Linear Arithmetic

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

24 March 2025

Outline

- Motivation
- Pourier-Motzkin Elimination
- 3 Correctness
- 4 Integer Linear Arithmetic
- 6 Eliminating Equalities

Linear Arithmetic (KS Ch 5)

• Boolean combinations of linear constraints of the form:

$$a_1x_1+\cdots+a_nx_n\leq b_1$$

- Quantifier-Free fragment of FO(+,-,<,0,1)
- Interpretation of +, -, <, 0, 1 fixed; Domain is \mathbb{R} , \mathbb{Q} , or \mathbb{Z} .

Linear Arithmetic syntax

```
(Formula) \varphi ::= Atom \mid \varphi \wedge \varphi \mid \varphi \vee \varphi \mid \neg \varphi
(Atom) Atom ::= Term < Term \mid Term = Term
(Term) Term ::= Var \mid Const \mid Term + Term \mid Term - Term
```

Examples

Motivation

00000

Example formula φ_1

$$x = 19 \land \neg(x \le 20) \lor$$

$$x \le 20 \land x \ge 10 \land z = -1 \land x' = x + z \land \neg(x' \le 20) \lor$$

$$x \le 20 \land y = 15 \land \neg(x \ge 10) \land \neg(y \ge x')$$

Example conjunctive formula φ_2

$$x + y < 1 \land 0 < x \land 0 < y$$

Question we want to answer: Satisfiability.

Importance of Linear Arithmetic

Motivation

Many practical applications. In Verification:

- Loop invariants, polyhedral data-flow analysis of programs
- Compiler Optimization
- Analysis/Model-Checking of timed, hybrid, dynamical systems.
- Symbolic Execution/Simulation (representation of reachable states).
- Winning Strategies in 2-player Games, Controller Synthesis.

Example: Loop optimization (loop hoisting)

Statement 1 can be hoisted out of loop if foll constraint is unsat:

Loop Parallelization

Program:

Constraints on writes (i'_1, j'_1) :

$$\begin{array}{cccc} 0 & \leq & i_1 \leq 100 \\ 0 & \leq & j_1 \leq 100 \\ i'_1 & = & i_1 \\ j'_1 & = & j_1 + i_1 \end{array}$$

Constraints on reads (i'_2, j'_2) :

$$\begin{array}{cccc} 0 & \leq & i_2 \leq 100 \\ 0 & \leq & j_2 \leq 100 \\ i'_2 & = & 100 \\ j'_2 & = & j_2 \end{array}$$

Check overlap:

$$\begin{array}{ccc} i'_1 & = & i'_2 \\ j'_1 & = & j'_2 \end{array}$$

If constraints are UNSAT then we can parallelize the loop.

Checking Verification Conditions

Floyd-Hoare style verification of programs:

```
Is the formula: \forall x, \forall y, \forall z, \forall x':

int x = 19; (x = 19 \land y = 15) \implies x \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z') \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x \ge 10 \land z' = -1 \land x' = x + z' \implies x' \le 20 \land x' = -1 \land x' = x + z' \implies x' \le 20 \land x' = -1 \land x' = x + z' \implies x' \le 20 \land x' = -1 \land x' = x + z' \implies x' \le 20 \land x' = -1 \land x' = x + z' \implies x' \le 20 \land x' = -1 \land x' = x + z' \implies x' \le 20 \land x' = -1 \land x' = x + z' \implies x' \le 20 \land x' = -1 \land x' = x + z' \implies x' \le 20 \land x' = -1 \land x' = x + z' \implies x' \le 20 \land x' = -1 \land x' = x + z' \implies x' \le 20 \land x' = -1 \land x' = x + z' \implies x' \le 20 \land x' = -1 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x' \le 20 \land x' = x + z' \implies x'
```

Fourier-Motzkin Elimination (KS Sec 5.4, Schrijver Sec 12.2)

- Fourier 1827, Dines 1917, Motzkin 1936.
- ullet Works for $\mathbb R$ and $\mathbb Q$ domains.
- Consider conjunctions of linear constraints
- Can check satisfiability, find a solution, eliminate variables (geometric projection, ∃-elimination)

Suppose we want to eliminate x_1 from the system of ineqs (1):

Suppose we want to eliminate
$$x_1$$
 from the system of ineqs (1):

$$a_{11}x_1 + \dots + a_{1n}x_n \le b_1$$

 $a_{21}x_1 + \dots + a_{2n}x_n \le b_2$

 $a_{m1}x_1 + \cdots + a_{mn}x_n < b_m$

- Make coeffs of x_1 1, -1, or 0, by scaling by a pos constant to get Ineq (2).
- Write Ineq (2) as Ineq (3):

$$x_{1} \leq b'_{1} - (a'_{11}x_{2} + \dots + a'_{1n}x_{n}) \ (m' \text{ ineqs})$$

$$(1)$$

$$-x_{1} \leq b'_{m'+1} - (a'_{m'+1,1}x_{2} + \dots + a'_{m'+1,n}x_{n}) \ (m'' - m')$$

$$(2)$$

$$a_{m''+1,2}x_2 + \dots + a_{m''+1,n}x_n \le b_{m''+1} (m - m'' \text{ ineqs})$$
 (3)

Fourier-Motzkin contd.

- Remove constraints of type (1) and (2). Note that constraints of type (3) are retained.
- Add all combinations of $-RHS(2) \le RHS(1)$ constraints.
- **1** Let Ineq (4) be obtained thus.

Claim: Ineq (4) represents the projection of the solution set of Ineq (1) to the dimensions x_2, \ldots, x_n .

3 Repeat till we get constraints in single variable x_n . Check if the constraints are satisfiable (lower bounds \leq upper bounds). If sat, output SAT; else output UNSAT.

As a corner case, we may get an empty set of contraints after eliminating a variable. In this case the conjunction of the (empty set of) constraints is *true*. Return SAT.

Examples illustrating projection

$$0 \le x \le 1$$
$$0 \le y \le 1$$
$$0.75 \le z \le 1$$

$$y \le 15$$
$$y \ge 20 - x$$
$$x \le 10 + y$$

Example

Given system of ineq:

$$y \le 15$$
$$y \ge 20 - x$$
$$x \le 10 + y$$

Rewrite in general form: (Ineq (1))

$$y \le 15$$
$$-x - y \le -20$$
$$x - y \le 10$$

Rewrite: (Ineq (2))

$$y \le 15$$
$$-x + 20 \le y$$
$$x - 10 \le y$$

Eliminate y: (Ineq (3))

$$-x + 20 \le 15$$

 $x - 10 \le 15$

That is: 5 < x < 25. Hence original system of inegs is satisfiable.

One solution is $x \mapsto 10, y \mapsto 12$.

Exercise

Eliminate x from the system of inequalities:

Correctness claims

The projection of a set S of n-dimension vectors to dimensions 2 to n is defined to be

$$\{(a_2,\ldots,a_n)\mid \exists a_1 \text{ such that } (a_1,a_2,\ldots,a_n)\in S\}.$$

- Ineq (4) represents the projection of the solution set of Ineq (1).
- If Algo reports SAT, then the solution set to Ineq (1) is non-empty; else it is empty.

Some observations on FM Elimination

- Finding a solution: substitute backwards.
- Complexity
 - Number of constraints can blow up from m to m^2 in one iteration.
 - Number of constraints can be exponential in n (See Schrijver p156)
- Linear real arithmetic admits quantifier- elimination.
 - Given formula $\exists x \varphi$, there exists a formula φ' such that

$$\exists x \varphi \equiv \varphi' \text{ (modulo } (\mathbb{R},+,-,<,0,1) \text{ structure)}$$

• Gives us a decision procedure for $Th(\mathbb{R},+,-,<,0,1)$. Why?

Integer Linear Arithmetic

Given a system of linear inequalities Ineq (1):

$$a_{11}x_1 + \dots + a_{1n}x_n \le b_1$$

$$a_{21}x_1 + \dots + a_{2n}x_n \le b_2$$

$$\dots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n \le b_m$$

Let us also allow equality (=") constraints explicitly. Is there an integer-valued solution to Ineq (1)?

Integer Linear Arithmetic

Motivation

Given a system of linear inequalities Ineq (1):

$$a_{11}x_1 + \dots + a_{1n}x_n \le b_1$$

$$a_{21}x_1 + \dots + a_{2n}x_n \le b_2$$

$$\dots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n \le b_m$$

Let us also allow equality (=") constraints explicitly. Is there an integer-valued solution to Ineq (1)?

How do we answer this?

Is the problem decidable (brute-force procedure)?

$$2y \le x$$
$$8y \ge 2 + x$$

$$2y \le 3 - x$$

Eliminate y:

$$2y \le x$$
$$8y \ge 2 + x$$
$$2y \le 3 - x$$

Eliminate x:

$$y < x + 1$$
$$y > 1$$
$$y < 4 - x$$

Overall Idea of Omega Test (Pugh 1991)

- Given a system of linear constraints *C*, the Omega Test algorithm is recursive.
- Adaptation of Fourier-Motzkin Elimination for integer solutions.
- Handle equality constraints separately (use them to eliminate variables as long as equality constraints remain).

Basic idea:

- (Base case) If C has only one variable, check it for integer solutions and return "Yes" / "No".
- 2 Eliminate equality constraints and variables along with them.
- (Recursive step) Reduce question of integer solution to C with n variables, to question of integer solution to C' with n-1 variables.

Consider following proposal:

If we have a constraint

$$a_1x_1+\cdots+a_nx_n=b \quad (a_1\neq 0)$$

Substitute

Motivation

$$x_1 = \frac{1}{a_1}(b - a_2x_2 - \cdots - a_nx_n)$$

in remaining constraints to get projection to x_2, \ldots, x_n .

Eliminating equality constraints

Consider example

Problem with equality elimination

$$x = y/2 \tag{1}$$

$$0 < x < y < 2 \tag{2}$$

Substitution of x = y/2 in (1) gives

which has an integer solution $y \mapsto 1$, but gives us $x \mapsto 0.5$.

Preprocessing the constraints

- Make coefficients (including b_i 's) integral, by multiplying by lcm of denominators of rational coefficients.
- Normalize by dividing by gcd of variable coefficients.
- If any equality constraint RHS is fractional, return UNSAT.
- For inequalities with fractional RHS, replace RHS by $\lfloor RHS \rfloor$.

All coefficients and RHS's are integral now, and we will maintain this property.

Eliminating Equality Constraints

Suppose we are given:

$$a_1x_1 + \dots + a_nx_n = b \tag{1}$$

- If some x_i has coeff 1 or -1 in (1), substitute for x_i in (2) and discard (1). [Projection of solutions is preserved]
- ② If not, choose x_i with least absolute value of coefficient (say x_1), and add constraint with new variable α , where $m = |a_1| + 1$:

$$m\alpha = (a_1 \bmod m)x_1 + \cdots + (a_n \bmod m)x_n - (b \bmod m)$$
 (3)

- **3** Coeff of x_1 will be 1 or -1. Eliminate by substituting. Coefficients of other x_i 's reduce by $\frac{5}{6}$ at least.
- Go back to Step 1.

Correctness

Claim

Projection of solutions to (1,2,3) is solutions to (1,2).

Use fact that

$$\frac{a}{m} = \lfloor \frac{a}{m} \rfloor + \frac{(a \bmod m)}{m}.$$

Suppose d_1, \ldots, d_n is an integer solution to (1).

$$a_1 d_1 + \dots + a_n d_n - b = 0$$

$$m \cdot \left[\left(\left\lfloor \frac{a_1}{m} \right\rfloor d_1 + \dots + \left\lfloor \frac{a_n}{m} \right\rfloor d_n - \left\lfloor \frac{b}{m} \right\rfloor \right) \right]$$

$$+ (a_1 \mod m) d_1 + \dots + (a_n \mod m) d_n - (b \mod m) = 0$$

Therefore e, d_1, \ldots, d_n is an integer solution to:

$$m\alpha = (a_1 \mod m)x_1 + \cdots + (a_n \mod m)x_n - (b \mod m)$$

Motivation

Usual notion of "mod": For integers a and b, find integers q and r such that $a = b \cdot q + r$ and 0 < r < |b|.

Thus $11 \mod 5$ is 1 and $-11 \mod 5$ is 4.

In Omega Test we use *mod*:

$$a \bmod b = (a \bmod b)$$
 if $(a \bmod b) < b/2$
 $(a \bmod b) - b$ otherwise.

Thus

- 11 mod 5 is 1
- 13 mod 5 is -2
- $-11 \mod 5$ is -1.

Example¹

$$7x + 12y + 31z = 17$$
$$3x + 5y + 14z = 7$$

substitution	resulting constraints
$x = -8\alpha - 4y - z - 1$	$-7\alpha - 2y + 3z = 3$
	$-24\alpha - 7y + 11z = 10$
$y = \alpha + 3\beta$	$-3\alpha - 2\beta + z = 1$
	$-31\alpha - 21\beta + 11z = 10$
$z = 3\alpha + 2\beta + 1$	$2\alpha + \beta = -1$
$\beta = -2\alpha - 1$	

Motivation

```
OmegaTest(C):
   If (C is over single var)
        Return SAT/UNSAT accordingly.
    C_R = Elim(C, v);
   If (OmegaTest(C_R) = UNSAT)
        Return UNSAT:
    C_D = DarkShadow(C, v);
   If (OmegaTest(C_D) = SAT)
        Return SAT:
   C_C^1, \ldots, C_C^k = GreyShadow(C, v);
   If (OmegaTest(C_G^i) = SAT \text{ for any } i)
        Return SAT:
```

Return UNSAT:

$$y \le x + 1 \tag{1}$$

$$y \le -x + 5 \tag{2}$$

$$3y \ge -x + 7 \tag{3}$$

Rewriting (to eliminate y):

Rewriting (after eliminating y):

$$\begin{array}{rcl} -\frac{x}{3} + \frac{7}{3} & \leq & x+1 \\ -\frac{x}{3} + \frac{7}{3} & \leq & -x+5 \end{array}$$

Consider solutions to C' and y on numberline.

$$y \le x + 1$$

$$y \le x + 1 \tag{1}$$

$$y \le -x + 5 \tag{2}$$

$$3y \ge -x + 7 \tag{3}$$

Real shadow (Eliminate y):

$$\frac{1}{3}(7-x) \le x+1$$

$$\frac{1}{3}(7-x) \le -x+5$$

$$\frac{1}{3}(7-x) \le -x+5$$

This gives us $1 \le x \le 4$. Dark shadow:

$$\frac{1}{3}(7-x)+1 \le x+1$$
$$\frac{1}{3}(7-x)+1 \le -x+5$$

This gives us 1.75 < x < 2.5.

Grey shadow (real - dark):

Checking the Grey Shadow

Motivation

Suppose the variable we are trying to eliminate is z. Consider any "lower bound" constraint c on z, say:

$$ax + by + d \le cz$$
.

Look for a solution in which the value of z is within a distance of 1 from the lower bound:

$$ax + by + d \le cz < ax + by + d + c$$
 (4)

Replace above constraint by each of the equality constraints:

$$ax + by + d = cz \tag{1}$$

$$ax + by + d + 1 = cz \tag{2}$$

.

$$ax + by + d + (c - 1) = cz$$
 (3)

Call the resulting system of constraints C_G^0, \ldots, C_G^{c-1} . Check each one of them separately for integer solutions. Note that z now has an equality constraint, and we can use equality elimination to eliminate z.

Do this for each lower bound constraint till a solution is found.

Observations

- Checking the grey shadow for integer solutions is a complete test on its own.
- What about projection of integer solutions, for the purpose of quantifier elimination?

Example²

$$3 \le 11x + 13y \le 21$$
$$-8 \le 7x - 9y \le 6$$

$$3 - 13y \le 11x \le 21 - 13y$$
$$9y - 8 \le 7x \le 9y + 6$$

P'

lower bound 33 - 143y < 121x21 - 91y < 77x63y - 56 < 49x $99y - 88 \le 77x$

upper bound 121x < 231 - 143y77x < 99y + 6649x < 63y + 4277x < 147 - 91y

lower bound (33 - 143y) + 100 < 121x(21-91y)+60 < 77x(63y - 56) + 36 < 49x(99y - 88) + 60 < 77x

upper bound 121x < 231 - 143y77x < 99y + 6649x < 63y + 4277x < 147 - 91y

P''

unnormalized combination 198 > 0190y + 45 > 098 > 0235 > 190y

unnormalized combination 98 > 0190y > 1562 > 0175 > 190y