
Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Linear Arithmetic

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

24 March 2025

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Outline

1 Motivation

2 Fourier-Motzkin Elimination

3 Correctness

4 Integer Linear Arithmetic

5 Eliminating Equalities

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Linear Arithmetic (KS Ch 5)

Boolean combinations of linear constraints of the form:

a1x1 + · · ·+ anxn ≤ b1

Quantifier-Free fragment of FO(+,−, <, 0, 1)

Interpretation of +,−, <, 0, 1 fixed; Domain is R, Q, or Z.

Linear Arithmetic syntax

(Formula) ϕ ::= Atom | ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ
(Atom) Atom ::= Term < Term | Term = Term
(Term) Term ::= Var | Const | Term + Term | Term − Term

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Examples

Example formula ϕ1

x = 19 ∧ ¬(x ≤ 20) ∨
x ≤ 20 ∧ x ≥ 10 ∧ z = −1 ∧ x ′ = x + z ∧ ¬(x ′ ≤ 20) ∨

x ≤ 20 ∧ y = 15 ∧ ¬(x ≥ 10) ∧ ¬(y ≥ x ′)

Example conjunctive formula ϕ2

x + y < 1 ∧
0 < x ∧
0 < y

Question we want to answer: Satisfiability.

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Importance of Linear Arithmetic

Many practical applications. In Verification:

Loop invariants, polyhedral data-flow analysis of programs
Compiler Optimization
Analysis/Model-Checking of timed, hybrid, dynamical systems.
Symbolic Execution/Simulation (representation of reachable
states).
Winning Strategies in 2-player Games, Controller Synthesis.

Example: Loop optimization (loop hoisting)

for (i = 1; i <= 10; i++)

a[j+i] := a[j];

// R1 has i, R2 has j

// loop body

1. R4 := mem[a+R2];

2. R5 := R2 + R1;

3. mem[a+R5] := R4;

4. R1 := R1 + 1;

Statement 1 can be hoisted out of loop if foll constraint is unsat:

1 ≤ i ∧ i ≤ 10 ∧ i + j = j

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Loop Parallelization

Program:

for i = 1 to 100 do

for j = 1 to 100 do

A[i,j+i] := A[100,j];

Constraints on writes (i ′1, j
′
1):

0 ≤ i1 ≤ 100
0 ≤ j1 ≤ 100
i ′1 = i1
j ′1 = j1 + i1

Constraints on reads (i ′2, j
′
2):

0 ≤ i2 ≤ 100
0 ≤ j2 ≤ 100
i ′2 = 100
j ′2 = j2

Check overlap:

i ′1 = i ′2
j ′1 = j ′2

If constraints are UNSAT then we can parallelize the loop.

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Checking Verification Conditions

Floyd-Hoare style verification of programs:

int x = 19;

int y = 15;

// inv: x <= 20

while (x >= 10) {

z = -1;

x = x + z;

}

assert(y >= x);

Is the formula: ∀x , ∀y , ∀z, ∀x ′ :

(x = 19 ∧ y = 15) =⇒ x ≤ 20 ∧
(x ≤ 20 ∧ x ≥ 10 ∧ z ′ = −1 ∧ x ′ = x + z ′) =⇒ x ′ ≤ 20 ∧

(x ≤ 20 ∧ ¬(x ≥ 10)) =⇒ y ≥ x

valid?

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Fourier-Motzkin Elimination (KS Sec 5.4, Schrijver Sec
12.2)

Fourier 1827, Dines 1917, Motzkin 1936.

Works for R and Q domains.

Consider conjunctions of linear constraints

Can check satisfiability, find a solution, eliminate variables
(geometric projection, ∃-elimination)

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

General form

Suppose we want to eliminate x1 from the system of ineqs (1):

a11x1 + · · ·+ a1nxn ≤ b1

a21x1 + · · ·+ a2nxn ≤ b2

· · ·
am1x1 + · · ·+ amnxn ≤ bm

1 Make coeffs of x1 1, -1, or 0, by scaling by a pos constant to
get Ineq (2).

2 Write Ineq (2) as Ineq (3):

x1 ≤ b′1 − (a′11x2 + · · ·+ a′1nxn) (m′ ineqs)

(1)

−x1 ≤ b′m′+1 − (a′m′+1,1x2 + · · ·+ a′m′+1,nxn) (m′′ −m′ ineqs)

(2)

am′′+1,2x2 + · · ·+ am′′+1,nxn ≤ bm′′+1 (m −m′′ ineqs) (3)

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Fourier-Motzkin contd.

3 Remove constraints of type (1) and (2). Note that constraints
of type (3) are retained.

4 Add all combinations of -RHS(2) ≤ RHS(1) constraints.

5 Let Ineq (4) be obtained thus.

Claim: Ineq (4) represents the projection of the solution set of
Ineq (1) to the dimensions x2, . . . , xn.

6 Repeat till we get constraints in single variable xn. Check if
the constraints are satisfiable (lower bounds ≤ upper bounds).
If sat, output SAT; else output UNSAT.

As a corner case, we may get an empty set of contraints after
eliminating a variable. In this case the conjunction of the
(empty set of) constraints is true. Return SAT.

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Examples illustrating projection

5.4 Fourier–Motzkin Variable Elimination 113

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 . (5.43)

Figure 5.3(b) shows a triangle formed by the constraints

x ≤ y + 10, y ≤ 15, y ≥ −x+ 20 . (5.44)

The projection of the triangle onto the x axis is a line given by the constraints

5 ≤ x ≤ 25 . (5.45)

0

1
x

0

1y

0

z

0

x

0

y

(a)

5 10 15 20 25
x

2.5
5
7.5
10
12.5
15
17.5

y

x � 10 � y

y � 15

y � 20 � x

5 10 15 20 25
x

2.5
5
7.5
10
12.5
15
17.5

y

(b)

Fig. 5.3. Projection of constraints: (a) a cuboid is projected onto the x and y axes;
(b) a triangle is projected onto the x axis

Thus, the projection forms a new problem with one variable fewer, but possibly
more constraints. This is done iteratively until all variables but one have been
eliminated. The problem with one variable is trivially decidable.

The order in which the variables are eliminated may be predetermined,
or adjusted dynamically to the current set of constraints. There are various
heuristics for choosing the elimination order. A standard greedy heuristic gives
priority to variables that produce fewer new constraints when eliminated.

Once again, assume that xn is the variable chosen to be eliminated. The
constraints are partitioned according to the coefficient of xn. Consider the
constraint with index i:

n�

j=1

ai,j · xj ≤ bi . (5.46)

By splitting the sum, (5.46) can be rewritten into

ai,n · xn ≤ bi −
n−1�

j=1

ai,j · xj . (5.47)

0 ≤ x ≤ 1

0 ≤ y ≤ 1

0.75 ≤ z ≤ 1

y ≤ 15

y ≥ 20− x

x ≤ 10 + y

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Example
Given system of ineq:

y ≤ 15

y ≥ 20− x

x ≤ 10 + y

Rewrite in general form: (Ineq (1))

y ≤ 15

−x − y ≤ −20

x − y ≤ 10

Rewrite: (Ineq (2))

y ≤ 15

−x + 20 ≤ y

x − 10 ≤ y

Eliminate y : (Ineq (3))

−x + 20 ≤ 15

x − 10 ≤ 15

That is: 5 ≤ x ≤ 25. Hence original system of ineqs is satisfiable.

One solution is x 7→ 10, y 7→ 12.

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Exercise

Eliminate x from the system of inequalities:
5.2 The Simplex Algorithm 101

1 2 3 4

1

2

(A) (B)

2x− y ≥ 0

x+ y ≥ 2

x

y

3

(C)

−x+ 2y ≥ 1

Fig. 5.1. A graphical representation of the problem in Example 5.3, projected on
x and y. The shaded region corresponds to the set of satisfying assignments. The
marked points (A), (B), and (C) illustrate the progress that the Simplex algorithm
makes, as will be explained in the rest of this section

vector x. Following this notation, our problem is equivalent to the existence ✄✂ �✁x
of a vector x such that

Ax = 0 and

m�

i=1

li ≤ si ≤ ui , (5.8)

where li ∈ {−∞} ∪ Q is the lower bound of xi and ui ∈ {+∞} ∪ Q is the
upper bound of xi. The infinity values are for the case that a bound is not
set.

Example 5.4. We continue Example 5.3. Using the variable ordering x, y,
s1, s2, s3, a matrix representation for the equality constraints in (5.7) is




1 1 −1 0 0
2 −1 0 −1 0
−1 2 0 0 −1


 . (5.9)

Note that a large portion of the matrix in Example 5.4 is very regular: the
columns that are added for the additional variables s1, . . . , sm correspond to
an m-by-m diagonal matrix, where the diagonal coefficients are −1. This is a
direct consequence of using the general form.

While the matrix A changes as the algorithm progresses, the number of
columns of this kind is never reduced. The set of m variables corresponding

2 A hyperplane in a d-dimensional space is a subspace with d− 1 dimensions. For
example, in two dimensions, a hyperplane is a straight line, and in one dimension
it is a point.

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Correctness claims

The projection of a set S of n-dimension vectors to dimensions 2
to n is defined to be

{(a2, . . . , an) | ∃a1 such that (a1, a2, . . . , an) ∈ S}.

Ineq (4) represents the projection of the solution set of
Ineq (1).

If Algo reports SAT, then the solution set to Ineq (1) is
non-empty; else it is empty.

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Some observations on FM Elimination

Finding a solution: substitute backwards.

Complexity

Number of constraints can blow up from m to m2 in one
iteration.
Number of constraints can be exponential in n (See Schrijver
p156)

Linear real arithmetic admits quantifier- elimination.

Given formula ∃xϕ, there exists a formula ϕ′ such that

∃xϕ ≡ ϕ′ (modulo (R,+,−, <, 0, 1) structure)

Gives us a decision procedure for Th(R,+,−, <, 0, 1). Why?

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Integer Linear Arithmetic

Given a system of linear inequalities Ineq (1):

a11x1 + · · ·+ a1nxn ≤ b1

a21x1 + · · ·+ a2nxn ≤ b2

· · ·
am1x1 + · · ·+ amnxn ≤ bm

Let us also allow equality (“=”) constraints explicitly. Is there an

integer-valued solution to Ineq (1)?

How do we answer this?
Is the problem decidable (brute-force procedure)?

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Integer Linear Arithmetic

Given a system of linear inequalities Ineq (1):

a11x1 + · · ·+ a1nxn ≤ b1

a21x1 + · · ·+ a2nxn ≤ b2

· · ·
am1x1 + · · ·+ amnxn ≤ bm

Let us also allow equality (“=”) constraints explicitly. Is there an

integer-valued solution to Ineq (1)?

How do we answer this?
Is the problem decidable (brute-force procedure)?

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Example 1

2y ≤ x

8y ≥ 2 + x

2y ≤ 3− x

Eliminate y :
122 5 Linear Arithmetic

0.5 1 1.5 2 2.5 3
x

�0.25

0.25
0.5
0.75
1

1.25
1.5
y

2 y � x 2 y � 3 � x

8 y � 2 � x

0.5 1 1.5 2 2.5 3
x

�0.25

0.25
0.5
0.75
1

1.25
1.5
y

Fig. 5.6. Computing the real shadow: eliminating y

a darker shadow. In particular, a dark area in the shadow where the object is
thicker than 1 must have at least one integer above it.

After the first phase of the algorithm, we know that there is a solution
to the real shadow, i.e., cβ ≤ bγ. We now aim at determining if there is an
integer z such that cβ ≤ cbz ≤ bγ, which is equivalent to

∃z ∈ Z.
β

b
≤ z ≤ γ

c
. (5.76)

Assume that (5.76) does not hold. Let i denote �β/b�, i.e., the largest integer
that is smaller than β/b. Since we have assumed that there is no integer
between β/b and γ/c,

i <
β

b
≤ γ

c
< i+ 1 (5.77)

holds. This situation is illustrated in Fig. 5.7.

� �� �
i+ 1γ

c
β
b

i
� �� �

≥ 1
c

≥ 1
b

Fig. 5.7. Computing the dark shadow

Since β/b and γ/c are not integers themselves, the distances from these
points to the closest integer are greater than the fractions 1/b and 1/c, respec-
tively:

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Example 1

2y ≤ x

8y ≥ 2 + x

2y ≤ 3− x

Eliminate x :

5.5 The Omega Test 121

2y ≤ x
8y ≥ 2 +x
2y ≤ 3 −x .

(5.75)

The triangle spanned by these constraints is depicted in Fig. 5.5. Assume that
we decide to eliminate x. In this case, the combination of the two constraints
2y ≤ x and 8y ≥ 2 + x results in 8y − 2 ≥ 2y, which simplifies to y ≥ 1/3.
The two constraints 2y ≤ x and 2y ≤ 3− x combine into 2y ≤ 3− 2y, which
simplifies to y ≤ 3/4. Thus, 1/3 ≤ y ≤ 3/4 must hold, which has no integer
solution. The set of constraints is therefore unsatisfiable.

0.5 1 1.5 2 2.5 3
x

�0.25

0.25
0.5
0.75
1

1.25
1.5
y

2 y � x 2 y � 3 � x

8 y � 2 � x

0.5 1 1.5 2 2.5 3
x

�0.25

0.25
0.5
0.75
1

1.25
1.5
y

Fig. 5.5. Computing the real shadow: eliminating x

The converse of this observation does not hold, i.e., if we find an integer
solution within the real shadow, this does not guarantee that the original
set of constraints has an integer solution. This is illustrated by the following
example.

Example 5.15. Consider the same set of constraints as in Example 5.14.
This time, eliminate y instead of x. This projection is depicted in Fig. 5.6.
We obtain 2/3 ≤ x ≤ 2, which has two integer solutions. The triangle, on the
other hand, contains no integer solution.

The real shadow is an overapproximating projection, as it contains more
solutions than does the original problem. The next step in the Omega test is
to compute an underapproximating projection, i.e., if that projection contains
an integer solution, so does the original problem. This projection is called the
dark shadow.

Checking the Dark Shadow

The name dark shadow is motivated by optics. Assume that the object we
are projecting is partially translucent. Places that are “thicker” will project

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Another example: All projections non-empty

y < x + 1

y > 1

y < 4− x

0 1 2 3

3

2

1

... but no integer solution!

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Overall Idea of Omega Test (Pugh 1991)

Given a system of linear constraints C , the Omega Test
algorithm is recursive.

Adaptation of Fourier-Motzkin Elimination for integer
solutions.

Handle equality constraints separately (use them to eliminate
variables as long as equality constraints remain).

Basic idea:

1 (Base case) If C has only one variable, check it for integer
solutions and return “Yes”/“No”.

2 Eliminate equality constraints and variables along with them.

3 (Recursive step) Reduce question of integer solution to C with
n variables, to question of integer solution to C ′ with n − 1
variables.

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Eliminating equality constraints

Consider following proposal:

If we have a constraint

a1x1 + · · ·+ anxn = b (a1 6= 0)

Substitute

x1 =
1

a1
(b − a2x2 − · · · − anxn)

in remaining constraints to get projection to x2, . . . , xn.

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Eliminating equality constraints

Consider example

Problem with equality elimination

x = y/2 (1)

0 < x < y < 2 (2)

Substitution of x = y/2 in (1) gives

0 < y/2 < y < 2

which has an integer solution y 7→ 1, but gives us x 7→ 0.5.

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Preprocessing the constraints

Make coefficients (including bi ’s) integral, by multiplying by
lcm of denominators of rational coefficients.

Normalize by dividing by gcd of variable coefficients.

If any equality constraint RHS is fractional, return UNSAT.

For inequalities with fractional RHS, replace RHS by bRHSc.
All coefficients and RHS’s are integral now, and we will maintain
this property.

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Eliminating Equality Constraints

Suppose we are given:

a1x1 + · · ·+ anxn = b (1)

(other constraints) (2)

1 If some xi has coeff 1 or -1 in (1), substitute for xi in (2) and
discard (1). [Projection of solutions is preserved]

2 If not, choose xi with least absolute value of coefficient (say x1),
and add constraint with new variable α, where m = |a1|+ 1:

mα = (a1 mod m)x1 + · · ·+ (an mod m)xn − (b mod m) (3)

3 Coeff of x1 will be 1 or -1. Eliminate by substituting. Coefficients of
other xi ’s reduce by 5

6 at least.

4 Go back to Step 1.

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Correctness

Claim

Projection of solutions to (1,2,3) is solutions to (1,2).

Use fact that
a

m
= b a

m
c+

(amod m)

m
.

Suppose d1, . . . , dn is an integer solution to (1).

a1d1 + · · ·+ andn − b = 0

m · [(ba1

m
cd1 + · · ·+ ban

m
cdn − b

b

m
c)]

+(a1 mod m)d1 + · · ·+ (an mod m)dn − (b mod m) = 0

Therefore e, d1, . . . , dn is an integer solution to:

mα = (a1 mod m)x1 + · · ·+ (an mod m)xn − (b mod m) (3)

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Note on mod

Usual notion of “mod ”: For integers a and b, find integers q and
r such that a = b · q + r and 0 ≤ r < |b|.

Thus 11mod 5 is 1 and −11mod 5 is 4.

In Omega Test we use m̂od :

a m̂od b = (amod b) if (amod b) < b/2
(amod b)− b otherwise.

Thus

11 m̂od 5 is 1

13 m̂od 5 is -2

−11 m̂od 5 is -1.

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Example1

7x + 12y + 31z = 17

3x + 5y + 14z = 7

1from [Pugh 1991]

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Omega Test

OmegaTest(C):
If (C is over single var)

Return SAT/UNSAT accordingly.
CR = Elim(C , v);
If (OmegaTest(CR) = UNSAT)

Return UNSAT;
CD = DarkShadow(C , v);
If (OmegaTest(CD) = SAT)

Return SAT;
C 1
G , . . . ,C

k
G = GreyShadow(C , v);

If (OmegaTest(C i
G) = SAT for any i)

Return SAT;
Return UNSAT;

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Revisiting Fourier-Motzkin

y ≤ x + 1 (1)

y ≤ −x + 5 (2)

3y ≥ −x + 7 (3)

Rewriting (to eliminate y):

y ≤ x + 1
y ≤ −x + 5

− x
3

+ 7
3
≤ y

Rewriting (after eliminating y):

− x
3

+ 7
3
≤ x + 1

− x
3

+ 7
3
≤ −x + 5

Consider solutions to C ′ and y on numberline.

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Illustrating shadow regions

y ≤ x + 1 (1)

y ≤ −x + 5 (2)

3y ≥ −x + 7 (3)

Real shadow (Eliminate y):

1

3
(7− x) ≤ x + 1

1

3
(7− x) ≤ −x + 5

This gives us 1 ≤ x ≤ 4.
Dark shadow:

1

3
(7− x) + 1 ≤ x + 1

1

3
(7− x) + 1 ≤ −x + 5

This gives us 1.75 ≤ x ≤ 2.5.

Grey shadow (real - dark):

1 ≤ x < 1.75 and 2.5 < x ≤ 4.

0 1 2 3

3

2

1

4 5

4

Dark Shadow

Real Shadow

Grey Shadow

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Checking the Grey Shadow

Suppose the variable we are trying to eliminate is z . Consider any “lower
bound” constraint c on z , say:

ax + by + d ≤ cz .

Look for a solution in which the value of z is within a distance of 1 from
the lower bound:

ax + by + d ≤ cz < ax + by + d + c (4)

Replace above constraint by each of the equality constraints:

ax + by + d = cz (1)

ax + by + d + 1 = cz (2)

. . .

ax + by + d + (c − 1) = cz (3)

Call the resulting system of constraints C 0
G , . . . , C c−1

G . Check each one
of them separately for integer solutions. Note that z now has an equality
constraint, and we can use equality elimination to eliminate z .

Do this for each lower bound constraint till a solution is found.

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Observations

Checking the grey shadow for integer solutions is a complete
test on its own.

What about projection of integer solutions, for the purpose of
quantifier elimination?

Motivation Fourier-Motzkin Elimination Correctness Integer Linear Arithmetic Eliminating Equalities

Example2

3 ≤ 11x + 13y ≤ 21

−8 ≤ 7x − 9y ≤ 6

3− 13y ≤ 11x ≤ 21− 13y

9y − 8 ≤ 7x ≤ 9y + 6

2from [Pugh 1991]

	Motivation
	Fourier-Motzkin Elimination
	Correctness
	Integer Linear Arithmetic
	Eliminating Equalities

