Conflict-Tolerant Real-Time Features

Deepak D’Souza and Madhu Gopinathan S. Ramesh and Prahladavaradan Sampath

Indian Institute of Science GM India Science Lab
Bangalore, India Bangalore, India
{deepakd,gmadh@csa.iisc.ernet.in {ramesh.s,p.sampgt@gm.com
Abstract the feature specification. One of the problems faced in in-

tegrating various features in such systems is that thergyste
This paper addresses the problem of detecting and re-may reach a point of “conflict” between two (or more) fea-
solving conflicts due to timing constraints imposed by fea- tures, where the features do not agree on a common action
tures in real-time systems. We consider systems composefibr the base system to perform. This situation is an instance
of a base system with multipkeaturesor controllers each of what is referred to in the literature as theature interac-
of which independently advise the system on how to react tation problem [15, 13, 10].
input events so as to conform to their individual specifica-  Consider a development model where individual features
tions. We propose a methodology for developing such sysare specified by original equipment manufacturers (OEMSs)
tems in a modular manner based on the notiocarfflict- and implemented by third party vendors. The OEM must
tolerantfeatures that are designed to continue offering ad- verify that feature implementations conform to their speci-
vice even when their advice has been overridden in the pastfications. In addition, the OEM musttegratevarious fea-
We give a simple priority based scheme for composing suchwres into a final product. Detecting and resolving conflicts
features. This guarantees theaximaluse of each feature.  between features during feature integration poses a signif
We provide a formal framework for specifying such features, icant challenge for OEMs. Conflict between two features
and a compositional technique for verifying systems devel-can, of course, be resolved by respecifying or redesigning
oped in this framework. one of the features. However this is often not possible in
practice and there is no guarantee that the redesigned fea-
ture does not conflict with some other feature. Moreover,
1. Introduction redesign of a feature for handling specific conflicts reduces
the scope for reusing the feature in multiple contexts.

The problem of engineering large software intensive sys- An alternative to redesign is suspendhe feature with
tems is growing exponentially with the increasing sophis- lower priority so that the base system can continue with the
tication of software. This has inspired a number of ap- gdvice of the higher priority feature. However the issue now
proaches for organizing software to improve the reliabil- iS how and when teesumethe suspended feature so as to
ity of software systems. Many of these approaches pro-Maximize its use.
pose deature orientedlevelopment paradigm, where fea- ~ Our Approach. In this paper we propose a formal
ture specifications are derived from domain requirementsframework for developing feature based systems in a way
and features are implemented to satisfy such specificationsthat overcomes some of the problems outlined above. We
By suitably composing features, multiple software product Wwork in the setting of real-time features so as to model more
can be engineered [20]. Historically, this approach hasbee closely the timed-dependent features that arise in the- auto
followed in the telecommunications industry. In the auto- motive domain. The framework is based on the novel notion
motive industry, advanced safety features such as eléctron of conflict-tolerancewhich requires features to besilient
stability control, collision avoidance etc. [12] are deysdd or tolerantwith regard to violations of their advice. Thus,
as part of a software product line, and a subset of these feaunlike the classical notion of a feature, a conflict-toléran
tures is integrated into different automotive productssdas feature can observe that its advice has been over-ridden,

on the needs of customers. takes into account the over-riding event, and proceeds to
We view systems developed using this paradigm as con-offer advice forsubsequertehaviour of the system.
sisting of a base system along with multifgatureswhere The starting point of this framework is the notion of a

each feature advises the base system on how to conform teonflict-toleranspecificatiorof a feature. A classical safety



specification can be viewed as a prefix-closed language ofrelease was “on time” or not and changes its advice accord-
finite words containing all the system behaviours which are ingly. Thus it advisesel 0.5 seconds after the last release
consideredafe This can be pictured as a safetynein the if the previous release was “late” (lightly shaded state) an
tree representing all possible behaviours, as shown inlFig. advisegel 2 seconds after the last release if it was “early”
(a). A conflict-tolerant specification on the other hand can (darkly shaded state).

be viewed as aadvice functiorthat specifies foeachbe-

haviourw of the base system, a safety cone comprising all x=1, rel, {x} x>=1,rel, {x}

future behaviours that are considered saftgr the system

has exhibited behavious (Fig. 1 (b)). H@ @éfl\,)rel, {x}
4)

@ x<1/2,rel, {x} ()

—

=77 x=Lrel, X} TS

/A //x>1,rel,{x} D x<1,rel, {x}
(=T x>1/2 @ - , X<2
rel rel
() (b) i s /{X}
x=1/2,rel, {x} T x=2,rel, {x}
w/

©

Figure 1. The conflict-tolerant specification
on the right advises on how to extend w
even though its advice has been overridden

(dashed line) in the past when generating w. Figure 2. A classical spec (a), and conflict-

tolerant specs (b) and (c) that induce the

To illustrate how a conflict-tolerant specification can same classical spec (a).

capture a specifier’s intent more richly than a classicatspe
ification, consider a feature that is required to release (de
noted by the eventrél”) a single unit of lubrication every

1 second. A classical specification for this feature may be
given by the timed transition system shown in Fig. 2(a). The

state mvenantit < I"is to be interpreted as a "time-can- ¢ 6,y sajd to satisfy a conflict-tolerant specification fwit

progress condition: th“S."’FS ang as the value of the CIQCk respect to a given base system), if after every possible be-
v is less than 1, the speC|f|ca_t|on recommends letting UMeaviourw of the base system, the behaviours of the base
elapse. However when = 1, time elapse is no more rec- system that are according to the advice of the feature imple-

Ommle,f]dg.d agdbinstedad thehactimh s recodm_mer;ded “u.rj mentation are contained in the safety cone specified by the
gently”. Fig. 2(b) and (c) show annotated timed transition specification forw. We address the natural feasibility and

systems denoting conflict-tolerant specifications thaned . verification problems in this framework and give decision

:_he samte clazs_]ifcal fspec;l;:catllon s_holw n In_(at). These tr_l"’_‘rr]'s"procedures to solve these problems in the setting of Alur-
ion systems differ from the classical one in two ways. The ./ imed transition systems.

dashed transitions are to be read as “not-advised”, and they An important aspect of our framework is the fact that

ep?btl_e thefS{) ecg|gat|or1t tokeep tr?ctk ogeventzlthgt OCC;Jrt"f]conflict—tolerant features admit a simple and effective com
violation ot IS advice at a given state. secondly, In a state position scheme based on a prioritization of the features be

ﬂ:e tlme-can-;)tr?r?ress (_:ondlftltohn can bﬁf. V|ct>_lated| tot:]e_:t time ing composed. The composition scheme can also be viewed
clapse against the advice ot the spectiication. 'In this €as€,< 5 ¢onfict resolution technique. The composition scheme
time elapses but control remains in the same state. Thu

o . ! %nsures that the resulting system always satisfies the-speci
specification (b), adviseel urgently at all times after 1

d h . | i its advice is tak fication of the highest priority feature. Additionally, bl
second from t. € previous release, untl_ Its advice Is taken. ¢ the advice of all other featurds, exceptat points
Whenz < 1, its advice is only to let time elapse; If the

el i ; q st its advice. it the dash dWhere each action in the advice Bfconflicts with the ad-
ceventrel Is periormed against its advice, 1t Uses e dasned,;.q of 5 higher priority feature. It is in this sense thatteac
transition to keep track of this and resets its clacKf its

o . i . feature ismaximallyutilized.
advice is not followed when: = 1, it contl_nues to advise In summary, the contributions of this paper are:
thatrel be done urgently, i.e. time elapse is no more recom-
mended e Formulation of the novel notion of conflict-tolerance
The specification (c) keeps track of whether the previous in the context of timed systems.

A conflict-tolerant feature implementation can be viewed
as a timed transition system with transitions annotated as
advised and not-advised similar to the conflict-tolerant
specifications described above. A feature implementation



e Algorithms for (i) checking whether it is feasible to dress the feasibility and verification problems in Section 5
construct a conflict-tolerant feature for a base systemFinally in Section 6, we describe our composition scheme
and a conflict-tolerant specification, and (ii) for veri- and provide a precise formulation of the claim that the con-
fying whether a conflict-tolerant feature is valid for a trollers are maximally utilized.
base system and whether it satisfies a conflict-tolerant

specification. 2. Preliminaries

e Formulation of aprioritization scheme for composi-
tion of conflict tolerant features in a way thataxi- Let X be afinite alphabet of events and ¥t denote the
mizesthe use of each feature. set of finite words oveE.. A languageovery. is a subset
of ¥*. We writew - « to denote the concatenation of two
Related Work. In [11] it is argued that system verifica- \wordsw andz.
tion must be decomposed by features as every feature nat- e yse timed words to model behaviours with timing
urally has an associated property to be verified. There areinformation. Timed words extend classical words with
several approaches in the literature where features ace spe information about the time at which events occur. Let
ified as state machines and a conflict (in the untimed set-g_, R_, Q- denote the set of nonnegative reals, positive
ting) is detected by checking whether a state in which the rea|s and nonnegative rationals respectively. We use g dela
features advise conflicting system actions, is reached [15] hased representation for timed words. frae timed word
The problem of conflict detection at the specification stage gyer an alphabet is a string in(X U R+)* in which two
is addressed in [9], where conflict between two feature spec-eyents froms never occur contiguously. Thus a free timed
ifications in temporal logic is detected automatically. word may begin with an event or a delay and end with an
Our approach of viewing features as discrete event con-event or a delay. The time stamp of an event in a timed word
trollers [16] follows that of [22, 3]. In both these works, can be obtained by summing the preceding delays. For ex-
the main issue addressed is that of resuming the advice of mple, the time stamp of the evérin the free timed word
controller once it has been suspended due to conflictwithas . ;. 1.1.p- 1 is 4. The concatenation of two free timed

higher priority controller. In [3], specifications are dgsed  words may not be a free timed word. For example; b2

to anticipate conflict, by having two kinds of state#sspec is not a free timed word.

andout-of-spec When a controller's specification is vio- A free timed word can be represented ircanonical
lated it transitions to an out-of-spec state from wherestpa \ay py addingo at the beginning and the end, and then

event that brings it back to an in-spec state. Note that these, string of the formidgaidiasds - - - and,, Wheren > 0,

controllers do not offer any useful advice in the out-ofespe 7, 7. ¢ R.y, d; € Rogfor0 < i < n, anda; € ¥
states. In [14] a rule-based feature model and compositionfor 1 < ; < . Note that every free timed word has a
OperatOI’S for resoIVing conflicts based on pl’ioritizatien i unique canonical representation_ leetlenote the empty

presented. However, the notion of a conflict-tolerspeci-  timed word whose canonical representatiof.iset o and
fication(as against the feature implementation itself) is ab- - pe canonical timed words such that 7 is a free timed
sentin their work. word. We define the concatenationroéindr, denotedro 7

In recent work [6] we have studied the notion of conflict- (Or Simplyo-»r when clear from the Context), to be the canon-
tolerance in an untimed setting, and exhibited a similar ica| representation of the free timed ward 7. We say a
framework. The contribution of the present paper is the for- canonical timed words is a prefix of the canonical timed
mulation of conflict-tolerance in the real-time settingdan \yordr, writteno < 7 if there exists a canonical timed word
the solutions to the feasibility and verification problems. ,/ sych thatr o o/ = 7. We denote the set of all canonical
The techniques we use are essentially along the lines ofijmed words ovei by TS*. Henceforth, by timed words
[1, 7] we will mean canonical timed words.

In [5], an algorithm for checking compatibility between A timed languagever ¥ is a set of timed words over
two components, i.e. whether they satisfy each other's as-y; A timed languagé. is calledprefix-closedf whenever
sumptions with respect to timing constraints, is provided. - ¢ 1, ands < 7, we haves € L. For a timed language
Our work on the other hand is more a methodology for 1, ¢ 7x* and a timed word, we denote byt (L), the

conflict-resolution and modular system design. set of extensionsf o that are inZ, i.e.
The rest of the paper is structured as follows: After pre-
liminary definitions, in Section 3 we elaborate in a timed exty(L) = {r € TY* |coT € L}.

setting the view of features as controllers and illustrate-c
flict between features due to timing constraints. We then in- This induces in a natural way ammediateextension func-
troduce the notion of conflict-tolerance in Section 4 and ad- tion iezt, (L) which we define as follows. Let” denote a



symbolic event that stands for “time elapse”. Then for any
o € T¥*, the “immediate” extensions iB U {4} is given
by:

{ceX|ooce L}U{d}
if 3d > Osuchthatod € L
{c € X | o oc € L} otherwise.

iexty (L) =

For modeling specifications and feature implementa-
tions, we use Alur-Dill timed transition system [1] equippe
with the notion of deadlines proposed in [19]. Deadlines
are constraints on transitions that are useful in modelling
urgency. They can equivalently be specified as “time-can-
progress” conditions on states, and we will follow this
model.

Let C be afinite set of clocks. Aaluationfor the clocks
inC'isamapv : C — R>o. We denote by the valua-
tion which maps all the clocks it to the valued. For a
valuationv, by v + t (for t € R>() we denote the valuation
which maps each € C tov(z) + ¢; and byv[0/X] (for a
subset of clocksy of C) the valuation which maps to 0
if + € X andv(x) otherwise. A clock constraint over is
given by the following syntax:

pi=x~c|dprNda| d1 Vo | o

wherez is a clock inC, ~e {<,<,=,>,>} andcis a
constant inQ>o. We writev E ¢ to denote that the valua-
tion v satisfies the constraight with the expected meaning.
We denote the set of clock constraints ogeby ®(C).

A timed transition systerflT TS) over the alphabet, is
a structure of the forr™ = (Q, C, s, —, tcp), whereQ is
a finite set of stateg, is a finite set of clockss € Q is the
initial state,~C Q x X x ®(C) x 2¢ x Q is a finite set
of transitions, andcp : Q@ — ®(C) specifies the condition
under whichtime can progresfrom a given state. For a
transitione = (q,a,9,X,q’) €—, the guardg specifies
whene may be taken an&” specifies the set of clocks to be
reset where is taken.

A configuratiorof 7 is a pair(¢q, v) whereg € @ andv is
a valuation for the clocks itv’. From a given configuration
(g,v) of T, there are two kinds of transitions:
discrete (¢,v) % (¢',v') if there is a transition

(¢,a,9,X,q") €— suchthaw F g andv’ = v[0/X].

delay Let d,d’ € Rx>( be nonnegative time delays. Then
(¢,v) S (qv+d)ifforall 0 < & < d, (v+d)F
tep(q)-

A run of 7 on a timed wordr = dpaid:---and,
starting from a configuratiorig, v) is a finite sequence

of configurationgqo, vo)(q1,v1)(q2,v2) - . . (¢2n+1, V2nt1)
whereqy = ¢,v9 = v and for eachi such that0 <

i < n, (g2i,v2i) = (g2it1,v2i+1) and(gai—1,v2i-1)

a;
—

(g2i,v2;). The timed language df, denotedL(7), is the
set of all timed words on whicll™ has a run starting from
the initial configuration(s,0). Similarly, we denote by
L4,,)(T) the language of timed words on whi@hhas a
run starting from the configuratidi, v).

We say a TTST is deterministicif there is at most
one run of7 on any timed wordr € T%*. A suffi-
cient condition forZ to be deterministic is that for every
pair of distinct transitions of the forrfy, a, g1, X1, ¢’) and
(g,a,92, X2,q"), the constraing; A g is not satisfiable.
A TTS 7 is completeif there is at least one run ¢f on
any timed wordr € TX*. A sufficient condition for7
to be complete is that for every € @Q and everya € X,
V(g.0,9:, %14 9i 1S valid andicp(g) is valid. For a deter-
ministic and complete TTS, there is a unique run &f on
agiventimed word. Let (g, v) be the unique configuration
reached byZ” ono. Then we defind.,(7) = L., (7).

Let 7, <Q1,Cl,81,—>1,t0p1> and 75
(Q2,Co, s2,—9, tcp,) be two timed transition systems
over the same alphabé&l. We assume that the clocks
C; and C, are disjoint. Then thesynchronized prod-
uct of 7; and 73, denoted7;|7z, is given by the
TTS <Q1 X Q2,C1 Uy, (81, 82), —, th> where — and
tcp are defined as: (iX(p,q),g,a, X, (p',q)) €— if
(pyg1,0,X1,p") €—1 and(q, g2,a,Xs,q") €—2, g =
g1 A g2, and X = X; U Xy; and (i) tep((p, q))
tepy(p) A teps(q). We note that the synchronized prod-
uct as defined above generates the intersection of the timed
languages of; andTs.

3. Features as Controllers

In this section we elaborate in a timed setting, the view of
features as modular discrete event controllers [16], as pro
posedin [3, 22].

A safety specificatiomver an alphabek is a prefix-
closed timed language oveél, denoting the set of timed
behaviours which are considered “safe” with respect to a
certain aspect of safety. A safety specification can also be
viewed as an “advice function” as defined below. This view
will be useful when we introduce the notion of conflict tol-
erance in Section 4.

Definition 1 (Advice Function) An advice function ovex
is a functionf : TS* — 27" which satisfies the following
conditions:

e f(e) is a prefix-closed timed language.

e f is consistent in the sense that for alle f(e) and
all 7 € f(o), we havef(o1) = ext-(f(0)).

Note that for allo € f(¢), f(o) is a prefix-closed timed
language. A safety specificatidnoverX induces an advice



function f;, given by f;(o0) = ext,(L). Conversely, an
advice functionf induces a safety languade; given by
Ly = f(e). An advice functionf induces in a natural way
animmediateadvice functionf’ : T%* — 2%Y{%} given
by

[(o) = iexts (f(e)).

We say a timed wordr is according toan immedi-
ate advice functiory? if for each prefixo of 7, we have
iext,({T}) C f%(o). Similarly, we sayr is according to
an advice functiory if 7 is according to the induced imme-
diate advice functiorf?. A deterministic timed transition
system?7 over X induces an advice functiofiy given by
fr(t) = L.(T) if 7 € L(T), and( otherwise. We say a
safety specificatiot, overX: is (timed)regularif it is given
by a deterministic timed transition systéfmoverX.

We now define the notion of a base system. Ldie an
alphabet which is partitioned into “environment everits”
and “system events¥,.

Definition 2 (Base System)A base system (or plant) over
Y is a deterministic timed transition systéfrovery, which
we assume to beon-blockingin that wheneves € L(B),
theniezt, (L(B)) # (. Further, for all states;, we assume
thattcp(q) = true, i.e. B does not impose any constraints
on progress of time in any of its states.

Let B be a base system ovErwhich is partitioned into
environment events, and system evenis;.

Definition 3 (Controller) A controller (or feature imple-
mentation) for53 is a deterministic timed transition system
C overX. The controllerC is valid B if

e Cisnon-restricting If o € L(B||C) andoe € L(B)
for some environment evente ¥, thence € L(C).

Thus the controller must not restrict any environment
evente enabled in the base system after any controlled

behaviouro.

e C is non-blocking If ¢ € L(B||C), then
ext, (L(BJ|C)) # 0. Thus the controller must not block
the base system after any controlled behawvior

We carry over the notions of advice functigm and cor-
responding immediate advice functighfor a controllerC.
Let B be a base system aiida safety specification over.
We say a controlle€ for 5 satisfiesL if L(5||C) C L.

which there is an outgoing transition from the state, as well
as those events for which the self-loop has a label a.
Thus, the state labeldd has an edge to itself on all events
exceptlock andunlock. The initial state is shown by an
incoming arrow. To avoid clutter, we do not show guards or
tep when they are true, and resets when they are empty.
lock

~unlock ~lock

—>

unlock

Figure 3. Motor Base System 5.

The environment event&ck_req or unlock_req occur
respectively, when the lock or unlock button on a remote
key is pressed. The environment eventsh occurs when a
car crash is sensed. The system eVYenk occurs when the
door is locked and the system evenilock occurs when
the door is unlocked.

The base system is typically run with several controllers
including a “vanilla” controller which locks or unlocks the
doors in response to passenger requests. Consider a feature
calledcrash safetyj4] which requires that if the doors are
locked and a crash occurs, then the doors must be unlocked
within 15 seconds. Fig. 4 shows a possible specification
Scog for this requirement. If the doors are locked and a
crash occurs, then the clockis reset and we are in the
state labeled’. The delay advised in this state is at most
seconds as specified by the time can progress condition.

crash
lock z

(\I

—> z<15

unlock

z<=15
unlock

Figure 4. Crash Safety Spec Scs.

Fig. 5 shows a possible controller implementatitks
for the specificatiorScg. This controller advises the base
system to unlock the doors withifD seconds after a car

As a running example, we consider an electronic control crash. In general, controllers may constrain the basersyste
unit (ECU) that controls the motors for locking and unlock- further than the specification based on other implementatio
ing the doors of a car. The transition system for the motor considerations.

(the base system) is shown in Fig. 3. We denote the envi-

Now consider another feature callederheat protec-

ronment events in italics and system events in bold. The settion [4]. This feature is required as it is found that excessive

Y. comprisedock_req, unlock_req andcrash, while X, is

locking and unlocking of the doors within a short time (say,

{lock, unlock}. We use the convention that self-loops on when children play with a remote key) could cause the mo-

states are labeled with all eventsih excluding those on

tor to burn due to overheating. To prevent such a scenatrio, it



crash
lock z

z<10

unlock

z<=10
unlock

Figure 5. Crash Safety Controller Ccs.

is recommended thainlock must be disabled for at least
180 seconds if there ai®successivéock operations during

a 30 second interval. Note that the designer of this feature

where [.,u,.,c denote the environment events
lock _req, unlock_req, crash and lg, us the system events
lock, unlock respectively. Here, the third lock operation
has occured a9 seconds, a crash seconds later, and
then10 seconds have elapsed. The base sydfeatiows
unlock or delay. The controlled system is blocked as the
advice ofC¢g is {unlock} and the advice o€opp (in

the stateX D as a third lock operation has occurred in a 30
second interval) i§6}, i.e. Ccs does not advise any more
delay beforainlock wherea¥ oy advises further delay.

4. Conflict-Tolerant Controllers

In this section we introduce our notion of conflict-

may not be aware of the details of the crash safety featuretolerance. Analogous to the notion of a specification as an

Figure 6 shows a possible specificati®pyp for this fea-
ture. The state labeled D or Y D is reached after a third
successive lock during &) second interval. Thennlock

is advised only aftei 80 seconds. We take the controller

advice function given in Section 3 canflict-tolerantsafety
specification over an alphak¥@ts aconflict-tolerantadvice
function as defined below:

Conp for this feature to be the same as the specification Definition 5 (Conflict-Tolerant Advice Function) A

Sonp. Itis easy to see that each of the controllées
andCoyp are valid with respect to the base syst&nand
satisfy their respective specifications.

lock

Tororere

lock unlock  lock unlock

{x} i}

y>30
lock

i}

Figure 6. Overheat Protection Spec  Sogp.

We now illustrate the notion of conflict between con-

trollers.

Definition 4 (Conflict). LetC; andCs be valid controllers
for a base systen8. The controllersC; and Cy are in
conflict with respect toB, if there exists a behaviour
in L(BJ|C1||C2) such thatext.(L(B||Cy1||C2)) is empty. In
other words, there exists a behaviaue L(3) which is ac-
cording to bothC; andCy, but f5(1)N f&, ()N f¢, (1) = 0.

ThusC; andC, are in conflict with respect t8 if Cy||C2
is blocking with respect t@8. Consider the behaviour from
the initial state of3

0L, 1ls1lu1usll 111 u1usll 1155 ¢10

conflict-tolerant advice function over an alphab®etis a
functionf : TY* — 27>" which satisfies the following
conditions:

e foreverytimed worde € TY*, f(o) is a prefix-closed
language.

e fis consistent in the sense that falt o € TX* with
T € f(o), we havef(o1) = ezt (f(0)).

A conflict-toleranttimed transition system ovex is a
tuple7’ = (7, N, tcp) where7 is a deterministic TTS
over X whose timed-can-progress condition for each state
is true, N C— is a subset of transitions designatecthat
advised andicp is a time-can-progress condition for states
in 7. Let(q,v) be a configuration of the TTF. Then
the unconstrainedanguage generated 19’ starting from
(g,v), denotedL , ., (7"), is defined to be.(,.)(7). The
constrainedanguage generated I starting from(q, v)
is denotedL{, (7"), and defined to bé&(, ) (7), where

T is the transition system obtained fromby deleting all
not-advised transitions (i.e. transitionsif) and adding the
time-can-progress conditions giventy. Leto be atimed
word in L(7). Then there is a unique configuratiéqn v)
reached byl ono. Then, byL{ (7') we meanL{, (7).
We say7”’ is completewrt a timed languagé, C TX* if
LCL(T).

A complete conflict-tolerant TTS " induces a natural
conflict-tolerant advice functiorf7: given by fr:(oc) =
Le(T"). We say a conflict-tolerant advice functiortised
regularif it is given by a conflict-tolerant TTS ovex.

We define the synchronized product of a timed transition
systemZ; and a conflict-tolerant TTS, = (72, No, tcp,)
to be the conflict-tolerant TT& || 72, N3, teps), where the



unadvised transition sé{; andicp are inherited fromVa crash
andtcp, respectively. (. lock z
Let B be a base system over the partitioned alphabet — z<15

Definition 6 (Conflict-Tolerant Controller) A conflict- unlock
tolerant controllerC’ for B is a conflict-tolerant TTS over

3 that is complete with respect #(3). The controllerC’

is valid wrt 3 if

unlock

e (' is non-restricting If oe € L(B) for some environ- Figure 7. Conflict-Tolerant Crash Safety
ment event € X, thenoce € LS (C') (or equivalently Specification Sig.
e € fi (o). Thus the controller must not restrict any
environment evert enabled in the base system after

anybase system behaviour advises a 180 second break before the next unlock. We note

e (' isnon-blocking If o € L(B), thenLS (BJ|C') # ( that the induced classical specification is the sam&as
(equivalentlyfs, (o) N fi (o) # 0). Thus the controller  in Fig. 6.
must not block the base system aftey base system
behaviours.

x>=180 y >=180
nlock  unlock

Thus a conflict-tolerant controllé?’ must observe and
advise how to extend each behavioeuof the base system. x<=3q |, 189
Note that such a behaviourmay not be according to the lunlock
advice ofC’, inthato ¢ L¢(C'). In contrast, a classical con-
troller C (see Definition 3) assumes that its advice is always
followed by the base system, and advises extensions of only

controlled behaviours (i.e. those In(B|C)). ey mlock ok unlock

Definition 7 (C’ satisfiesf). Let f be a conflict-tolerant
specification ovek. A conflict-tolerant controllec’ for B
satisfiesf if for eacho € L(B), L<(B||C’) C f(o). Thus
after any base system behaviout if the base system fol-
lows the advice of’, then the resulting behaviour conforms Figure 8. Conflict-Tolerant Overheat Protec-

to the safety languagg(c). tion Specification S ;p-

We now illustrate these definitions with our running ex-
ample. Fig. 7 shows a possible conflict-tolerant specifica-
tion Si¢ for the crash safety feature. Note that the classical
specification for crash safety shown in Fig. 4 required the
doors to be unlocked withinb seconds after a car crash and
did not specify what needs to be done if- 15 (this could
be the case if a feature with priority greater than crashafe
requires more delay before the doors can be unlocked). In
contrast S specifies that the doors must be unlocked as
soon as possible when> 15, i.e. § is not advised from the
stateC' whenz > 15. A conflict-tolerant controller that sat-
isfies this specification must meet the obligation that delay
is not advised ifl5 or more seconds have elapsed after the L
car crashed and the doors have not yet been opened. 5. Verification

Fig. 8 shows a possible conflict-tolerant specification
Sy p for the overheat protection feature. The not-advised  In this section we address the natural problems of feasi-
transitions are shown using dashed transitions. In this-spe bility and verification in the conflict-tolerant framework.
ification, even if the doors are unlocked befag&® seconds Let 3 be an alphabet, partitioned in¥. andX,. For
in one of the states XD or YD, the specification still looks a TTS7 overX, a statey € @, and an event € X, we
for a lock operation that may correspond to a “bad” lock denote bycondr(q,a), the condition under which is en-

(i.e. a third consecutive lock in a 30 second interval), and abled ing, i.e. condr(q,a) =V where—

As example valid CT controllers f@ which satisfyS.¢
andSy,;p, we can take the specificatio®$.q andSy,;p
themselves, respectively. In general however, a conflict-
tolerant controller may be quite different from the speci-
fication. This is because the specification captures only one
aspect of safety, while there may be other functional, perfo
mance, and resource related requirements on the controller
Thus, it makes sense to consider the natural feasibility and
verification problems in this setting, which we do in the next
section.

a.9,0,X,¢")e— I



is the transition relation of . For a conflict-tolerant TTS
7', condr:(q,a) gives the condition under which is ad-
vised fromg, i.e. condr (¢, a) =V (4 4 0. x.q)e—\nN 9-

Theorem 1 (Feasibility) Given a base systeii over X,

and a regular conflict-tolerant specificatia$f over Y, we
can check ifS’ is feasiblewith respect toB in that there
exists a valid conflict-tolerant controller fd$ that satisfies
S’

Proof. We claim that there exists a valid controller f8r
satisfyingS’ iff in the synchronized produdB||S’, there
does not exist a configuratiofib, ¢),v) which is reach-
able from the initial configuratior(ss, ss/),0), and sat-
isfies one of the following conditions:

1. (((b,q),v) is “restricting”) there is an environment
evente € X, allowed byB, but not advised by’,
i.e. there exists € ¥, such thaw F condg(b, e) and
v ¥ condsi (g, e).

. (((b,q),v) is “blocking”) there is no discrete or delay
step that is both enabled i and advised by, i.e.
v ¥ tep(q), and for eachu € X, v ¥ (condp(b,a) A
conds/(q,a)). Recall the assumption th#t is non-
blocking.

If such a configuratiofi(b, ¢), v) exists, then clearly a con-
troller cannot be valid foB8 and satisfyS’ at the same time.
Conversely, if no sucli(b, ¢),v) exists, thenS’ itself is a
valid controller forB3 that satisfiesS’.

3. (C’ does not satisfis’) there is a discrete or delay step
that is both enabled b and advised by’, but not
advised byS’. That is, either for some € %, v F
condg(b,a) A conde(q,a) butv ¥ conds/ (g, a), or
v E tepe(p) andu 2 tepgi(q).

Once again this condition can be checked in linear time us-
ing the region automaton for the synchronised produé,of
C'andS'. O

6. Composition

We now give a way of composing conflict-tolerant con-
trollers based on a prioritization of the controllers. The
composition guarantees that the advice of each controller
is used in the “best possible” way.

Let B (B, Co, so,—n), be a base system over
3, and letC; = (Q1,Ch1,s1,—1, Ny, tepy) and C)
(Q2,Ca, s2,—2, Na, tcp,) be valid conflict-tolerant con-
trollers for B. We assume that the set of clockg, C
andC, are disjoint. LetP be a priority ordering between
C} andC}, and sayP assigns a higher priority t6]. We
denote this by >p CJ.

Fora € 3, andp € Q, ¢1 € Q1, andg: € Qo,
let ¢4 (p, q1,92) stand for the disjunction of constraints
of the formg A g1 A go such that there exist transitions
t = (p,a,g,X,p’), t1 = (QhCL,gl,Xl,(Ii) and ty =
(g2,a,91,X1,q5) in B, C{ andC} respectively, witht; ¢
N; andts € Ns. Letgi1(p, g1, q2) stand for the constraint

The condition above can easily be checked in linear time Vaex 911 (P> 41, 42). AlSO, let tcpy,(p, ¢1, ¢2) denote the

using the region automaton [1] f&#||S’. The size of the
region automaton is exponential in the number of clocks
and the maximal constants in the guards. O

Theorem 2 (Verification). Given a base systeifi over X%,

a regular conflict-tolerant specificatiofi’, and a conflict-
tolerant controllerC’, we can check whetheY is a valid
conflict-tolerant controller for3 satisfyingS’.

constrainttcp, (q1) A tecpy(gz). Then:

Definition 8 (Prioritized Composition of Controllers)rhe
P-prioritized compositiomf the controllers’; andC}, with
respect to the base systéfnis denoted|p z(C;, C5), and
defined to be the timed transition systém= (B x Q1 x
Q2,CoUCy U s, (80, S1, 82), =, tcp), where=- and tcp
are defined as follows. Let € ¥, andt = (p,a, g, X, p’),
t1 = (ql, a, 91, X1, qi) andis = (QQ, a, g1, X1, qé) be tran-

Proof. It is easy to see that a necessary and sufficient con-sitions in3, C; andC; respectively. Then we have transi-

dition for C’ to be a valid controller fo3 and satisfying
&', is to check that in the synchronized prodi&iC’||S’,

there doeshot exist a configuratior{(b, p, ¢), v) which is
reachable from the initial configuratiditsz, sc/, ss'),0),

and satisfies one of the following conditions:

1. (C’ isrestricting) there is an environment everd X,
allowed by B, but not advised by’ i.e. there ex-
istse € X, such thatv £ condg(b,e) andv ¥

conder (p, €).

. (C' is blocking) there is no discrete or delay step that
is enabled by3 and advised by’ i.e. v ¥ tcp(p) and
v ¥ (V4ex conds(b, a) A conde: (p, a)).

tions inC according to the following rules:

1. Ift; ¢ Ny andty, € N, (that is they are both advised
transtions) then add the transition

((p,q1,02),a,9 N g1 A ga, X UX1UXo, (0,41, 4))-

. Ift; ¢ Ny andis € N, (thatist; is advised but, is
not) then add the transition

((p7 q1, QQ)7 aag”a X U Xl U X27 (p/7 qaa q/2)

where g” g ANgrAge AN —gulpq,g) A
_‘tcpll(p7qlaQQ)'



The time-can-progress conditiontcp is given by
tep(p, q1,q2) = tepy1(ps qi,q2) V tepo(ps 41, g2), where
tepio(p, a1, q2) = tepy (q1) A —tepa(g2) A —g1(p, a1, g2).-

Lemma 1. The controllerC = ||p5(Cy,C)) defined above
is avalid classical controller for3. The immediate advice
function f¢ it induces is given as follows. For eash e
L(B):

fé(T)mféi(T)mféé(T) ‘
if f(r) N fé{ (r)N féé(T) 7
fE(r)N féi (1) otherwise.

fe(r) = 0
O

We can now generalize this prioritized composition to
any number of controllers. L&Y, ..., C/, be valid conflict-
tolerant controllers for the base systémwith eachC;
(Qi,Ci, 8iy,—4, Ny tep,).  Let P be a priority ordering
that induces a total ordering p on the controllers, say
Ci >p - >pCl. Fora € ¥, andp € @, andg; € Q;
we extend the earlier definitions ¢f;, g11, andtcp,; in
the eXpeCted way tg%“ (pv qi;---, qn)! gin (pv qi,-- -, (In),
and tepin(p,q1,-.-,qn). Then the transitions i€ =
llpB(Cy,...,C)) are defined inductively (on decreasing
values ofn-length bit stringsu) as follows: Leta € X,
andt = (p,a,9,X,9), t;: = (¢,a,9:, Xi,q.;) be transi-
tions in B, and eaclC] respectively. By theank of the
transitions, .. ., t, we mean thex-length bitstringu such
thatu(i) = 1iff ¢; € N;. Then we have transitions ifi
according to the following rules:

1. If the rank oftq,...,t, is 1™ (that is they are all ad-
vised transtions) then add the transition

((pa qiy---, QQ)a a7g”7XUX1U' : 'UX’n,; (p/; qlla ey q;))

whereg” = gA g1 A+ A gn.

2. Ifrank oftq, ..., t, isw with 17 > « > 10" !, then

add
((pa q1,-- -, CIn), a7g”7XUX1U' : UXTLa (p/a qllv ceey q;))
where  ¢” = g AN g A - A
In A Varsu 9w (D@15 - -5 n) A
- \/u’>u thu(p, qiy---, QW)
The time-can-progress conditionicp is given by
tcP(Panwann) = \/u thu(PaChwua(In) (for

w > 10"71), where tcp,. is defined as above, and
inductively tcp,(p.q1,---,an) = Npyy=1 tepila) A

/\i:u(i):O _‘th7(%) A \/u’>u Gu' (p7 qi,---, Qn)-
Before giving the “correctness” condition satisfied by

in a given timed wordr. Thus, for example, for prefixes
andr’ of o such thatr < 7/, the interval(r, 7] denotes the
set of prefixeda < o | 7 < a < 7'}. We say that intervals
I andJ of o areadjacentif I N J = () andI U J forms an
interval ofo.

Lemma 2. LetC’ be a conflict-tolerant controller ovex,
and letoc € TX*. Theno can be covered by a sequence
of adjacent nonempty intervalg, I, ..., Iy (k > 0) such
that o is alternately according tgfZ, in eachZ;. More pre-
cisely, either in each even interval (of the fofm) o is ac-
cording to f%,, and in each odd interval (of the forf, ;)

o is neveraccording tof¢,; or in each odd intervab is
according tof%,, and in each even interval is neverac-
cording to f%,.

Proof. It is sufficient to observer that in the unique run of
C’ on o, the prefixes corresponding to action points are ei-
ther according to the advice 6f or not, and for the periods

of time elapse, the run remains in a single state throught
this period. Each such period can be partitioned into a fi-
nite number of periods which lie alternately inside the
condition for the state or outside. O

Let Si,...,S,, be conflict-tolerant specifications. Sup-
pose that eacti’ individually satisfies the specificatia$t
w.r.t. B. By the nature of our composition construction it is
not difficult to see that:

Theorem 3. The timed transition systenC
lpB(Cy,-..,CL) is a valid controller for B. Further-
more, C satisfies each of the specificatioS$, ..., S, in
the following “maximal” sense. For every € L(B||C):

1. 0 € LY(S)).

2. Letly, I1,... I} be the sequence of adjacent intervals
induced byfc, on o as given by Lemma 2. Then
throughout the even intervals (WLOG)is accord-
ing to the advice oC} and throughout the odd inter-
valso is conflict with the higher priority controllers, in
that for each prefix- of o in these intervals, for each
ce fé} (7), there is a controllecC;, such thaC), >p C’

ande ¢ fi(t)N fé); (7). O

Consider the base system behaviour which we used to il-
lustrate conflict in Section 3. The controller for crash pafe
advises that the doors must be unlocked without any delay
whereas the controller for overheat protection advises fur
ther delay before unlocking the doors. With the priority or-
derCyyp < Cig, the conflictis resolved such that one pos-
sible extension (starting fromrash) is c. 15 ug 3 I 1 g,

our composition scheme, we state a useful observationi.e. the doors are unlocked ignoring the adviceCgf, .
which says that the set of points along a timed word which Later, the doors are locked again (perhaps, this was a mi-
are according to a regular advice function, is finitely vary- nor crash). Note that},;, is in the state labeledD as

ing. It will be convenient to talk of “intervals” of prefixes

this is a third successive lock during3a second interval.



The advice ot/ ;> can now be followed if there is no fur-  References
ther conflict. We emphasise that the same controllers can

be composed with the priorit¢,¢ < C{,;p to obtain a [1] R. Alurand D. L. Dill. A theory of timed automataTheor.

system in which conflicts are resolved in favour@¥, , Comput. Scj.126(2):183-235, 1994.

while maximally utilizing the advice of /. [2] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and
Y. Zhu. Bounded model checkingAdvances in Comput-

. ers 58:118-149, 2003.

7. |mp|ementat|on [3] Y. L. Chen, S. Lafortune, and F. Lin. Modular supervisory

control with priorities for discrete event systems. Gonf.
For verifying conflict-tolerant controllers, we use the on Decision and Contropages 409-415. IEEE, 1995.
infinite state, bounded model checker [2, 21] from the [4] W. Damm and M. Cohen. Advanced validation techniques
SAL [17] tool suite. We first translate the timed transition meet complexity challenge in embedded software develop-

ment. INEmbedded Systems Journ2001.

systems to SAL modules. An explicit environment module
y b [5] L. de Alfaro, T. A. Henzinger, and M. Stoelinga. Timed

Eis synchronously co'm.polsed with the other' modules. This interfaces. IEEMSOFT pages 108-122, 2002.

module (i) nondeterministically chooses a discrete or a de- 5] p p'souza and M. Gopinathan. Conflict-tolerant feature

lay event that is enable_zd by all the other modu!e_:s, and (ii) In Computer Aided Verification (to appeag)008.

alternates between a discrete and a delay transition [&. Th [7] D. D’'Souza and P. Madhusudan. Timed control synthesis

synchronous composition ensures that time progresses by  for external specifications. IBTACSpages 571-582, 2002.

the same amount in all the modules. [8] B. Dutertre and M. Sorea. Timed systems in sal. Technical
We translate the given transitions systems for base AReFI)Dor}:SE"SDé-‘OKA"g& SR"_OCE]?berFZO?"’- foa

systemB, conflict-tolerant specificatioss’, and conflict- [9] A. P. Felty and K. S. Namjoshi. Feature specification

, and automated conflict detectiodMCM Trans. Softw. Eng.
tolerant controlleC’ to SAL modules. We then generate a Methodol, 12(1):3-27, 2003.

formula corresponding to each of the following conditions [10] s. Ferber, J. Haag, and J. Savolainen. Feature intenatd
(see Theorem 2 in Section 5). dependencies: Modeling features for reengineering ayegac

1. (C' is non-restricting) Let((b,p),v) be the configu- product line. INSPLG pages 235-256, 2002.

. : , [11] K. Fisler and S. Krishnamurthi. Decomposing verifioati
ration reached after generatinge L(BJ|C’). Then by featuresIFIP Working Conference on Verified Software:
Ve € X v E condp(b,e) = v E conde(p, e) must

Theories, Tools, Experiment2006.
hold. [12] Safety features for the future —http://vwww

. . . f orbesaut os. coni advi ce/ t opt ens/
2. (C’ is non-blocking) Let((b, p),v) be the configura- f ut ur e- saf et y-  eat ur es/ | aFr:der. html

tion reached after generating € L(BJ|C’). Then [13] R. J. Hall. Feature interactions in electronic mail. AWV,
v E tep((b,p)) V (V,ex condg)cr (b, p)) must hold. pages 67-82, 2000
[14] J. D. Hay and J. M. Atlee. Composing features and resolv-

! 1ofi ! HY
3. (¢’ satisfiess’) For every transitior((b, p, q),v) — ing interactions. I'SIGSOFT Found. of Softw. Enggages

((t',p',¢'),v") of the composed systet|C’(|S’, the 110-119. 2000.

auxiliary boolean variable_advised is set to true iff  [15] D. 0. Keck and P. J. Kithn. The feature and service iitera
q — ¢’ is advised byS’ and the auxiliary boolean vari- tion problem in telecommunications systems. a SUE§E
able c_advised is set to true iffp — p’ is advised by Trans. Software Eng24(10):779-796, 1998.

C'. ThenAlways(c-advised = s_advised) must hold. [16] P.J. G. Ramadge and W. M. Wonham. The control of dis-
crete event systems. Rroc. of the IEEEvolume 77, pages

The safety properties generated above are either proved us-  g1_9g, 1989.

ing k-induction [18] or a counterexample is obtained. [17] SAL - http://sal.csl.sri.com.

[18] M. Sheeran, S. Singh, and G. Stalmarck. Checking pafet
properties using induction and a sat-solver. AMCAD,
pages 108-125, 2000.

[19] J. Sifakis and S. Yovine. Compositional specificatidn o

8. Conclusion

We note that conflict-tolerant specifications are some- timed systems (an extended abstract). Symp. on Theo-
what stronger than classical specifications, and may not al- retical Aspects of Comp. Sciengages 347359, 1996.
ways admit a conflict-tolerant controller even when the in- [20] Software Engineering Institute. Software producte$in
duced classical specifications admits a classical coatroll http://wwuv. sei . cnu. edu/ productli nes.

Nonetheless, whenever the conflict-tolerant controllars ¢~ [21] II\E/III Stor"\ala-t B?E”dedc modetl %h(gg(‘g)‘gz‘;’ézﬁmed automata.
: ; ectr. Notes Theor. Comput. , .

be Cons.tructtﬁd’ Ourt frﬁmevrorkbpt)r(.)v'desta ﬂex'btlhe way of [22] K.C.Wong, J. G. Thistle, H. H. Hoang, and R. P. Malhamé.

composing the controflers to obtain systems wi gqaran— Supervisory control of distributed systems: Conflict reso-

tees on the usage of egch co_ntrpller. Our framework is glso lution. In Conf. on Decision and Contropages 416-421.

amenable to more flexible priority schemes like according IEEE, 1995.

priority dynamically based on history of events.



