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Nelson-Oppen Combination [Greg Nelson PhD Thesis
1981]

A way to combine decision procedures for the quantifier-free
fragments of two logics to obtain a decision procedure for the
quantifier-free fragment of the combined logic.

Examples:

EUF + LRA

BA (Basic Array Logic) + LIA

Combined procedure is based on “Equality Sharing” (propagating
equalities between variables from one theory to the other).

Some caveats:

Logics should be stably infinite (if a formula is satisfiable, it is
satisfiable in an infinite structure).
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Ilustrative Example: LRA + EUF

Example: Is this sentence satisfiable?

f (f (x)− f (y)) 6= f (z) ∧ x ≤ y ∧ y + z ≤ x ∧ z ≥ 0

No, because the arithmetic constraints imply that x = y and
z = 0; and the functional constraints must then imply that
f (f (x)− f (y)) = f (0) = f (z).
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Equality Sharing Procedure

Is this sentence satisfiable?

f (f (x)− f (y)) 6= f (z) ∧ x ≤ y ∧ y + z ≤ x ∧ z ≥ 0

“Purify” or “Segregate” formula into the two theories, introducing
new variables for “foreign” terms:

LRA Constraints: F1

x ≤ y
y + z ≤ x

z ≥ 0
g2 − g3 = g1

EUF Constraints: G1

f (g1) 6= f (z)
f (x) = g2
f (y) = g3
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Equality Sharing Procedure

Both formulas (LRA conjunction, EUF conjunction) are satisfiable.
F1 implies x = y . Propagate equalities:

LRA Constraints: F2

x ≤ y
y + z ≤ x

z ≥ 0
g2 − g3 = g1

EUF Constraints G2

f (g1) 6= f (z)
f (x) = g2
f (y) = g3

x = y
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Equality Sharing Procedure

Formulas are satisfiable. Now G2 implies g2 = g3. Propagate
equalities:

LRA Constraints: F3

x ≤ y
y + z ≤ x

z ≥ 0
g2 − g3 = g1

g2 = g3

EUF Constraints G3

f (g1) 6= f (z)
f (x) = g2
f (y) = g3

x = y
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Equality Sharing Procedure

Formulas are satisfiable. Now F3 implies g1 = z . Propagate
equalities:

LRA Constraints: F4

x ≤ y
y + z ≤ x

z ≥ 0
g2 − g3 = g1

g2 = g3

EUF Constraints G4

f (g1) 6= f (z)
f (x) = g2
f (y) = g3

x = y
g1 = z

G4 is unsat. So return UNSAT.

If formulas were satisfiable and no more equalities to propagate,
return SAT.
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Nelson-Oppen Combination

Does this procedure work for integer arithmetic and functions?

Is this sentence satisfiable? (int x)

1 ≤ x ∧ x ≤ 2 ∧ f (x) 6= f (1) ∧ f (x) 6= f (2)

Arithmetic Constraints

1 ≤ x
x ≤ 2
a = 1
b = 2

Function Constraints

f (x) 6= f (a)
f (x) 6= f (b)

Need case-splits for “non-convex” theories.
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Convex Formulas

Formula F is convex if whenever

F ⇒
n∨

i=1

(xi = yi ),

then
F ⇒ (xi = yi )

for some i .
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Equality Sharing Algorithm

Purify
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Equality Sharing Algorithm

1 Purify give formula into S and T formulas F and G .

2 If either F or G is unsat, return UNSAT.

3 If both F and G are (separately) satisfiable, propagate “new”
equalities from F to G (not already implied by G ). Go back
to Step 2.

4 If non-convex, do case-split and check each case separately via
Step 2.

5 If nothing to propagate, return SAT.
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Correctness of Algo

Theorem (Correctness of Equality Sharing Algo)

Algo return SAT (respectively UNSAT) iff original formula was
satisfiable (respectively unsatisfiable).
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Residue of a formula

The Residue RF of a formula F (in a theory S) is the strongest
boolean combination of equalties implied by F .

Examples:

Formula Residue
x = f (a) ∧ y = f (b) a = b ⇒ x = y
x ≤ y ∧ y ≤ x x = y
x + y > a− b ¬(x = a ∧ y = b) ∧ ¬(x = b ∧ y = a)

Claim: If F and G are separately satisfiable and don’t imply any
new equalities wrt eachother, then F ∧ G is satisfiable iff RF ∧ RG

is satisfiable.

Correctness of Algo follows from this.
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