Linear Arithmetic

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

24 March 2025

Outline

@ Motivation

@ Fourier-Motzkin Elimination
© Correctness

@ Integer Linear Arithmetic

© Eliminating Equalities

Motivation
©0000

Linear Arithmetic (KS Ch 5)

@ Boolean combinations of linear constraints of the form:

alxl‘i“"‘i’anxngbl

e Quantifier-Free fragment of FO(+, —, <,0,1)
@ Interpretation of 4+, — <, 0,1 fixed; Domain is R, Q, or Z.

Linear Arithmetic syntax

(Formula) ¢ := Atom | o Ap | oV | mp
(Atom) Atom ::= Term < Term | Term = Term
(Term) Term ::= Var | Const | Term + Term | Term — Term

Motivation
0e000

Examples

Example formula ¢3

x =19 A —=(x <20) Vv
x<20Ax>10Az=-1AX =x+zA~(x' <20)V
x<20Ay =15A=(x > 10) A —~(y > x)

v

Example conjunctive formula ¢»

x+y<1lA
0<xA
O<y

Question we want to answer: Satisfiability.

Motivation
00®00

Importance of Linear Arithmetic

Many practical applications. In Verification:

@ Loop invariants, polyhedral data-flow analysis of programs
Compiler Optimization
Analysis/Model-Checking of timed, hybrid, dynamical systems.
Symbolic Execution/Simulation (representation of reachable
states).
@ Winning Strategies in 2-player Games, Controller Synthesis.

Example: Loop optimization (loop hoisting)

for (i = 1; i <= 10; i++) // R1 has i, R2 has j
alj+il := aljl; // loop body
1. R4 := mem[a+R2];
2. R5 := R2 + Ri;
3. mem[a+R5] := R4;
4. R1 :=R1 + 1;

Statement 1 can be hoisted out of loop if foll constraint is unsat:

1<iNi<1OANi+j=]

Motivation
[ee]eY To)

Loop Parallelization

Program: Constraints on writes (if, ji):
for i = 1 to 100 do 0 < i <100
for j= 1 to 100 do . 0 < j1 <100
Ali,j+i] := A[100,j]; il = i
o= qa+i

Constraints on reads (i}, j}):

0 < <100
0 < <100
4 = 100
H = 2
Check overlap:
io=
A=k

If constraints are UNSAT then we can parallelize the loop.

Motivation
ooooe

Checking Verification Conditions

Floyd-Hoare style verification of programs:

Is the formula: Vx,Vy,Vz,Vx’ :

int x = 19; (x=19Ay=15) = x<20 A
int y = 15; (x<20AXx>10AZ = —1AX =x+27) = x' <20 A
// inv: x <= 20 (x <20A~(x >10)) = y > x
while (x >= 10) {

z = -1, valid?

X =x + z;
}

assert(y >= x);

Fourier-Motzkin Elimination
900000

Fourier-Motzkin Elimination (KS Sec 5.4, Schrijver Sec
12.2)

@ Fourier 1827, Dines 1917, Motzkin 1936.
@ Works for R and Q domains.
o Consider conjunctions of linear constraints

@ Can check satisfiability, find a solution, eliminate variables
(geometric projection, 3-elimination)

Fourier-Motzkin Elimination
0®0000

General form

Suppose we want to eliminate x; from the system of inegs (1):
anxy + -+ anxp < b

aox1 + -+ anxp < bo
amiX1 + -+ amnXn S bm

© Make coeffs of x; 1, -1, or 0, by scaling by a pos constant to

get Ineq (2).
@ Write Ineq (2) as Ineq (3):

x1 < by — (a}1x2 + - + a1, x,) (m' ineqs)

(1)
—x1 < bf.,,/H - (ain’+1,1x2 +--- 4+ ainlﬂmx,,) (m” - m
(2)
am//+1,2X2 + ..+ am”+1,an S bm”+1 (m _ m/l ineqs) (3)

Fourier-Motzkin Elimination
00@000

Fourier-Motzkin contd.

© Remove constraints of type (1) and (2). Note that constraints
of type (3) are retained.

Q Add all combinations of -RHS(2) < RHS(1) constraints.
© Let Ineq (4) be obtained thus.

Claim: Ineq (4) represents the projection of the solution set of
Ineq (1) to the dimensions xa, ..., X,.

O Repeat till we get constraints in single variable x,. Check if
the constraints are satisfiable (lower bounds < upper bounds).
If sat, output SAT; else output UNSAT.

As a corner case, we may get an empty set of contraints after
eliminating a variable. In this case the conjunction of the
(empty set of) constraints is true. Return SAT.

Fourier-Motzkin Elimination
[e]e1eY Yolo)

Examples illustrating projection

y
17.5 y<15
121.2
z 10
7'2 y=20-x x<10+4y
2.5
5 10 15 20 25
0<x<1 y <15
0<y<1 y>20—x

0.75<z<1 x<10+y

Fourier-Motzkin Elimination
0000@0

Example

Given system of ineq:

y <15
y>20—x
x <104y
Rewrite in general form: (Ineq (1))
y <15
—x—y < =20
x—y <10
Rewrite: (Ineq (2))
y<15
—x+20<y
x—10<y
Eliminate y: (Ineq (3))
—x+20< 15
x—10<15
That is: 5 < x < 25. Hence original system of inegs is satisfiable.

One solution is x — 10,y — 12.

Fourier-Motzkin Elimination
00000e

Exercise

Eliminate x from the system of inequalities:

Yl 2c—y>0
34
2 —r+2y>1
1+

C)

r+y>2
| | |
T B\ T
® T N®.

Correctness
(1]

Correctness claims

The projection of a set S of n-dimension vectors to dimensions 2
to n is defined to be

{(a2,...,an) | Ja1 such that (a1, ap,...,an) € S}.

@ Ineq (4) represents the projection of the solution set of
Ineq (1).

o If Algo reports SAT, then the solution set to Ineq (1) is
non-empty; else it is empty.

Correctness
oe

Some observations on FM Elimination

e Finding a solution: substitute backwards.

o Complexity
o Number of constraints can blow up from m to m? in one
iteration.
o Number of constraints can be exponential in n (See Schrijver
pl156)

@ Linear real arithmetic admits quantifier- elimination.
o Given formula Jx¢, there exists a formula ¢ such that

Ixp = ¢' (modulo (R, +, —, <,0,1) structure)

e Gives us a decision procedure for Th(R, +,—,<,0,1). Why?

Integer Linear Arithmetic
©0000

Integer Linear Arithmetic

Given a system of linear inequalities Ineq (1):

ayxy + -+ axp < by
anxy + -+ anxp < b

amix1 + -+ amnXn < by

w__n

Let us also allow equality (“=") constraints explicitly. Is there an

integer-valued solution to Ineq (1)?

Integer Linear Arithmetic
©0000

Integer Linear Arithmetic

Given a system of linear inequalities Ineq (1):

ayxy + -+ axp < by
anxy + -+ anxp < b

amix1 + -+ amnXn < by

w__n

Let us also allow equality (“=") constraints explicitly. Is there an

integer-valued solution to Ineq (1)?

How do we answer this?
Is the problem decidable (brute-force procedure)?

Integer Linear Arithmetic
0®000

Example 1

2y < x
8y >2+x
2y <3-—x
Eliminate y:
y
1.5
1.25
1 . . .
0072 2yﬁ2ys3—x
0.25 | 8y=2+x

—e
(=)

W

—

—

W

N e-—————
we

_0.25 2.5

Example 1
2y < x
8y >2+x
2y <3—x

Eliminate x:

Integer Linear Arithmetic

[e]e] Jlele]

Integer Linear Arithmetic
ocooeo

Another example: All projections non-empty

y<x+1
y>1
y<4-—x

... but no integer solution!

Integer Linear Arithmetic
ooooe

Overall Idea of Omega Test (Pugh 1991)

@ Given a system of linear constraints C, the Omega Test
algorithm is recursive.

@ Adaptation of Fourier-Motzkin Elimination for integer
solutions.

@ Handle equality constraints separately (use them to eliminate
variables as long as equality constraints remain).

Basic idea:
@ (Base case) If C has only one variable, check it for integer
solutions and return “Yes" /“No".
@ Eliminate equality constraints and variables along with them.
© (Recursive step) Reduce question of integer solution to C with
n variables, to question of integer solution to C" with n —1
variables.

Eliminating Equalities
©000000000000

Eliminating equality constraints

Consider following proposal:

If we have a constraint
aixt + -+ apxn=0>b (317&0)

Substitute)
x1=—(b—axxo— - —apxy)
ai

in remaining constraints to get projection to xo, ..., Xp.

Eliminating Equalities
0®00000000000

Eliminating equality constraints

Consider example

Problem with equality elimination

x=y/2 (1)
O<x<y<2 (2)

Substitution of x = y/2 in (1) gives
O<y/2<y<?2

which has an integer solution y + 1, but gives us x — 0.5.

Eliminating Equalities
0O®0000000000

Preprocessing the constraints

e Make coefficients (including b;'s) integral, by multiplying by
lcm of denominators of rational coefficients.

@ Normalize by dividing by gcd of variable coefficients.

@ If any equality constraint RHS is fractional, return UNSAT.

e For inequalities with fractional RHS, replace RHS by | RHS].

All coefficients and RHS's are integral now, and we will maintain
this property.

Eliminating Equalities
0008000000000

Eliminating Equality Constraints

Suppose we are given:

aixy+ -+ apx, = b (1)

‘ (other constraints) ‘ (2)

@ If some x; has coeff 1 or -1 in (1), substitute for x; in (2) and
discard (1). [Projection of solutions is preserved]

@ If not, choose x; with least absolute value of coefficient (say x1),
and add constraint with new variable «, where m = |a;| + 1:

ma = (a; mod m)xy + -+ - + (a, mod m)x, — (b mod m) (3)

@ Coeff of x; will be 1 or -1. Eliminate by substituting. Coefficients of
other x;'s reduce by 2 at least.

© Go back to Step 1.

Eliminating Equalities
0000®00000000

Correctness

Projection of solutions to (1,2,3) is solutions to (1,2).

Use fact that

a a amod m
Z= g
Suppose d, ..., d, is an integer solution to (1).
adi+---+apd,—b=0
a1 an b
mo L2 e+ 12 dy (2]

+(ay mod m)dy + - - - + (an mod m)d, — (bmod m) =0
Therefore e, dy, ..., d, is an integer solution to:

ma = (a1 mod m)x; + - - - + (@, mod m)x, — (bmod m) (3)

Eliminating Equalities
00000@0000000

Note on mod

Usual notion of “mod": For integers a and b, find integers g and
rsuchthata=b-q+rand 0 <r <|b|.

Thus 11 modb5 is 1 and —11 mod 5 is 4.

In Omega Test we use mod :

—

amodb = (amod b) if (amod b) < b/2
(amod b) — b otherwise.

Thus
o 11mod5is 1
o 13mod5 is -2

o —11mod5 is -1.

Eliminating Equalities
000000®000000

Example!

x4+ 12y + 31z =17
3x+by+14z=7

substitution resulting constraints
r=-8a—4y—z—1| -Ta—-2y+32=3
—240 - Ty +112=10

y=a+33 -3a—-28+z=1

—3la— 218 + 112 =10
z=3a+28+1 20+ B = -1
B=-2a-1

Yfrom [Pugh 1991]

Eliminating Equalities
0000000800000

Omega Test

OmegaTest(C):

If (C is over single var)
Return SAT/UNSAT accordingly.

Cr = Elim(C, v);

If (OmegaTest(Cr) = UNSAT)
Return UNSAT;

Cp = DarkShadow(C, v);

If (OmegaTest(Cp) = SAT)
Return SAT;

C¢, ..., C& = GreyShadow(C, v);

If (OmegaTest(CL) = SAT for any i)
Return SAT;

Return UNSAT;

Eliminating Equalities
0000000080000

Revisiting Fourier-Motzkin

y<x+1 (1)
y<—x+5 2)
3y > —x+7 (3)
Rewriting (to eliminate y):
y < x+1
y < —x+5
7
—g +3 < vy
Rewriting (after eliminating y):
“5t3 oS x4l
-3+3 < —x+5

Consider solutions to C’ and y on numberline.

Eliminating Equalities
000000000e000

lllustrating shadow regions

y<x+1 (1)
y<—x+5 (2)
3y > —x+7 3) 2

Real shadow (Eliminate y):

1 3
5(7—X)§X+1

1(7) < +5

“(7T—x) < —x

3 - 2

This gives us 1 < x < 4.
Dark shadow:

Grey Shado

|
|
|
|
|
|
|
|
|
|
!
|
|
|
t
|
|
|

1 |

5(7 —x)+1<x+1 Dark-Shadow

1

S0 +1< —x+5 0 . 2] 3 4
Real Shadow

This gives us 1.75 < x < 2.5.
Grey shadow (real - dark):

Eliminating Equalities
0000000000e00

Checking the Grey Shadow

Suppose the variable we are trying to eliminate is z. Consider any “lower
bound” constraint ¢ on z, say:

ax+ by +d < cz.

Look for a solution in which the value of z is within a distance of 1 from
the lower bound:

ax+by+d<cz<ax+by+d+c (4)
Replace above constraint by each of the equality constraints:
ax+ by +d=cz (1)
ax+by+d+1=cz (2)
ax+by+d+(c—1)=cz (3)
Call the resulting system of constraints C2, ..., Céfl. Check each one

of them separately for integer solutions. Note that z now has an equality
constraint, and we can use equality elimination to eliminate z.

Do this for each lower bound constraint till 2 solution is“found.

Eliminating Equalities
0000000000080

Observations

@ Checking the grey shadow for integer solutions is a complete
test on its own.

@ What about projection of integer solutions, for the purpose of
quantifier elimination?

Eliminating Equalities
000000000000e

Example?

3<11x+13y <21
—8<7x—9y <6

3—-13y <11x <21 —13y
9y —8<7x <9y +6

p’

unnormalized

upper bound combination
121¢ < 231 — 143y 198> 0

lower bound
33 - 143y < 121z

21 -91y < 77z 77z < 99y + 66 190y +452> 0
63y — 56 < 49z 49z < 63y + 42 98>0
99y — 88 < 77r 77z < 147 - 91y 235 > 190y
P
unnormalized
lower bound upper bound combination
(33— 143y)+ 100 < 121z 121x < 231 — 143y 98 > 0

(21 - 91y) + 60 < 77z
(63y — 56) + 36 < 49z
(99y — 88) + 60 < 77z

77 < 99y + 66 190y > 15
49¢ < 63y + 42 62> 0
77¢ < 147 — 91y 175 > 190y

?from [Pugh 1991]

	Motivation
	Fourier-Motzkin Elimination
	Correctness
	Integer Linear Arithmetic
	Eliminating Equalities

