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Chapter 1
Completeness of First-Order Natural Deduction
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1.1 Soundness and Completeness in Logic
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The Miracle of Logic

▶ Purely formal derivations are true in the real world!
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Soundness and Completeness

▶ Definition 1.1. Let L := ⟨L,M,⊨⟩ be a logical system, then we call a calculus
C for L,
▶ sound (or correct), iff H ⊨ A, whenever H⊢CA, and
▶ complete, iff H⊢CA, whenever H ⊨ A.
▶ Goal: Find calculi C , such that ⊢CA iff ⊨A (provability and validity coincide)
▶ To TRUTH through PROOF (CALCULEMUS [Leibniz ∼1680])

▶
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1.2 Recap: First-Order Natural Deduction
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Natural Deduction in Sequent Calculus Formulation

▶ Idea: Represent hypotheses explicitly. (lift calculus to judgments)
▶ Definition 2.1. A judgment is a meta-statement about the provability of

propositions.
▶ Definition 2.2. A sequent is a judgment of the form H A about the

provability of the formula A from the set H of hypotheses. We write A for ∅ A.
▶ Idea: Reformulate ND0 inference rules so that they act on sequents.
▶ Example 2.3.We give the sequent style version of ???:

Ax
A ∧ B A ∧ B

∧Er
A ∧ B B

Ax
A ∧ B A ∧ B

∧El
A ∧ B A

∧I
A ∧ B B ∧ A

⇒I
A ∧ B ⇒ B ∧ A

Ax
A B A

⇒I
A B ⇒ A

⇒I
A ⇒ B ⇒ A

▶ Note: Even though the antecedent of a sequent is written like a sequences, it
is actually a set. In particular, we can permute and duplicate members at will.
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Sequent-Style Rules for Natural Deduction
▶ Definition 2.4. The following inference rules make up the propositional

sequent style natural deduction calculus ND0
⊢:

Γ A A
Ax

Γ B
Γ A B

weaken
Γ A ∨ ¬A

TND

Γ A Γ B
Γ A ∧ B

∧I Γ A ∧ B
Γ A

∧El
Γ A ∧ B
Γ B

∧Er

Γ A
Γ A ∨ B

∨Il
Γ B

Γ A ∨ B
∨Ir

Γ A ∨ B Γ A C Γ B C
Γ C

∨E

Γ A B
Γ A ⇒ B

⇒I
Γ A ⇒ B Γ A

Γ B
⇒E

Γ A F

Γ ¬A
¬I Γ ¬¬A

Γ A
¬E

FI
Γ ¬A Γ A

Γ F
FE

Γ F

Γ A
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First-Order Natural Deduction in Sequent Formulation

▶ Rules for connectives from ND0
⊢

▶ Definition 2.5 (New Quantifier Rules). The inference rules of the first-order
sequent style ND calculus ND1

⊢ consist of those from ND0
⊢ plus the following

quantifier rules:
Γ A X ̸∈ free(Γ)

Γ ∀X .A
∀I Γ ∀X .A

Γ A[B
X ]

∀E

Γ A[B
X ]

Γ ∃X .A
∃I Γ ∃X .A Γ A[ c

X ] C c ∈ Σsk
0 new

Γ C
∃E
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1.3 Abstract Consistency and Model Existence
(Overview)
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Model Existence Method (Overview)

▶ Recap: A completeness proof for a calculus C for a logical system S := ⟨L,⊨⟩
typically comes in two parts:
1. analyzing C-consistency (sets that cannot be refuted in C),
2. constructing |=-models for C-consistent sets.

▶ Idea: Re-package the argument, so that the model-construction for S can be
re-used for multiple calculi ; the abstract consistency/model-existence method:

1. Definition 3.1. Abstract consistency class ∇ =̂ family of ∇-consistent sets.
2. Definition 3.2. A ∇-Hintikka set is a ⊆-maximally ∇-consistent.
3. Theorem 3.3 (Hintikka Lemma). ∇-Hintikka set are satisfiable.
4. Theorem 3.4 (Extension Theorem). If Φ is ∇-consistent, then Φ can be extended

to a ∇-Hintikka set.
5. Corollary 3.5 (Henkins theorem). If Φ is ∇-consistent, then Φ is satisfiable.
6. Lemma 3.6 (Application). Let C be a calculus, if Φ is C-consistent, then Φ is

∇-consistent.
7. Corollary 3.7 (Completeness). C is complete.

▶ Note: Only the last two are C-specific, the rest only depend on S.
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Model Existence Method (Overview)

▶ Recap: A completeness proof for a calculus C for a logical system S := ⟨L,⊨⟩
typically comes in two parts:
1. analyzing C-consistency (sets that cannot be refuted in C),
2. constructing |=-models for C-consistent sets.
▶ Idea: Re-package the argument, so that the model-construction for S can be

re-used for multiple calculi ; the abstract consistency/model-existence method:

1. Definition 3.8. Abstract consistency class ∇ =̂ family of ∇-consistent sets.
2. Definition 3.9. A ∇-Hintikka set is a ⊆-maximally ∇-consistent.
3. Theorem 3.10 (Hintikka Lemma). ∇-Hintikka set are satisfiable.
4. Theorem 3.11 (Extension Theorem). If Φ is ∇-consistent, then Φ can be extended

to a ∇-Hintikka set.
5. Corollary 3.12 (Henkins theorem). If Φ is ∇-consistent, then Φ is satisfiable.
6. Lemma 3.13 (Application). Let C be a calculus, if Φ is C-consistent, then Φ is

∇-consistent.
7. Corollary 3.14 (Completeness). C is complete.
▶ Note: Only the last two are C-specific, the rest only depend on S.
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Model Existence Method (Overview)

▶ Recap: A completeness proof for a calculus C for a logical system S := ⟨L,⊨⟩
typically comes in two parts:
1. analyzing C-consistency (sets that cannot be refuted in C),
2. constructing |=-models for C-consistent sets.
▶ Idea: Re-package the argument, so that the model-construction for S can be

re-used for multiple calculi ; the abstract consistency/model-existence method:

1. Definition 3.15. Abstract consistency class ∇ =̂ family of ∇-consistent sets.
2. Definition 3.16. A ∇-Hintikka set is a ⊆-maximally ∇-consistent.
3. Theorem 3.17 (Hintikka Lemma). ∇-Hintikka set are satisfiable.

4. Theorem 3.18 (Extension Theorem). If Φ is ∇-consistent, then Φ can be extended
to a ∇-Hintikka set.

5. Corollary 3.19 (Henkins theorem). If Φ is ∇-consistent, then Φ is satisfiable.
6. Lemma 3.20 (Application). Let C be a calculus, if Φ is C-consistent, then Φ is

∇-consistent.
7. Corollary 3.21 (Completeness). C is complete.
▶ Note: Only the last two are C-specific, the rest only depend on S.

Michael Kohlhase: Completeness of First-Order Natural Deduction 7 2025-03-06



Model Existence Method (Overview)

▶ Recap: A completeness proof for a calculus C for a logical system S := ⟨L,⊨⟩
typically comes in two parts:
1. analyzing C-consistency (sets that cannot be refuted in C),
2. constructing |=-models for C-consistent sets.
▶ Idea: Re-package the argument, so that the model-construction for S can be

re-used for multiple calculi ; the abstract consistency/model-existence method:

1. Definition 3.22. Abstract consistency class ∇ =̂ family of ∇-consistent sets.
2. Definition 3.23. A ∇-Hintikka set is a ⊆-maximally ∇-consistent.
3. Theorem 3.24 (Hintikka Lemma). ∇-Hintikka set are satisfiable.
4. Theorem 3.25 (Extension Theorem). If Φ is ∇-consistent, then Φ can be extended

to a ∇-Hintikka set.
5. Corollary 3.26 (Henkins theorem). If Φ is ∇-consistent, then Φ is satisfiable.

6. Lemma 3.27 (Application). Let C be a calculus, if Φ is C-consistent, then Φ is
∇-consistent.

7. Corollary 3.28 (Completeness). C is complete.
▶ Note: Only the last two are C-specific, the rest only depend on S.
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Model Existence Method (Overview)

▶ Recap: A completeness proof for a calculus C for a logical system S := ⟨L,⊨⟩
typically comes in two parts:
1. analyzing C-consistency (sets that cannot be refuted in C),
2. constructing |=-models for C-consistent sets.
▶ Idea: Re-package the argument, so that the model-construction for S can be

re-used for multiple calculi ; the abstract consistency/model-existence method:

1. Definition 3.29. Abstract consistency class ∇ =̂ family of ∇-consistent sets.
2. Definition 3.30. A ∇-Hintikka set is a ⊆-maximally ∇-consistent.
3. Theorem 3.31 (Hintikka Lemma). ∇-Hintikka set are satisfiable.
4. Theorem 3.32 (Extension Theorem). If Φ is ∇-consistent, then Φ can be extended

to a ∇-Hintikka set.
5. Corollary 3.33 (Henkins theorem). If Φ is ∇-consistent, then Φ is satisfiable.
6. Lemma 3.34 (Application). Let C be a calculus, if Φ is C-consistent, then Φ is

∇-consistent.
7. Corollary 3.35 (Completeness). C is complete.

▶ Note: Only the last two are C-specific, the rest only depend on S.

Michael Kohlhase: Completeness of First-Order Natural Deduction 7 2025-03-06



Model Existence Method (Overview)

▶ Recap: A completeness proof for a calculus C for a logical system S := ⟨L,⊨⟩
typically comes in two parts:
1. analyzing C-consistency (sets that cannot be refuted in C),
2. constructing |=-models for C-consistent sets.
▶ Idea: Re-package the argument, so that the model-construction for S can be

re-used for multiple calculi ; the abstract consistency/model-existence method:

1. Definition 3.36. Abstract consistency class ∇ =̂ family of ∇-consistent sets.
2. Definition 3.37. A ∇-Hintikka set is a ⊆-maximally ∇-consistent.
3. Theorem 3.38 (Hintikka Lemma). ∇-Hintikka set are satisfiable.
4. Theorem 3.39 (Extension Theorem). If Φ is ∇-consistent, then Φ can be extended

to a ∇-Hintikka set.
5. Corollary 3.40 (Henkins theorem). If Φ is ∇-consistent, then Φ is satisfiable.
6. Lemma 3.41 (Application). Let C be a calculus, if Φ is C-consistent, then Φ is

∇-consistent.
7. Corollary 3.42 (Completeness). C is complete.
▶ Note: Only the last two are C-specific, the rest only depend on S.
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Consistency and Refutability: Some General Definitions

▶ Definition 3.43. We call a pair of propositions A and ¬A a contradiction.
▶ A formula set Φ is C-refutable, if C can derive a contradiction from it.

▶ Definition 3.44. Let C be a calculus, then a logsys/proposition set Φ is called
C-consistent, iff there is a logsys/proposition B, that is not derivable from Φ in
C.
▶ Definition 3.45. We call a calculus C reasonable, iff implication elimination

and conjunction introduction are admissible in C and A∧¬A⇒B is a C-theorem.
▶ Theorem 3.46. C-inconsistency and C-refutability coincide for reasonable

calculi.
▶ Remark 3.47. We will use that C-irrefutable =̂ C-consistent below.
▶ C-consistency (syntactic) and satisfiability (semantics) are fundamentally

different!
▶ Relating them is the meat of the abstract consistency/model-existence method.
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Consistency and Refutability: Some General Definitions

▶ Definition 3.48. We call a pair of propositions A and ¬A a contradiction.
▶ A formula set Φ is C-refutable, if C can derive a contradiction from it.
▶ Definition 3.49. Let C be a calculus, then a logsys/proposition set Φ is called
C-consistent, iff there is a logsys/proposition B, that is not derivable from Φ in
C.

▶ Definition 3.50. We call a calculus C reasonable, iff implication elimination
and conjunction introduction are admissible in C and A∧¬A⇒B is a C-theorem.
▶ Theorem 3.51. C-inconsistency and C-refutability coincide for reasonable

calculi.
▶ Remark 3.52. We will use that C-irrefutable =̂ C-consistent below.
▶ C-consistency (syntactic) and satisfiability (semantics) are fundamentally

different!
▶ Relating them is the meat of the abstract consistency/model-existence method.
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Consistency and Refutability: Some General Definitions

▶ Definition 3.53. We call a pair of propositions A and ¬A a contradiction.
▶ A formula set Φ is C-refutable, if C can derive a contradiction from it.
▶ Definition 3.54. Let C be a calculus, then a logsys/proposition set Φ is called
C-consistent, iff there is a logsys/proposition B, that is not derivable from Φ in
C.
▶ Definition 3.55. We call a calculus C reasonable, iff implication elimination

and conjunction introduction are admissible in C and A∧¬A⇒B is a C-theorem.
▶ Theorem 3.56. C-inconsistency and C-refutability coincide for reasonable

calculi.
▶ Remark 3.57. We will use that C-irrefutable =̂ C-consistent below.

▶ C-consistency (syntactic) and satisfiability (semantics) are fundamentally
different!
▶ Relating them is the meat of the abstract consistency/model-existence method.
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Consistency and Refutability: Some General Definitions

▶ Definition 3.58. We call a pair of propositions A and ¬A a contradiction.
▶ A formula set Φ is C-refutable, if C can derive a contradiction from it.
▶ Definition 3.59. Let C be a calculus, then a logsys/proposition set Φ is called
C-consistent, iff there is a logsys/proposition B, that is not derivable from Φ in
C.
▶ Definition 3.60. We call a calculus C reasonable, iff implication elimination

and conjunction introduction are admissible in C and A∧¬A⇒B is a C-theorem.
▶ Theorem 3.61. C-inconsistency and C-refutability coincide for reasonable

calculi.
▶ Remark 3.62. We will use that C-irrefutable =̂ C-consistent below.
▶ C-consistency (syntactic) and satisfiability (semantics) are fundamentally

different!
▶ Relating them is the meat of the abstract consistency/model-existence method.
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1.4 Abstract Consistency and Model Existence
for Propositional Logic
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Abstract Consistency

▶ Definition 4.1. Let ∇ be a collection of sets. We call ∇ closed under
subsets, iff for each Φ ∈ ∇, all subsets Ψ ⊆ Φ are elements of ∇.
▶ Definition 4.2 (Notation). We will use Φ∗A for Φ ∪ {A}.
▶ Definition 4.3. A collection ∇ of sets of propositional formulae is called an

propositional abstract consistency class (ACC0), iff it is closed under
subsets, and for each Φ ∈ ∇
∇c) P ̸∈ Φ or ¬P ̸∈ Φ for P ∈ V0

∇¬) ¬¬A ∈ Φ implies Φ∗A ∈ ∇
∇∨) A ∨ B ∈ Φ implies Φ∗A ∈ ∇ or Φ∗B ∈ ∇
∇∧) ¬(A ∨ B) ∈ Φ implies Φ ∪ {¬A,¬B} ∈ ∇
▶ Example 4.4. The empty collection is an ACC0.
▶ Example 4.5. The collection {∅, {Q}, {P ∨ Q}, {P ∨ Q,Q}} is an ACC0.
▶ Example 4.6. The collection of satisfiable sets is an ACC0.
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Compact Collections

▶ Definition 4.7. We call a collection ∇ of sets compact, iff for any set Φ we
have
Φ ∈ ∇, iff Ψ ∈ ∇ for every finite subset Ψ of Φ.
▶ Lemma 4.8. If ∇ is compact, then ∇ is closed under subsets.
▶ Proof:

1. Suppose S ⊆ T and T ∈ ∇.
2. Every finite subset A of S is a finite subset of T .
3. As ∇ is compact, we know that A ∈ ∇.
4. Thus S ∈ ∇.

Michael Kohlhase: Completeness of First-Order Natural Deduction 10 2025-03-06



Compact Abstract Consistency Classes I
▶ Lemma 4.9. Any ACC0 can be extended to a compact one.
▶ Proof:

1. We choose ∇′ := {Φ ⊆ wff0(V0) | every finite subset of Φ is in ∇}.
2. Now suppose that Φ ∈ ∇. ∇ is closed under subsets, so every finite subset

of Φ is in ∇ and thus Φ ∈ ∇′. Hence ∇ ⊆ ∇′.
3. Next let us show that ∇′ is compact.

3.1. Suppose Φ ∈ ∇′ and Ψ is an arbitrary finite subset of Φ.
3.2. By definition of ∇′ all finite subsets of Φ are in ∇ and therefore
Ψ ∈ ∇′.
3.3. Thus all finite subsets of Φ are in ∇′ whenever Φ is in ∇′.
3.4. On the other hand, suppose all finite subsets of Φ are in ∇′.
3.5. Then by the definition of ∇′ the finite subsets of Φ are also in ∇, so
Φ ∈ ∇′. Thus ∇′ is compact.

4. Note that ∇′ is closed under subsets by the Lemma above.
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Compact Abstract Consistency Classes II

5. Now we show that if ∇ satisfies ∇∗, then ∇′ does too.
5.1. To show ∇c , let Φ ∈ ∇′ and suppose there is an atom A, such that
{A,¬A} ⊆ Φ. Then {A,¬A} ∈ ∇ contradicting ∇c .
5.2. To show ∇¬, let Φ ∈ ∇′ and ¬¬A ∈ Φ, then Φ∗A ∈ ∇′.
5.2.1. Let Ψ be any finite subset of Φ∗A, and Θ := (Ψ\{A})∗¬¬A.
5.2.2. Θ is a finite subset of Φ, so Θ ∈ ∇.
5.2.3. Since ∇ is an abstract consistency class and ¬¬A ∈ Θ, we get
Θ∗A ∈ ∇ by ∇¬.
5.2.4. We know that Ψ ⊆ Θ∗A and ∇ is closed under subsets, so Ψ ∈ ∇.
5.2.5. Thus every finite subset Ψ of Φ∗A is in ∇ and therefore by definition
Φ∗A ∈ ∇′.
5.3. the other cases are analogous to that of ∇¬.
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∇-Hintikka set

▶ Definition 4.10. Let ∇ be an abstract consistency class, then we call a set
H ∈ ∇ a ∇-Hintikka set, iff H is ⊆-maximal in ∇, i.e. for all A with H∗A ∈ ∇
we already have A ∈ H.
▶ Theorem 4.11 (Hintikka Properties). Let ∇ be an abstract consistency class

and H be a ∇-Hintikka set then
Hc) For all A ∈ wff0(V0) we have A ̸∈ H or ¬A ̸∈ H
H¬) If ¬¬A ∈ H then A ∈ H
H∨) If A ∨ B ∈ H then A ∈ H or B ∈ H
H∧) If ¬(A ∨ B) ∈ H then ¬A,¬B ∈ H
▶ Remark: Hintikka sets are usually defined by the properties H∗ above, but

here we (more generally) characterize them by ⊆-maximality and regain the
same properties.
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∇-Hintikka set

▶ Proof: We prove the properties in turn
1. Hc goes by induction on the structure of A

1.1. A ∈ V0 Then A ̸∈ H or ¬A ̸∈ H by ∇c .
1.2. A = ¬B
1.2.1. Let us assume that ¬B ∈ H and ¬¬B ∈ H,
1.2.2. then H∗B ∈ ∇ by ∇¬, and therefore B ∈ H by maximality.
1.2.3. So both B and ¬B are in H, which contradicts the induction
hypothesis.
1.3. A = B ∨ C is similar to the previous case

2. We prove H¬ by maximality of H in ∇.
2.1. If ¬¬A ∈ H, then H∗A ∈ ∇ by ∇¬.
2.2. The maximality of H now gives us that A ∈ H.

3. The other H∗ can be proven analogously.
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Extension Theorem

▶ Theorem 4.12. If ∇ is an abstract consistency class and Φ ∈ ∇, then there is
a ∇-Hintikka setH with Φ ⊆ H.
▶ Proof:

1. Wlog. we assume that ∇ is compact(otherwise pass to compact extension)
2. We choose an enumeration A1, . . . of the set wff0(V0)
3. and construct a sequence of sets Hi with H0 := Φ and

Hn+1 :=

{
Hn if Hn∗An ̸∈ ∇

Hn∗An if Hn∗An ∈ ∇

4. Note that all Hi ∈ ∇, choose H :=
⋃

i∈NHi

5. Ψ ⊆ H finite implies there is a j ∈ N such that Ψ ⊆ Hj ,
6. so Ψ ∈ ∇ as ∇ is closed under subsets and H ∈ ∇ as ∇ is compact.
7. Let H∗B ∈ ∇, then there is a j ∈ N with B = Aj , so that B ∈ Hj+1 and

Hj+1 ⊆ H
8. Thus H is ∇-maximal
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Valuation

▶ Definition 4.13. A function ν : wff0(V0)→D0 is called a (propositional)
valuation, iff
▶ ν(¬A) = T, iff ν(A) = F
▶ ν(A ∧ B) = T, iff ν(A) = T and ν(B) = T
▶ Lemma 4.14. If ν : wff0(V0)→D0 is a valuation and Φ ⊆ wff0(V0) with
ν(Φ) = {T}, then Φ is satisfiable.
▶ Proof sketch: ν|V0

: V0 →D0 is a satisfying variable assignment.
▶ Lemma 4.15. If φ : V0 →D0 is a variable assignment, then Iφ : wff0(V0)→D0

is a valuation.

Michael Kohlhase: Completeness of First-Order Natural Deduction 16 2025-03-06



Model Existence

▶ Lemma 4.16 (Hintikka-Lemma). If ∇ is an abstract consistency class and H
a ∇-Hintikka set, then H is satisfiable.
▶ Proof:

1. We define ν(A) := T, iff A ∈ H
2. then ν is a valuation by the Hintikka properties
3. and thus ν|V0

is a satisfying assignment.
▶ Theorem 4.17 (Model Existence). If ∇ is an abstract consistency class and
Φ ∈ ∇, then Φ is satisfiable.
Proof:
▶ 1. There is a ∇-Hintikka set H with Φ ⊆ H (Extension Theorem)

2. We know that H is satisfiable. (Hintikka-Lemma)
3. In particular, Φ ⊆ H is satisfiable.
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1.5 A Completeness Proof for Propositional ND
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Consistency, Refutability and ∇-Consistency

▶ Theorem 5.1 (Non-Refutability is an ACC0).
Γ := {Φ ⊆ wff0(V0) |Φ is not ND0-refutable} is an ACC0.
▶ Proof: We check the properties of an ACC0

1. If Φ is non-refutable, then any subset is as well, so Γ is closed under
subsets.

We show the abstract consistency properties ∇∗ for Φ ∈ Γ.
2. ∇c

2.1. We have to show that A ̸∈ Φ or ¬A ̸∈ Φ for atomic A ∈ wff0(V0).
2.2. Equivalently, we show the contrapositive: If {A,¬A} ⊆ Φ, then Φ ̸∈ Γ.
2.3. So let {A,¬A} ⊆ Φ, then Φ is ND0-refutable by construction.
2.4. So Φ ̸∈ Γ.

3. ∇¬ We show the contrapositive again
3.1. Let ¬¬A ∈ Φ and Φ∗A ̸∈ Γ
3.2. Then we have a refutation D : Φ∗A⊢ND0F
3.3. By prepending an application of ¬E for ¬¬A to D, we obtain a
refutation D′ : Φ⊢ND0F .
3.4. Thus Φ ̸∈ Γ.

4. The other ∇∗ can be proven analogously.
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Henkin’s Theorem

▶ Corollary 5.2 (Henkin’s Theorem). Every ND0-consistent set of propositions
is satisfiable.
▶ Proof:

1. Let Φ be a ND0-consistent set of propositions.
2. The collection of sets of ND0-consistent propositions constitute an ACC0.
3. Thus the model existence theorem guarantees a variable assignment that

satisfies Φ.
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Completeness of ND0

▶ Theorem 5.3 (Completeness Theorem for ND0). If Φ ⊨ A, then Φ⊢ND0A.
▶ Proof: We prove the result by playing with negations.

1. If Φ ⊨ A, then (by definition) A is satisfied by all variable assignment that
satisfy Φ

2. So Φ∗¬A has no satisfying assignment.
3. Thus Φ∗¬A is inconsistent by (the contrapositive of) Henkins Theorem.
4. So Φ⊢ND0¬¬A by ND0¬I and thus Φ⊢ND0A by ¬E .
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1.6 Completeness of Propositional Tableaux
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Test Calculi: Tableaux and Model Generation
▶ Idea: A tableau calculus is a test calculus that
▶ analyzes a labeled formulae in a tree to determine satisfiability,
▶ its branches correspond to valuations (; models).
▶ Example 6.1. Tableau calculi try to construct models for labeled formulae: E.g. the

propositional tableau calculus for PL0

Tableau refutation (Validity) Model generation (Satisfiability)
⊨P ∧ Q ⇒ Q ∧ P ⊨P ∧ (Q ∨ ¬R) ∧ ¬Q

(P ∧ Q ⇒ Q ∧ P)F

(P ∧ Q)T

(Q ∧ P)F

PT

QT

PF

⊥
QF

⊥

(P ∧ (Q ∨ ¬R) ∧ ¬Q)T

(P ∧ (Q ∨ ¬R))T
¬QT

QF

PT

(Q ∨ ¬R)T
QT

⊥
¬RT

RF

No Model Herbrand valuation {PT,QF,RF}
φ := {P 7→ T,Q 7→ F,R 7→ F}

▶ Idea: Open branches in saturated tableaux yield satisfying assignments.
▶ Algorithm: Fully expand all possible tableaux, (no rule can be applied)
▶ Satisfiable, iff there are open branches (correspond to models)
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Analytical Tableaux (Formal Treatment of T0)
▶ Idea: A test calculus where
▶ A labeled formula is analyzed in a tree to determine satisfiability,
▶ branches correspond to valuations (models)
▶ Definition 6.2. The propositional tableau calculus T0 has two inference rules

per connective (one for each possible label)

(A ∧ B)T

AT

BT

T0∧
(A ∧ B)F

AF
∣∣∣ BF

T0∨
¬AT

AF T0¬T ¬AF

AT T0¬F

Aα

Aβ α ̸= β

⊥
T0⊥

Use rules exhaustively as long as they contribute new material (; termination)

▶ Definition 6.3. We call any tree (
∣∣∣ introduces branches) produced by the T0

inference rules from a set Φ of labeled formulae a tableau for Φ.
▶ Definition 6.4. Call a tableau saturated, iff no rule adds new material and a

branch closed, iff it ends in ⊥, else open. A tableau is closed, iff all of its
branches are.
In analogy to the ⊥ at the end of closed branches, we sometimes decorate open
branches with a 2 symbol.
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Analytical Tableaux (T0 continued)

▶ Definition 6.6 (T0-Theorem/Derivability). A is a T0-theorem (⊢T0A), iff
there is a closed tableau with AF at the root.
Φ ⊆ wff0(V0) derives A in T0 (Φ⊢T0A), iff there is a closed tableau starting with
AF and ΦT. The tableau with only a branch of AF and ΦT is called initial for
Φ⊢T0A.
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A more Complex T0 Tableau

▶ Example 6.8. We construct a saturated T0 tableau for the formula
¬((A ∨ B) ∧ ¬(B ∧ C ) ∧ (¬C ∨ ¬A)):

¬((A ∨ B) ∧ ¬(B ∧ C ) ∧ (¬C ∨ ¬A))F

((A ∨ B) ∧ ¬(B ∧ C ) ∧ (¬C ∨ ¬A))T

(A ∨ B)T

(¬(B ∧ C ) ∧ (¬C ∨ ¬A))T

¬(B ∧ C )T

(¬C ∨ ¬A)T

(B ∧ C )F

AT

¬CT

CF

BF

2
CF

2

¬AT

AF

BF

⊥
CF

⊥

BT

¬CT

CF

BF

⊥
CF

2

¬AT

AF

BF

⊥
CF

2

So we have four closed branches (they end in ⊥), and four open ones (decorated
by 2), these correspond to counter-examples to validity.
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Abstract Consistency for T0 I
▶ Lemma 6.9. ∇ := {Φ |ΦT has no closed T0-tableau} is an ACC0.
▶ Proof: We convince ourselves of the abstract consistency properties

1. For ∇c , let P,¬P ∈ Φ implies PF,PT ∈ ΦT.
1.1. So a single application of T0⊥ yields a closed tableau for ΦT

2. For ∇¬, let ¬¬A ∈ Φ.
2.1. For the proof of the contrapositive we assume that Φ∗A has a closed
tableau T and show that already Φ has one:
2.2. Applying each of T0¬T and T0¬F once allows to extend any tableau
branch that contains ¬¬Bα by Bα.
2.3. Any branch in T that is closed with ¬¬Aα, can be closed by Aα.
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Abstract Consistency for T0 II

3. ∇∨ Suppose A ∨ B ∈ Φ and both Φ∗A and Φ∗B have closed tableaux
3.1. Consider the tableaux:

ΦT

AT

Rest1

ΦT

BT

Rest2

ΨT

(A ∨ B)T

AT

Rest1
BT

Rest2

4. ∇∧ Suppose, ¬(A ∨ B) ∈ Φ and Φ{¬A,¬B} have closed tableau T .
4.1. We consider

ΦT

AF

BF

Rest

ΨT

(A ∨ B)F

AF

BF

Rest

where Φ = Ψ∗¬(A ∨ B).
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Completeness of T0

▶ Corollary 6.10. T0 is complete.
▶ Proof: by contradiction

1. We assume that A ∈ wff0(V0) is valid, but there is no closed tableau for AF.
2. We have {¬A} ∈ ∇ as ¬AT = AF.
3. So ¬A is satisfiable by the model-existence theorem (which is applicable as
∇ is an abstract consistency class by our Lemma above).

4. This contradicts our assumption that A is valid.
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1.7 Abstract Consistency and Model Existence
for First-Order Logic
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Abstract Consistency

▶ Definition 7.1. A collection ∇ ⊆ wffo(Σι,Vι) of sets of formulae is called a
first-order abstract consistency class (ACC1), iff it is a ACC0 and
additionally
∇∀) If ∀X .A ∈ Φ, then Φ∗(A[B

X
]) ∈ ∇ for each closed term B.

∇∃) If ¬(∀X .A) ∈ Φ and c is an individual constant that does not occur in Φ, then
Φ∗¬(A[ c

X
]) ∈ ∇

▶ Example 7.2. The collection {∅, {∀x .p(x)}} is an ACC1. (no closed terms)
▶ Example 7.3. The collection Φ := {∅, {p(a)}, {∀x .p(x)}} is not an ACC1.
⇝{p(a),∀x .p(x)} is missing from Φ.

▶ Example 7.4. The collection Φ := {∅, {∃x .p(x)}} is not an ACC1.
⇝{p(c),∃x .p(x)} is missing from Φ or some individual constant c
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Compact Abstract Consistency Classes

▶ Lemma 7.5. Any ACC1 can be extended to a compact one.
▶ Proof: We extend the proof for propositional logic; we only have to look at the

two new abstract consistency properties.
1. Again, we choose ∇′ := {Φ ⊆ cwffo(Σι) | every finite subset of Φ is in ∇}.

This can be seen to be closed under subsets and compact by the same
argument as above.

2. To show ∇∀ for ∇′, let Φ ∈ ∇′ and ∀X .A ∈ Φ.
2.1. Let Ψ be any finite subset of Φ∗(A[B

X ]), and Θ := (Ψ\{A[B
X ]})∗(∀X .A).

2.2. Θ is a finite subset of Φ, so Θ ∈ ∇.
2.3. Since ∇ is a ACC1 and A[B

X ] ∈ Θ, we get Θ∗(∀X .A) ∈ ∇ by ∇∀.
2.4. We know that Ψ ⊆ Θ∗(A[B

X ]) and ∇ is closed under subsets, so Ψ ∈ ∇.
2.5. Thus every finite subset Ψ of Φ∗(A[B

X ]) is in ∇ and therefore by
definition Φ∗(A[B

X ]) ∈ ∇′.
3. The ∇∃ case are analogous to that for ∇∀.
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∇-Hintikka set

▶ Theorem 7.6 (Hintikka Properties). Let ∇ be a ACC1 and H be a
∇-Hintikka set, then H has all the propositional Hintikka properties plus
H∀) If ∀X .A ∈ H, then A[B

X
] ∈ H for each closed term B.

H∃) If ¬(∀X .A) ∈ H then ¬(A[B
X
]) ∈ H for some closed term B.

▶ Proof: We prove the two new cases
1. We prove H∀ by maximality of H in ∇.

1.1. If ∀X .A ∈ H, then H∗(A[B
X ]) ∈ ∇ by ∇∀.

1.2. The maximality of H now gives us that A[B
X ] ∈ H.

2. The proof of H∃ is similar
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Extension Theorem

▶ Theorem 7.7. If ∇ is a ACC1 and Φ ∈ ∇ finite, then there is a ∇-Hintikka set
H with Φ ⊆ H.
▶ Proof:

1. Wlog. assume that ∇ compact (else use compact extension)
2. Choose an enumeration A1, . . . of cwffo(Σι) and c1, c2, . . . of Σsk

0 .
3. and construct a sequence of sets Hi with H0 := Φ and

Hn+1 :=

 Hn if Hn∗An ̸∈ ∇
Hn ∪ {An,¬(B[ cnX ])} if Hn∗An ∈ ∇ and An = ¬(∀X .B)

Hn∗An else

4. Note that all Hi ∈ ∇, choose H :=
⋃

i∈NHi

5. Ψ ⊆ H finite implies there is a j ∈ N such that Ψ ⊆ Hj ,
6. so Ψ ∈ ∇ as ∇ closed under subsets and H ∈ ∇ as ∇ is compact.
7. Let H∗B ∈ ∇, then there is a j ∈ N with B = Aj , so that B ∈ Hj+1 and

Hj+1 ⊆ H
8. Thus H is ∇-maximal
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What now?

▶ The next step is to take a ∇-Hintikka set – the extension lemma above gives us
one – and show that it is satisfiable.
▶ Problem: For that we have to conjure a model ⟨A, I⟩ out of thin air.
▶ Idea 1: Maybe the ∇-Hintikka set will help us with the interpretation
⇝After all it helped us with the variable assignments in PL0.

▶ Idea 2: For the universe we use something that is already lying around:
; The set cwffι(Σ) of closed terms!
▶ Again, the notion of a valuation helps write things down, so we start with that.
▶ Tighten your seat belts and hold on.
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Valuations

▶ Definition 7.8. A function ν : cwffo(Σι)→D0 is called a (first-order)
valuation, iff ν is a propositional valuation and
▶ ν(∀X .A) = T, iff ν(A[B

X
]) = T for all closed terms B.

▶ Lemma 7.9. If φ : Vι → U is a variable assignment, then Iφ : cwffo(Σι)→D0
is a valuation.
▶ Proof sketch: Immediate from the definitions.
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Valuation and Satisfiability I
▶ Lemma 7.10. If ν : cwffo(Σι)→D0 is a valuation and Φ ⊆ cwffo(Σι) with
ν(Φ) = {T}, then Φ is satisfiable.
▶ Proof: We construct a model M := ⟨Dι, I⟩ for Φ.

1. Let Dι := cwffι(Σι), and
▶ I(f ) : Dι

k →Dι ; ⟨A1, . . .,Ak⟩ 7→ f (A1, . . .,Ak) for f ∈ Σf

▶ I(p) : Dι
k →D0 ; ⟨A1, . . .,Ak⟩ 7→ ν(p(A1, . . .,Ak)) for p ∈ Σp.

2. Then variable assignments into Dι are ground substitutions.
3. We show Iφ(A) = Aφ for A ∈ wffι(Σι,Vι) by induction on A:

3.1. If A = X , then Iφ(A) = Xφ by definition.
3.2. If A = f (A1, . . .,Ak), then Iφ(A) = I(f )(Iφ(A1), . . . , Iφ(An)) =
I(f )(A1φ, . . . ,Anφ) = f (A1φ, . . . ,Anφ) = f (A1, . . .,Ak)φ = Aφ
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Valuation and Satisfiability II

4. We show Iφ(A) = ν(Aφ) for A ∈ wffo(Σι,Vι) by induction on A.
4.1. If A = p(A1, . . .,Ak) then Iφ(A) = I(p)(Iφ(A1), . . . , Iφ(An)) =
I(p)(A1φ, . . . ,Anφ) = ν(p(A1φ, . . . ,Anφ)) = ν(p(A1, . . .,Ak)φ) = ν(Aφ)
4.2. If A = ¬B then Iφ(A) = T, iff Iφ(B) = ν(Bφ) = F, iff ν(Aφ) = T.
4.3. A = B ∧ C is similar
4.4. If A = ∀X .B then Iφ(A) = T, iff Iψ(B) = ν(Bψ) = T, for all C ∈ Dι,
where ψ = φ,[ C

X ]. This is the case, iff ν(Aφ) = T.
5. Thus Iφ(A) = ν(Aφ) = ν(A) = T for all A ∈ Φ.
6. Hence M ⊨ A.
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Herbrand-Model

▶ Definition 7.11. Let Σ := ⟨Σf ,Σp ⟩ be a first-order signature, then we call
⟨D, I⟩ a Herbrand model, iff
1. D = cwffι(Σ) – i.e. the Herbrand universe over Σ.
2. I(f ) : Dk →D ; ⟨A1, . . .,Ak⟩ 7→ f (A1, . . .,Ak) for function constants f ∈ Σf

k , and
3. I(p) ⊆ Dk for predicate constants p.
▶ Note: Variable assignments into D = cwffι(Σ) are naturally ground

substitutions by construction.

▶ Lemma 7.12. Iφ(t) = tφ for terms t.
Proof sketch: By induction on the structure of A.
▶ Corollary 7.13. A Herbrand model M can be represented by the set
HM = {A ∈ cwff(Σ) |A atomic and M ⊨ Φ} of closed atoms it satisfies.
Proof: Let A = p(t1, . . ., tk).

1. Iφ(A) = Iφ(p(t1, . . ., tk)) = I(p)(⟨t1φ, . . ., tkφ⟩) = T, iff A ∈ HM.
2. In the definition of Herbrand model, only the interpretation of predicate

constants is flexible, and HM determines that.
▶ Theorem 7.14 (Herbrand’s Theorem). A set Φ of first-order propositions is

satisfiable, iff it has a Herbrand model.
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Herbrand-Model

▶ Definition 7.15. Let Σ := ⟨Σf ,Σp ⟩ be a first-order signature, then we call
⟨D, I⟩ a Herbrand model, iff
1. D = cwffι(Σ) – i.e. the Herbrand universe over Σ.
2. I(f ) : Dk →D ; ⟨A1, . . .,Ak⟩ 7→ f (A1, . . .,Ak) for function constants f ∈ Σf

k , and
3. I(p) ⊆ Dk for predicate constants p.
▶ Note: Variable assignments into D = cwffι(Σ) are naturally ground

substitutions by construction.
▶ Lemma 7.16. Iφ(t) = tφ for terms t.

Proof sketch: By induction on the structure of A.
▶ Corollary 7.17. A Herbrand model M can be represented by the set
HM = {A ∈ cwff(Σ) |A atomic and M ⊨ Φ} of closed atoms it satisfies.
Proof: Let A = p(t1, . . ., tk).

1. Iφ(A) = Iφ(p(t1, . . ., tk)) = I(p)(⟨t1φ, . . ., tkφ⟩) = T, iff A ∈ HM.
2. In the definition of Herbrand model, only the interpretation of predicate

constants is flexible, and HM determines that.

▶ Theorem 7.18 (Herbrand’s Theorem). A set Φ of first-order propositions is
satisfiable, iff it has a Herbrand model.
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Herbrand-Model

▶ Definition 7.19. Let Σ := ⟨Σf ,Σp ⟩ be a first-order signature, then we call
⟨D, I⟩ a Herbrand model, iff
1. D = cwffι(Σ) – i.e. the Herbrand universe over Σ.
2. I(f ) : Dk →D ; ⟨A1, . . .,Ak⟩ 7→ f (A1, . . .,Ak) for function constants f ∈ Σf

k , and
3. I(p) ⊆ Dk for predicate constants p.
▶ Note: Variable assignments into D = cwffι(Σ) are naturally ground

substitutions by construction.
▶ Lemma 7.20. Iφ(t) = tφ for terms t.

Proof sketch: By induction on the structure of A.
▶ Corollary 7.21. A Herbrand model M can be represented by the set
HM = {A ∈ cwff(Σ) |A atomic and M ⊨ Φ} of closed atoms it satisfies.
Proof: Let A = p(t1, . . ., tk).

1. Iφ(A) = Iφ(p(t1, . . ., tk)) = I(p)(⟨t1φ, . . ., tkφ⟩) = T, iff A ∈ HM.
2. In the definition of Herbrand model, only the interpretation of predicate

constants is flexible, and HM determines that.
▶ Theorem 7.22 (Herbrand’s Theorem). A set Φ of first-order propositions is

satisfiable, iff it has a Herbrand model.
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Model Existence

▶ Theorem 7.23 (Hintikka-Lemma). If ∇ is an ACC1 and H a ∇-Hintikka set,
then H is satisfiable.
▶ Proof:

1. we define ν(A):=T, iff A ∈ H,
2. then ν is a valuation by the Hintikka set properties.
3. We have ν(H) = {T}, so H is satisfiable.

▶ Theorem 7.24 (Model Existence). If ∇ is an ACC1 and Φ ∈ ∇, then Φ is
satisfiable.
Proof:
▶ 1. There is a ∇-Hintikka set H with Φ ⊆ H (Extension Theorem)

2. We know that H is satisfiable. (Hintikka-Lemma)
3. In particular, Φ ⊆ H is satisfiable.
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1.8 A Completeness Proof for First-Order ND
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Consistency, Refutability and ∇-consistent

▶ Theorem 8.1 (ND1-Non-Refutability is an ACC1).
Γ := {Φ ⊆ cwffo(Σι) |Φ is not ND1-refutable} is an ACC1.
▶ Proof: We check the two additional properties of an ACC1

1. ∇∀: We use the contrapositive
1.1. So let ∀X .A ∈ Φ, Φ ∈ Γ, and Φ∗(A[A

X ]) ̸∈ Γ,
1.2. then there is a ND1-refutation of Φ∗(A[A

X ]).
1.3. Prepending ∀E to that, gives us a ND1-refutation of Φ.
1.4. So Φ ̸∈ Γ, which is what we wanted to show for the contrapositive of
∇∀.

2. ∇∃ can be proven similarly using ∀I
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Henkin’s Theorem

▶ Corollary 8.2 (Henkin’s Theorem). Every ND1-consistent set of sentences
has a model.
▶ Proof:

1. Let Φ be a ND1-consistent set of sentences.
2. The collection of sets of ND1-consistent sentences constitute an ACC1.
3. Thus the model existence theorem guarantees a model for Φ.

▶ Corollary 8.3 (Löwenheim&Skolem Theorem). Any satisfiable set Φ of
first-order sentences has a countable model.
Proof sketch: The model we constructed is countable, since the set of ground
terms is.

Michael Kohlhase: Completeness of First-Order Natural Deduction 39 2025-03-06



Completeness and Compactness

▶▶ Theorem 8.4 (Completeness Theorem for ND1). If Φ ⊨ A, then Φ⊢ND1A.
▶ Proof: We prove the result by playing with negations.

1. If A is valid in all models of Φ, then Φ∗¬A has no model
2. Thus Φ∗¬A is inconsistent by (the contrapositive of) Henkins Theorem.
3. So Φ⊢ND1¬¬A by ND0¬I and thus Φ⊢ND1A by ¬E .

▶ Theorem 8.5 (Compactness Theorem for first-order logic). If Φ ⊨ A, then
there is already a finite set Ψ ⊆ Φ with Ψ ⊨ A.
Proof: This is a direct consequence of the completeness theorem
▶ 1. We have Φ ⊨ A, iff Φ⊢ND1A.

2. As a proof is a finite object, only a finite subset Ψ ⊆ Φ can appear as
leaves in the proof.
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1.9 Completeness of First-Order Tableaux
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First-Order Standard Tableaux (T1) are Complete
▶ Definition 9.1. The standard tableau calculus (T1) extends T0 (propositional

tableau calculus) with the following quantifier rules:

(∀X .A)T C ∈ cwffι(Σι)

(A[ C
X ])

T T1 ∀
(∀X .A)F c ∈ Σsk

0 new

(A[ c
X ])

F T1 ∃

▶ Theorem 9.2. T1 is refutation complete.
▶ Proof: We show that ∇ := {Φ |ΦT has no closed T1tableau} is an ACC1

1. ∇c , ∇¬, ∇∨, and ∇∧ as for T0; ∇∀ similar to the next (∇∃) below.
2. ∇∃: We prove the contrapositive

2.1. Let Φ = Ψ∗(∃X .A), but Φ∗(A[ c
X ]) ̸∈ ∇,

2.2. then Φ∗(A[ c
X ]) has a closed T1-tableau (on the left).

ΨT

(∃X .A)T

(A[ c
X ])

T

Rest

ΨT

(∃X .A)T

(A[ c
X ])

T

Rest

The right T1-tableau starts with Φ = Ψ∗(∃X .A) and applies T1 ∃ and then
continues as on the left.

3. We argue from ∇ =̂ ACC1 to completeness as above.
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First-Order Standard Tableaux (T1) are Complete
▶ Definition 9.3. The standard tableau calculus (T1) extends T0 (propositional

tableau calculus) with the following quantifier rules:

(∀X .A)T C ∈ cwffι(Σι)

(A[ C
X ])

T T1 ∀
(∀X .A)F c ∈ Σsk

0 new

(A[ c
X ])

F T1 ∃

▶ Theorem 9.4. T1 is refutation complete.
▶ Proof: We show that ∇ := {Φ |ΦT has no closed T1tableau} is an ACC1

1. ∇c , ∇¬, ∇∨, and ∇∧ as for T0; ∇∀ similar to the next (∇∃) below.
2. ∇∃: We prove the contrapositive

2.1. Let Φ = Ψ∗(∃X .A), but Φ∗(A[ c
X ]) ̸∈ ∇,

2.2. then Φ∗(A[ c
X ]) has a closed T1-tableau (on the left).

ΨT

(∃X .A)T

(A[ c
X ])

T

Rest

ΨT

(∃X .A)T

(A[ c
X ])

T

Rest

The right T1-tableau starts with Φ = Ψ∗(∃X .A) and applies T1 ∃ and then
continues as on the left.

3. We argue from ∇ =̂ ACC1 to completeness as above.
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