathit{cwff}_{o}(\Sigma_{\iota}) \to \mathcal{D}_{0}$ is a valuation. - ▶ *Proof sketch:* Immediate from the definitions. ### Valuation and Satisfiability I - ▶ Lemma 7.10. If ν : $cwff_o(\Sigma_\iota) \to \mathcal{D}_0$ is a valuation and $\Phi \subseteq cwff_o(\Sigma_\iota)$ with $\nu(\Phi) = \{T\}$, then Φ is satisfiable. - ▶ *Proof:* We construct a model $\mathcal{M} := \langle \mathcal{D}_{\iota}, \mathcal{I} \rangle$ for Φ. - 1. Let $\mathcal{D}_{\iota} := cwff_{\iota}(\Sigma_{\iota})$, and - $ightharpoonup \mathcal{I}(f): \mathcal{D}_{\iota}^{\ k} \to \mathcal{D}_{\iota} \ ; \langle \mathsf{A}_1, \ldots, \mathsf{A}_k \rangle \mapsto f(\mathsf{A}_1, \ldots, \mathsf{A}_k) \ \text{for} \ f \in \Sigma^f$ - $\blacktriangleright \ \mathcal{I}(p): \ \mathcal{D}_{\iota}^{\ k} \to \mathcal{D}_0 \ ; \langle \mathsf{A}_1, \ldots, \mathsf{A}_k \rangle \mapsto \nu(p(\mathsf{A}_1, \ldots, \mathsf{A}_k)) \ \text{for} \ p \in \Sigma^p.$ - 2. Then variable assignments into \mathcal{D}_{ι} are ground substitutions. - 3. We show $\mathcal{I}_{\varphi}(A) = A\varphi$ for $A \in wff_{\iota}(\Sigma_{\iota}, \mathcal{V}_{\iota})$ by induction on A: - 3.1. If A = X, then $\mathcal{I}_{\varphi}(A) = X\varphi$ by definition. - 3.2. If $A = f(A_1, ..., A_k)$, then $\mathcal{I}_{\varphi}(A) = \mathcal{I}(f)(\mathcal{I}_{\varphi}(A_1), ..., \mathcal{I}_{\varphi}(A_n)) = \mathcal{I}(f)(A_1\varphi, ..., A_n\varphi) = f(A_1\varphi, ..., A_n\varphi) = f(A_1, ..., A_k)\varphi = A\varphi$ # Valuation and Satisfiability II - 4. We show $\mathcal{I}_{\omega}(A) = \nu(A\varphi)$ for $A \in wff_{o}(\Sigma_{\iota}, \mathcal{V}_{\iota})$ by induction on A. - 4.1. If $A = p(A_1, ..., A_k)$ then $\mathcal{I}_{\varphi}(A) = \mathcal{I}(p)(\mathcal{I}_{\varphi}(A_1), ..., \mathcal{I}_{\varphi}(A_n)) = \mathcal{I}(p)(A_1\varphi, ..., A_n\varphi) = \nu(p(A_1\varphi, ..., A_n\varphi)) = \nu(p(A_1, ..., A_k)\varphi) = \nu(A\varphi)$ - 4.2. If $A = \neg B$ then $\mathcal{I}_{\varphi}(A) = T$, iff $\mathcal{I}_{\varphi}(B) = \nu(B\varphi) = F$, iff $\nu(A\varphi) = T$. - 4.3. $A = B \wedge C$ is similar - 4.4. If $A = \forall X$.B then $\mathcal{I}_{\varphi}(A) = T$, iff $\mathcal{I}_{\psi}(B) = \nu(B\psi) = T$, for all $C \in \mathcal{D}_{\iota}$, where $\psi = \varphi, [\frac{c}{X}]$. This is the case, iff $\nu(A\varphi) = T$. - 5. Thus $\mathcal{I}_{\varphi}(A) = \nu(A\varphi) = \nu(A) = T$ for all $A \in \Phi$. - 6. Hence $\mathcal{M} \models A$. #### Herbrand-Model - ▶ **Definition 7.11.** Let $\Sigma := \langle \Sigma^f, \Sigma^\rho \rangle$ be a first-order signature, then we call $\langle \mathcal{D}, \mathcal{I} \rangle$ a **Herbrand model**, iff - 1. $\mathcal{D} = cwff_{\iota}(\Sigma)$ i.e. the Herbrand universe over Σ . - 2. $\mathcal{I}(f): \mathcal{D}^k \to \mathcal{D}; \langle A_1, \ldots, A_k \rangle \mapsto f(A_1, \ldots, A_k)$ for function constants $f \in \Sigma_k^f$, and - 3. $\mathcal{I}(p) \subseteq \mathcal{D}^k$ for predicate constants p. - ▶ Note: Variable assignments into $\mathcal{D} = \textit{cwff}_{\iota}(\Sigma)$ are naturally ground substitutions by construction. #### Herbrand-Model - ▶ **Definition 7.15.** Let $\Sigma := \langle \Sigma^f, \Sigma^\rho \rangle$ be a first-order signature, then we call $\langle \mathcal{D}, \mathcal{I} \rangle$ a **Herbrand model**, iff - 1. $\mathcal{D} = cwff_{\iota}(\Sigma)$ i.e. the Herbrand universe over Σ . - 2. $\mathcal{I}(f): \mathcal{D}_{k} \xrightarrow{f} \mathcal{D}; \langle A_{1}, \ldots, A_{k} \rangle \mapsto f(A_{1}, \ldots, A_{k})$ for function constants $f \in \Sigma_{k}^{f}$, and - 3. $\mathcal{I}(p) \subseteq \mathcal{D}^k$ for predicate constants p. - ▶ Note: Variable assignments into $\mathcal{D} = \textit{cwff}_{\iota}(\Sigma)$ are naturally ground substitutions by construction. - ▶ **Lemma 7.16.** $\mathcal{I}_{\varphi}(t) = t\varphi$ for terms t. *Proof sketch:* By induction on the structure of A. - ▶ Corollary 7.17. A Herbrand model \mathcal{M} can be represented by the set $H_{\mathcal{M}} = \{A \in \mathit{cwff}(\Sigma) \mid A \text{ atomic and } \mathcal{M} \models \Phi\}$ of closed atoms it satisfies. Proof: Let $A = p(t_1, \ldots, t_k)$. - 1. $\mathcal{I}_{\varphi}(A) = \mathcal{I}_{\varphi}(p(t_1, ..., t_k)) = \mathcal{I}(p)(\langle t_1 \varphi, ..., t_k \varphi \rangle) = \mathsf{T}$, iff $A \in \mathcal{H}_{\mathcal{M}}$. - 2. In the definition of Herbrand model, only the interpretation of predicate constants is flexible, and H_M determines that. #### Herbrand-Model - ▶ **Definition 7.19.** Let $\Sigma := \langle \Sigma^f, \Sigma^\rho \rangle$ be a first-order signature, then we call $\langle \mathcal{D}, \mathcal{I} \rangle$ a **Herbrand model**, iff - 1. $\mathcal{D} = cwff_{\iota}(\Sigma)$ i.e. the Herbrand universe over Σ . - 2. $\mathcal{I}(f): \mathcal{D}^k \to \mathcal{D}; \langle A_1, \ldots, A_k \rangle \mapsto f(A_1, \ldots, A_k)$ for function constants $f \in \Sigma_k^f$, and - 3. $\mathcal{I}(p) \subseteq \mathcal{D}^k$ for predicate constants p. - **Note:** Variable assignments into $\mathcal{D} = \textit{cwff}_{\iota}(\Sigma)$ are naturally ground substitutions by construction. - ▶ Lemma 7.20. $\mathcal{I}_{\varphi}(t) = t\varphi$ for terms t. Proof sketch: By induction on the structure of A. - ▶ Corollary 7.21. A Herbrand model \mathcal{M} can be represented by the set $H_{\mathcal{M}} = \{A \in \textit{cwff}(\Sigma) \mid A \text{ atomic and } \mathcal{M} \models \Phi\}$ of closed atoms it satisfies. Proof: Let $A = p(t_1, \dots, t_k)$. - 1. $\mathcal{I}_{\varphi}(A) = \mathcal{I}_{\varphi}(p(t_1, ..., t_k)) = \mathcal{I}(p)(\langle t_1 \varphi, ..., t_k \varphi \rangle) = \mathsf{T}$, iff $A \in \mathcal{H}_{\mathcal{M}}$. - 2. In the definition of Herbrand model, only the interpretation of predicate constants is flexible, and H_M determines that. - ▶ Theorem 7.22 (Herbrand's Theorem). A set Φ of first-order propositions is satisfiable, iff it has a Herbrand model. #### Model Existence - ▶ Theorem 7.23 (Hintikka-Lemma). If ∇ is an ACC¹ and \mathcal{H} a ∇ -Hintikka set, then \mathcal{H} is satisfiable. - Proof: - 1. we define $\nu(A):=T$, iff $A \in \mathcal{H}$, - 2. then ν is a valuation by the Hintikka set properties. - 3. We have $\nu(\mathcal{H}) = \{T\}$, so \mathcal{H} is satisfiable. - ▶ Theorem 7.24 (Model Existence). If ∇ is an ACC^1 and $\Phi \in \nabla$, then Φ is satisfiable. #### Proof: - ▶ 1. There is a ∇ -Hintikka set \mathcal{H} with $\Phi \subseteq \mathcal{H}$ - 2. We know that \mathcal{H} is satisfiable. - 3. In particular, $\Phi \subseteq \mathcal{H}$ is satisfiable. (Extension Theorem) (Hintikka-Lemma) 1.8 A Completeness Proof for First-Order ND # Consistency, Refutability and ∇ -consistent - ► Theorem 8.1 (\mathcal{ND}^1 -Non-Refutability is an ACC¹). $\Gamma := \{ \Phi \subseteq cwf_o(\Sigma_t) \mid \Phi \text{ is not } \mathcal{ND}^1\text{-refutable} \} \text{ is an } ACC^1.$ - ▶ Proof: We check the two additional properties of an ACC¹ - 1. ∇_{\forall} : We use the contrapositive - 1.1. So let $\forall X.A \in \Phi$, $\Phi \in \Gamma$, and $\Phi * (A[\frac{A}{X}]) \notin \Gamma$, - 1.2. then there is a \mathcal{ND}^1 -refutation of $\Phi*(A[\frac{A}{X}])$. - 1.3. Prepending $\forall E$ to that, gives us a \mathcal{ND}^1 -refutation of Φ . - 2. ∇_{\exists} can be proven similarly using $\forall I$ #### Henkin's Theorem - ► Corollary 8.2 (Henkin's Theorem). Every ND¹-consistent set of sentences has a model. - ► Proof: - 1. Let Φ be a \mathcal{ND}^1 -consistent set of sentences. - 2. The collection of sets of \mathcal{ND}^1 -consistent sentences constitute an ACC¹. - 3. Thus the model existence theorem guarantees a model for Φ . - ► Corollary 8.3 (Löwenheim&Skolem Theorem). Any satisfiable set Φ of first-order sentences has a countable model. *Proof sketch:* The model we constructed is countable, since the set of ground terms is. ### Completeness and Compactness - **▶** Theorem 8.4 (Completeness Theorem for \mathcal{ND}^1). If $\Phi \models A$, then $\Phi \vdash_{\mathcal{ND}^1} A$. - ▶ *Proof:* We prove the result by playing with negations. - 1. If A is valid in all models of Φ , then $\Phi*\neg A$ has no model - 2. Thus $\Phi * \neg A$ is inconsistent by (the contrapositive of) Henkins Theorem. - 3. So $\Phi \vdash_{\mathcal{ND}^1} \neg \neg A$ by $\mathcal{ND}_{0} \neg I$ and thus $\Phi \vdash_{\mathcal{ND}^1} A$ by $\neg E$. - ▶ Theorem 8.5 (Compactness Theorem for first-order logic). If $\Phi \vDash A$, then there is already a finite set $\Psi \subseteq \Phi$ with $\Psi \vDash A$. Proof: This is a direct consequence of the completeness theorem - ▶ 1. We have $\Phi \models A$, iff $\Phi \vdash_{\mathcal{ND}^1} A$. - 2. As a proof is a finite object, only a finite subset $\Psi \subseteq \Phi$ can appear as leaves in the proof. 1.9 Completeness of First-Order Tableaux # First-Order Standard Tableaux (\mathcal{T}_1) are Complete ▶ **Definition 9.1.** The standard tableau calculus (\mathcal{T}_1) extends \mathcal{T}_0 (propositional tableau calculus) with the following quantifier rules: $$\frac{\left(\forall X.\mathsf{A}\right)^{\mathsf{T}} \ \mathsf{C} \in \mathit{cwff}_{\iota}(\Sigma_{\iota})}{\left(\mathsf{A}\left[\frac{c}{X}\right]\right)^{\mathsf{T}}} \ \mathcal{T}_{1} \ \forall \qquad \frac{\left(\forall X.\mathsf{A}\right)^{\mathsf{F}} \ c \in \Sigma_{0}^{\mathit{sk}} \ \mathsf{new}}{\left(\mathsf{A}\left[\frac{c}{X}\right]\right)^{\mathsf{F}}} \ \mathcal{T}_{1} \ \exists$$ # First-Order Standard Tableaux (\mathcal{T}_1) are Complete ▶ **Definition 9.3.** The **standard tableau calculus** (\mathcal{T}_1) extends \mathcal{T}_0 (propositional tableau calculus) with the following quantifier rules: $$\frac{\left(\forall X.\mathsf{A}\right)^{\mathsf{T}} \ \mathsf{C} \in \mathit{cwff}_{\iota}(\Sigma_{\iota})}{\left(\mathsf{A}[\frac{c}{\mathsf{X}}]\right)^{\mathsf{T}}} \ \mathcal{T}_{1} \ \forall \qquad \frac{\left(\forall X.\mathsf{A}\right)^{\mathsf{F}} \ c \in \Sigma_{0}^{\mathsf{sk}} \ \mathsf{new}}{\left(\mathsf{A}[\frac{c}{\mathsf{X}}]\right)^{\mathsf{F}}} \ \mathcal{T}_{1} \ \exists$$ - ▶ Theorem 9.4. \mathcal{T}_1 is refutation complete. - ▶ Proof: We show that $\nabla := \{\Phi \mid \Phi^{\mathsf{T}} \text{ has no closed } \mathcal{T}_1 \text{tableau} \}$ is an ACC¹ - 1. ∇_c , ∇_{\neg} , ∇_{\lor} , and ∇_{\land} as for \mathcal{T}_0 ; ∇_{\lor} similar to the next (∇_{\exists}) below. - 2. ∇_{\exists} : We prove the contrapositive - 2.1. Let $\Phi = \Psi * (\exists X.A)$, but $\Phi * (A[\frac{c}{X}]) \notin \nabla$, - 2.2. then $\Phi*(A[\frac{c}{X}])$ has a closed \mathcal{T}_1 -tableau (on the left). $$\begin{array}{ccc} \boldsymbol{\psi}^\top & \boldsymbol{\psi}^\top \\ \left(\exists X.A\right)^\top & \left(\exists X.A\right)^\top \\ \left(A\left[\frac{c}{X}\right]\right)^\top & \left(A\left[\frac{c}{X}\right]\right)^\top \\ Rest & Rest \end{array}$$ The right \mathcal{T}_1 -tableau starts with $\Phi = \Psi * (\exists X.A)$ and applies $\mathcal{T}_1 \exists$ and then continues as on the left. 3. We argue from $\nabla \cong \mathsf{ACC}^1$ to completeness as above. ### References I