
Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Overview of E0 205
Mathematical Logic and Theorem Proving

Deepak D’Souza and Kamal Lodaya

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

06 Jan 2025



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Mathematical Logic and Theorem Proving

“Mathematical” Logic (pioneered by Boole, Frege, Russell,
Hilbert, Gödel, . . . )

Goals related to foundations of Mathematics (formalizing set
theory and mathematical reasoning techniques)
Applications in Math and Theoretical CS (e.g. Büchi’s logical
characterisations of regular languages)

as opposed to Philosophical Logic.

SMT (SAT+Decision Procedures for certain theories) vs
Theorem Proving

Fully automated vs Interactive.



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Why study Logic in Computer Science?

Computability

Notions of computability were proposed to answer questions
in logic

Formalizing mathematics (coming up with a complete proof
system, deciding truth of logical statements) led to Hilbert
proposing the “Entscheidungsproblem” (decision problem for
logical validity).
Church and Turing separately proposed Lambda Calculus and
Turing machines as notions of computability, and showed the
Entscheidungsproblem was undecidable.

Natural computational problems

SAT complete for NP, Horn-SAT complete for P
FO with fixpoints.



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Why study Logic in Computer Science?

Verification and Synthesis

Specification languages

Temporal Logic
Floyd-Hoare Logic

Checking whether a program/system satisfies a specification

Program satisfies a pre-post specification if generated
Verification Conditions (VCs) are logically valid.
Model-Checking procedures for Temporal Logics.
Constrained Horn Clauses

Symbolic Analysis

Symbolic Model-Checking
Predicate abstraction
Controller Synthesis

Others (Proofs as Types, Algorithmic meta theorems, etc)



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Course Contents

Mathematical Logic

Propositional and First-Order Logic
Definability
Normal Forms
Sound and complete proof systems (Sequent Calculus)
Compactness and Lowenheim-Skolem Theorem

Decision Procedures

DPLL procedure for Propositional Logic (SAT)
Equality and Uninterpreted Functions (EUF)
Real and Integer Linear Arithmetic
Array logic
Nelson-Oppen combination



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Example FO Logic Formula

∀x∃y(x < y ∧ op(y , x) = e)

Relation Symbol

Logical Connective
Function Symbol

Constant Symbol

Variables

Quantifier

Term

(x < y ∧∀x∃y op(y , x) = e)



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Example FO Logic Formula

∀x∃y(x < y ∧ op(y , x) = e)

Relation Symbol

Logical Connective
Function Symbol

Constant Symbol

Variables

Quantifier

Term

(x < y ∧∀x∃y op(y , x) = e)



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

FO Signature

A First-Order signature is a tuple

S = (R,F ,C )

where

R is a countable set of relation symbols
F is a countable set of function symbols
C is a countable set of constant symbols

Each relational/functional symbol comes with an associated
“arity”.

Example FO signatures

Sgr = ({}, {op(2)}, {e}) (Groups)

Sogr = ({<(2)}, {op(2)}, {e}) (Ordered Groups)

Sar = ({}, {+(2), ·(2)}, {0, 1}) (Arithmetic)

Seq = ({r (2)}, {}, {}) (Equivalence Relations)



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Semantics: Example

Find the truth of the Sgr -formula

∀x∃y((op(y , x) = e) ∧ ¬(y = e))

in the structure (Z,+, 0).

∧

op(y , x) = e

∃y

∀x

¬

y = e



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Theories

An S-theory is a set of S-sentences T which is satisfiable and
closed under logical consequence.

The theory of a set of S-formulas T , written “Th(T )”, is the set
of S-sentences that are logical consequences of T . That is:

Th(T ) = {ϕ ∈ LS
0 | T � ϕ}.

Theory of Groups Th(Φgr )

Let Φgr be the set of formulas (group axioms):

∀x∀y∀z (op(op(x , y), z) = op(x , op(y , z)) (1)

∀x (op(x , e) = x) (2)

∀x∃y (op(x , y) = e) (3)

Then Th(Φgr )

Contains ∀x∃y(op(y , x) = e), but

Does not contain ∀x∀y(op(x , y) = op(y , x)).



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Example of Group Theory

Group Axioms ΦGr

∀x∀y∀z ((x◦y)◦z = x◦(y◦z)) (4)

∀x (x◦e = x) (5)

∀x∃y (x◦y = e) (6)

Structures for ΦGr : (Z,+, 0) and (R,+, 0); but not (R, ·, 1).

Theorem: Every element of a group has a left-inverse:
∀x∃y(y◦x = e).

Question: is there a complete proof system for Group theory?
That is, whenever we have ΦGr � ϕ, then we also have ΦGr ` ϕ.



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Gödel’s Completeness Theorem

Let Φ ` ϕ denote a derivation of ϕ from Φ using the Sequent
Calculus proof system.

Theorem (Completeness)

For any set of first-order logic sentences Φ:

Φ � ϕ iff Φ ` ϕ.

Some consequences of the theorem and its proof:

There is a complete proof system for Group Theory (Sequent
Calculus + ΦGr as axioms).

(Lowenheim-Skolem) If a set of FO formulas Φ is satisfiable
then it is satisfiable in a countable model.

(Compactness) If a set of formulas Φ is unsatisfiable, then
there is a finite subset of Φ which is unsatisfiable.



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Boolean SAT solving

Does the system satisfy the temporal logic formula
G (b =⇒ X (¬b))?

00

01 10

11

In bounded model-checking we could ask for a path of length 2 that
violates the specification: Is

¬a0 ∧ ¬b0 ∧ T (a0, b0, a1, b1) ∧ T (a1, b1, a2, b2) ∧ b1 ∧ b2,

where T (a, b, a′, b′) = (¬a ∧ a′ ∧ b ⇐⇒ b′) ∨ (a ∧ ¬a′ ∧ b ⇐⇒ ¬b′),

satisfiable?



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Linear Arithmetic

Bounded model-checking for programs:

int x = 19;

int y = 15;

while (x >= 10) {

int z = -1;

x = x + z;

}

assert(y >= x);

Does there exist zero-iteration
execution violating the assertion: Is

x1 = 19 ∧ y1 = 15 ∧ x1 < 10 ∧ y1 < x1

satisfiable?



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Linear Arithmetic

Floyd-Hoare style verification of programs:

int x = 19;

int y = 15;

// inv: x <= 20

while (x >= 10) {

int z = -1;

x = x + z;

}

assert(y >= x);

Are the constraints: ∀x , y , z , x ′ :

x = 19 =⇒ x ≤ 20

x ≤ 20 ∧ x ≥ 10 ∧ z = −1 ∧ x ′ = x + z =⇒ x ′ ≤ 20

x ≤ 20 ∧ y = 15 ∧ ¬(x ≥ 10) =⇒ y ≥ x ′

valid?



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Array Logic

ainit(int A[], int len) {

// Pre: 0 <= len

int i = 0;

while (i < len) {

A[i] = 0;

i = i + 1;

}

}

// Post:

forall k: ((0 <= k < len)

=> A[k] = 0)

i

A

len

Loop invariant:
(0 ≤ i ≤ len) ∧ ∀k((0 ≤ k < i) =⇒ A[k] = 0)

Verification condition:

[(0 ≤ i ≤ len) ∧ ∀k((0 ≤ k < i) =⇒ A[k] = 0) ∧ ¬(i < len)] =⇒

∀k : ((0 ≤ k < len) =⇒ A[k] = 0).



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Program Transformation

Example: Are these programs equivalent?

S1: z := (x1 + y1) * (x2 + y2); T1: u1 := (x1 + y1);

T2: u2 := (x2 + y2);

T3: z := u1 * u2;

We want to check whether (forall x1, x2, y1, y2, z1, z2, u1, u2)

(z1 = (x1 + y1) ∗ (x2 + y2) ∧
u1 = x1 + y1 ∧ u2 = x2 + y2 ∧ z2 = u1 ∗ u2)
→ z1 = z2.

Since reasoning about 32 bit ints and addition and multiplication is
difficult, We could instead check whether the EUF formula:

(z1 = G (F (x1, y1),F (x2, y2)) ∧
u1 = F (x1, y1) ∧ u2 = F (x2 + y2) ∧ z2 = G (u1, u2))
→ z1 = z2.

is valid.



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Nelson-Oppen Combination

Example: Is this sentence satisfiable?

f (f (x)− f (y)) 6= f (z) ∧ x ≤ y ∧ y + z ≤ x ∧ z ≥ 0

No, because the arithmetic constraints imply that x = y and
z = 0; and the functional constraints must then imply that
f (f (x)− f (y)) = f (0) = f (z).



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Nelson-Oppen Combination

Example: Is this sentence satisfiable?

f (f (x)− f (y)) 6= f (z) ∧ x ≤ y ∧ y + z ≤ x ∧ z ≥ 0

No, because the arithmetic constraints imply that x = y and
z = 0; and the functional constraints must then imply that
f (f (x)− f (y)) = f (0) = f (z).



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Nelson-Oppen Combination

Shows how we can combine decision procedures for two theories
into a decision procedure for their union.

“Equality Sharing” Procedure:

Is this sentence satisfiable?

f (f (x)− f (y)) 6= f (z) ∧ x ≤ y ∧ y + z ≤ x ∧ z ≥ 0

Arithmetic Constraints

x ≤ y
y + z ≤ x

z ≥ 0
g2 − g3 = g1

Function Constraints

f (g1) 6= f (z)
f (x) = g2
f (y) = g3



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Constrained Horn Clauses

int x = 19;

while (*) {

int z = f();

x = x + z;

}

int y = g();

assert(y >= x);

Find unary relations f, g and inv
such that:

x = 19 =⇒ inv(x)

inv(x) ∧ f(z) ∧ x ′ = x + z =⇒ inv(x ′)

inv(x) ∧ g(y) =⇒ y ≥ x

0 19

inv gf



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Constrained Horn Clauses

int x = 19;

while (*) {

int z = f();

x = x + z;

}

int y = g();

assert(y >= x);

Find unary relations f, g and inv
such that:

x = 19 =⇒ inv(x)

inv(x) ∧ f(z) ∧ x ′ = x + z =⇒ inv(x ′)

inv(x) ∧ g(y) =⇒ y ≥ x

0 19

inv gf



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Course Textbooks



Logic and Computer Science Course Contents Mathematical Logic Decision Procedures Course Details

Course Details

Weightage: 40% assignments + seminar, 20% midsem exam,
40% final exam.

Assignments to be done on your own.

Dishonesty Policy: Any instance of copying in an assignment
will fetch you a 0 in that assignment + one grade reduction +
report to DCC.

Seminar (in pairs) can be chosen from list on course webpage
or your own topic.

Course webpage:
www.csa.iisc.ac.in/~deepakd/logic-2025

Teaching assistants for the course: Alan Jojo and Abhishek
Uppar

Those interested in crediting/auditing please send me an email
so that I can add you to the course Teams / mailing list.


	Logic and Computer Science
	Course Contents
	Mathematical Logic
	Decision Procedures
	Course Details

