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Abstract

This paper addresses the problem of detecting and re-
solving conflicts due to timing constraints imposed by fea-
tures in real-time systems. We consider systems composed
of a base system with multiplefeaturesor controllers, each
of which independently advise the system on how to react to
input events so as to conform to their individual specifica-
tions. We propose a methodology for developing such sys-
tems in a modular manner based on the notion ofconflict-
tolerant features that are designed to continue offering ad-
vice even when their advice has been overridden in the past.
We give a simple priority based scheme for composing such
features. This guarantees themaximaluse of each feature.
We provide a formal framework for specifying such features,
and a compositional technique for verifying systems devel-
oped in this framework.

1. Introduction

The problem of engineering large software intensive sys-
tems is growing exponentially with the increasing sophis-
tication of software. This has inspired a number of ap-
proaches for organizing software to improve the reliabil-
ity of software systems. Many of these approaches pro-
pose afeature orienteddevelopment paradigm, where fea-
ture specifications are derived from domain requirements
and features are implemented to satisfy such specifications.
By suitably composing features, multiple software products
can be engineered [20]. Historically, this approach has been
followed in the telecommunications industry. In the auto-
motive industry, advanced safety features such as electronic
stability control, collision avoidance etc. [12] are developed
as part of a software product line, and a subset of these fea-
tures is integrated into different automotive products based
on the needs of customers.

We view systems developed using this paradigm as con-
sisting of a base system along with multiplefeatureswhere
each feature advises the base system on how to conform to

the feature specification. One of the problems faced in in-
tegrating various features in such systems is that the system
may reach a point of “conflict” between two (or more) fea-
tures, where the features do not agree on a common action
for the base system to perform. This situation is an instance
of what is referred to in the literature as thefeature interac-
tion problem [15, 13, 10].

Consider a development model where individual features
are specified by original equipment manufacturers (OEMs)
and implemented by third party vendors. The OEM must
verify that feature implementations conform to their speci-
fications. In addition, the OEM mustintegratevarious fea-
tures into a final product. Detecting and resolving conflicts
between features during feature integration poses a signif-
icant challenge for OEMs. Conflict between two features
can, of course, be resolved by respecifying or redesigning
one of the features. However this is often not possible in
practice and there is no guarantee that the redesigned fea-
ture does not conflict with some other feature. Moreover,
redesign of a feature for handling specific conflicts reduces
the scope for reusing the feature in multiple contexts.

An alternative to redesign is tosuspendthe feature with
lower priority so that the base system can continue with the
advice of the higher priority feature. However the issue now
is how and when toresumethe suspended feature so as to
maximize its use.

Our Approach. In this paper we propose a formal
framework for developing feature based systems in a way
that overcomes some of the problems outlined above. We
work in the setting of real-time features so as to model more
closely the timed-dependent features that arise in the auto-
motive domain. The framework is based on the novel notion
of conflict-tolerance, which requires features to beresilient
or tolerant with regard to violations of their advice. Thus,
unlike the classical notion of a feature, a conflict-tolerant
feature can observe that its advice has been over-ridden,
takes into account the over-riding event, and proceeds to
offer advice forsubsequentbehaviour of the system.

The starting point of this framework is the notion of a
conflict-tolerantspecificationof a feature. A classical safety



specification can be viewed as a prefix-closed language of
finite words containing all the system behaviours which are
consideredsafe. This can be pictured as a safetyconein the
tree representing all possible behaviours, as shown in Fig.1
(a). A conflict-tolerant specification on the other hand can
be viewed as anadvice functionthat specifies foreachbe-
haviourw of the base system, a safety cone comprising all
future behaviours that are considered safe,after the system
has exhibited behaviourw (Fig. 1 (b)).

w

(a) (b)

Figure 1. The conflict-tolerant specification
on the right advises on how to extend w
even though its advice has been overridden
(dashed line) in the past when generating w.

To illustrate how a conflict-tolerant specification can
capture a specifier’s intent more richly than a classical spec-
ification, consider a feature that is required to release (de-
noted by the event “rel”) a single unit of lubrication every
1 second. A classical specification for this feature may be
given by the timed transition system shown in Fig. 2(a). The
state invariant “x < 1” is to be interpreted as a “time-can-
progress” condition: thus as long as the value of the clock
x is less than 1, the specification recommends letting time
elapse. However whenx = 1, time elapse is no more rec-
ommended and instead the actionrel is recommended “ur-
gently”. Fig. 2(b) and (c) show annotated timed transition
systems denoting conflict-tolerant specifications that induce
the same classical specification shown in (a). These transi-
tion systems differ from the classical one in two ways. The
dashed transitions are to be read as “not-advised”, and they
enable the specification to keep track of events that occur in
violation of its advice at a given state. Secondly, in a state
the time-can-progress condition can be violated to let time
elapse against the advice of the specification. In this case
time elapses but control remains in the same state. Thus
specification (b), advisesrel urgently at all times after 1
second from the previous release, until its advice is taken.
Whenx < 1, its advice is only to let time elapse; If the
eventrel is performed against its advice, it uses the dashed
transition to keep track of this and resets its clockx. If its
advice is not followed whenx = 1, it continues to advise
thatrel be done urgently, i.e. time elapse is no more recom-
mended

The specification (c) keeps track of whether the previous

release was “on time” or not and changes its advice accord-
ingly. Thus it advisesrel 0.5 seconds after the last release
if the previous release was “late” (lightly shaded state) and
advisesrel 2 seconds after the last release if it was “early”
(darkly shaded state).

 x=1, rel, {x}

(a) (b)

(c)
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Figure 2. A classical spec (a), and conflict-
tolerant specs (b) and (c) that induce the
same classical spec (a).

A conflict-tolerant feature implementation can be viewed
as a timed transition system with transitions annotated as
advisedand not-advised, similar to the conflict-tolerant
specifications described above. A feature implementation
is now said to satisfy a conflict-tolerant specification (with
respect to a given base system), if after every possible be-
haviourw of the base system, the behaviours of the base
system that are according to the advice of the feature imple-
mentation are contained in the safety cone specified by the
specification forw. We address the natural feasibility and
verification problems in this framework and give decision
procedures to solve these problems in the setting of Alur-
Dill timed transition systems.

An important aspect of our framework is the fact that
conflict-tolerant features admit a simple and effective com-
position scheme based on a prioritization of the features be-
ing composed. The composition scheme can also be viewed
as a conflict resolution technique. The composition scheme
ensures that the resulting system always satisfies the speci-
fication of the highest priority feature. Additionally, it fol-
lows the advice of all other featuresF , exceptat points
where each action in the advice ofF conflicts with the ad-
vice of a higher priority feature. It is in this sense that each
feature ismaximallyutilized.

In summary, the contributions of this paper are:

• Formulation of the novel notion of conflict-tolerance
in the context of timed systems.



• Algorithms for (i) checking whether it is feasible to
construct a conflict-tolerant feature for a base system
and a conflict-tolerant specification, and (ii) for veri-
fying whether a conflict-tolerant feature is valid for a
base system and whether it satisfies a conflict-tolerant
specification.

• Formulation of aprioritization scheme for composi-
tion of conflict tolerant features in a way thatmaxi-
mizesthe use of each feature.

Related Work. In [11] it is argued that system verifica-
tion must be decomposed by features as every feature nat-
urally has an associated property to be verified. There are
several approaches in the literature where features are spec-
ified as state machines and a conflict (in the untimed set-
ting) is detected by checking whether a state in which the
features advise conflicting system actions, is reached [15].
The problem of conflict detection at the specification stage
is addressed in [9], where conflict between two feature spec-
ifications in temporal logic is detected automatically.

Our approach of viewing features as discrete event con-
trollers [16] follows that of [22, 3]. In both these works,
the main issue addressed is that of resuming the advice of a
controller once it has been suspended due to conflict with a
higher priority controller. In [3], specifications are designed
to anticipate conflict, by having two kinds of states,in-spec
andout-of-spec. When a controller’s specification is vio-
lated it transitions to an out-of-spec state from where it pas-
sively observes the system behaviour, till it sees a specified
event that brings it back to an in-spec state. Note that these
controllers do not offer any useful advice in the out-of-spec
states. In [14] a rule-based feature model and composition
operators for resolving conflicts based on prioritization is
presented. However, the notion of a conflict-tolerantspeci-
fication(as against the feature implementation itself) is ab-
sent in their work.

In recent work [6] we have studied the notion of conflict-
tolerance in an untimed setting, and exhibited a similar
framework. The contribution of the present paper is the for-
mulation of conflict-tolerance in the real-time setting, and
the solutions to the feasibility and verification problems.
The techniques we use are essentially along the lines of
[1, 7].

In [5], an algorithm for checking compatibility between
two components, i.e. whether they satisfy each other’s as-
sumptions with respect to timing constraints, is provided.
Our work on the other hand is more a methodology for
conflict-resolution and modular system design.

The rest of the paper is structured as follows: After pre-
liminary definitions, in Section 3 we elaborate in a timed
setting the view of features as controllers and illustrate con-
flict between features due to timing constraints. We then in-
troduce the notion of conflict-tolerance in Section 4 and ad-

dress the feasibility and verification problems in Section 5.
Finally in Section 6, we describe our composition scheme
and provide a precise formulation of the claim that the con-
trollers are maximally utilized.

2. Preliminaries

Let Σ be a finite alphabet of events and letΣ∗ denote the
set of finite words overΣ. A languageoverΣ is a subset
of Σ∗. We writew · x to denote the concatenation of two
wordsw andx.

We use timed words to model behaviours with timing
information. Timed words extend classical words with
information about the time at which events occur. Let
R≥0, R>0, Q≥0 denote the set of nonnegative reals, positive
reals and nonnegative rationals respectively. We use a delay
based representation for timed words. Afree timed word
over an alphabetΣ is a string in(Σ ∪ R>0)

∗ in which two
events fromΣ never occur contiguously. Thus a free timed
word may begin with an event or a delay and end with an
event or a delay. The time stamp of an event in a timed word
can be obtained by summing the preceding delays. For ex-
ample, the time stamp of the eventb in the free timed word
2 · a · 1 · 1 · b · 1 is 4. The concatenation of two free timed
words may not be a free timed word. For example,1a · b2
is not a free timed word.

A free timed word can be represented in acanonical
way by adding0 at the beginning and the end, and then
collapsing contiguous delays. A canonical timed word is
a string of the formd0a1d1a2d2 · · · andn, wheren ≥ 0,
d0, dn ∈ R≥0, di ∈ R>0 for 0 < i < n, andaj ∈ Σ
for 1 ≤ j ≤ n. Note that every free timed word has a
unique canonical representation. Letε denote the empty
timed word whose canonical representation is0. Let σ and
τ be canonical timed words such thatσ · τ is a free timed
word. We define the concatenation ofσ andτ , denotedσ◦τ
(or simplyστ when clear from the context), to be the canon-
ical representation of the free timed wordσ · τ . We say a
canonical timed wordσ is a prefix of the canonical timed
wordτ , writtenσ � τ if there exists a canonical timed word
σ′ such thatσ ◦ σ′ = τ . We denote the set of all canonical
timed words overΣ by TΣ∗. Henceforth, by timed words
we will mean canonical timed words.

A timed languageover Σ is a set of timed words over
Σ. A timed languageL is calledprefix-closedif whenever
τ ∈ L andσ � τ , we haveσ ∈ L. For a timed language
L ⊆ TΣ∗ and a timed wordσ, we denote byextσ(L), the
set of extensionsof σ that are inL, i.e.

extσ(L) = {τ ∈ TΣ∗ | σ ◦ τ ∈ L}.

This induces in a natural way animmediateextension func-
tion iextσ(L) which we define as follows. Let “δ” denote a



symbolic event that stands for “time elapse”. Then for any
σ ∈ TΣ∗, the “immediate” extensions inΣ ∪ {δ} is given
by:

iextσ(L) =





{c ∈ Σ | σ ◦ c ∈ L} ∪ {δ}
if ∃d > 0 such thatσ ◦ d ∈ L

{c ∈ Σ | σ ◦ c ∈ L} otherwise.

For modeling specifications and feature implementa-
tions, we use Alur-Dill timed transition system [1] equipped
with the notion of deadlines proposed in [19]. Deadlines
are constraints on transitions that are useful in modelling
urgency. They can equivalently be specified as “time-can-
progress” conditions on states, and we will follow this
model.

Let C be a finite set of clocks. Avaluationfor the clocks
in C is a mapv : C → R≥0. We denote by~0 the valua-
tion which maps all the clocks inC to the value0. For a
valuationv, by v + t (for t ∈ R≥0) we denote the valuation
which maps eachx ∈ C to v(x) + t; and byv[0/X ] (for a
subset of clocksX of C) the valuation which mapsx to 0
if x ∈ X andv(x) otherwise. A clock constraint overC is
given by the following syntax:

φ := x ∼ c | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ

wherex is a clock inC, ∼∈ {<,≤, =, >,≥} and c is a
constant inQ≥0. We writev � φ to denote that the valua-
tion v satisfies the constraintφ, with the expected meaning.
We denote the set of clock constraints overC by Φ(C).

A timed transition system(TTS) over the alphabetΣ, is
a structure of the formT = 〈Q, C, s,→, tcp〉, whereQ is
a finite set of states,C is a finite set of clocks,s ∈ Q is the
initial state,→⊆ Q × Σ × Φ(C) × 2C × Q is a finite set
of transitions, andtcp : Q → Φ(C) specifies the condition
under whichtime can progressfrom a given state. For a
transitione = (q, a, g, X, q′) ∈→, the guardg specifies
whene may be taken andX specifies the set of clocks to be
reset whene is taken.

A configurationof T is a pair(q, v) whereq ∈ Q andv is
a valuation for the clocks inC. From a given configuration
(q, v) of T , there are two kinds of transitions:

discrete (q, v)
a
→ (q′, v′) if there is a transition

(q, a, g, X, q′) ∈→ such thatv � g andv′ = v[0/X ].

delay Let d, d′ ∈ R≥0 be nonnegative time delays. Then

(q, v)
d
→ (q, v + d) if for all 0 < d′ < d, (v + d′) �

tcp(q).

A run of T on a timed wordτ = d0a1d1 · · · andn

starting from a configuration(q, v) is a finite sequence
of configurations(q0, v0)(q1, v1)(q2, v2) . . . (q2n+1, v2n+1)
where q0 = q, v0 = v and for eachi such that0 ≤

i ≤ n, (q2i, v2i)
di→ (q2i+1, v2i+1) and (q2i−1, v2i−1)

ai→

(q2i, v2i). The timed language ofT , denotedL(T ), is the
set of all timed words on whichT has a run starting from
the initial configuration(s,~0). Similarly, we denote by
L(q,v)(T ) the language of timed words on whichT has a
run starting from the configuration(q, v).

We say a TTST is deterministic if there is at most
one run ofT on any timed wordτ ∈ TΣ∗. A suffi-
cient condition forT to be deterministic is that for every
pair of distinct transitions of the form(q, a, g1, X1, q

′) and
(q, a, g2, X2, q

′′), the constraintg1 ∧ g2 is not satisfiable.
A TTS T is completeif there is at least one run ofT on
any timed wordτ ∈ TΣ∗. A sufficient condition forT
to be complete is that for everyq ∈ Q and everya ∈ Σ,∨

(q,a,gi,Xi,qi)∈→ gi is valid andtcp(q) is valid. For a deter-
ministic and complete TTST , there is a unique run ofT on
a given timed wordσ. Let (q, v) be the unique configuration
reached byT onσ. Then we defineLσ(T ) = L(q,v)(T ).

Let T1 = 〈Q1, C1, s1,→1, tcp1〉 and T2 =
〈Q2, C2, s2,→2, tcp2〉 be two timed transition systems
over the same alphabetΣ. We assume that the clocks
C1 and C2 are disjoint. Then thesynchronized prod-
uct of T1 and T2, denoted T1‖T2, is given by the
TTS 〈Q1 × Q2, C1 ∪ C2, (s1, s2),→, tcp〉 where→ and
tcp are defined as: (i)((p, q), g, a, X, (p′, q′)) ∈→ if
(p, g1, a, X1, p

′) ∈→1 and (q, g2, a, X2, q
′) ∈→2, g =

g1 ∧ g2, and X = X1 ∪ X2; and (ii) tcp((p, q)) =
tcp1(p) ∧ tcp2(q). We note that the synchronized prod-
uct as defined above generates the intersection of the timed
languages ofT1 andT2.

3. Features as Controllers

In this section we elaborate in a timed setting, the view of
features as modular discrete event controllers [16], as pro-
posed in [3, 22].

A safety specificationover an alphabetΣ is a prefix-
closed timed language overΣ, denoting the set of timed
behaviours which are considered “safe” with respect to a
certain aspect of safety. A safety specification can also be
viewed as an “advice function” as defined below. This view
will be useful when we introduce the notion of conflict tol-
erance in Section 4.

Definition 1 (Advice Function). An advice function overΣ
is a functionf : TΣ∗ → 2TΣ∗

which satisfies the following
conditions:

• f(ε) is a prefix-closed timed language.

• f is consistent in the sense that for allσ ∈ f(ε) and
all τ ∈ f(σ), we havef(στ) = extτ (f(σ)).

Note that for allσ ∈ f(ε), f(σ) is a prefix-closed timed
language. A safety specificationL overΣ induces an advice



function fL given byfL(σ) = extσ(L). Conversely, an
advice functionf induces a safety languageLf given by
Lf = f(ε). An advice functionf induces in a natural way
an immediateadvice functionf i : TΣ∗ → 2Σ∪{δ} given
by

f i(σ) = iextσ(f(ε)).

We say a timed wordτ is according toan immedi-
ate advice functionf i if for each prefixσ of τ , we have
iextσ({τ}) ⊆ f i(σ). Similarly, we sayτ is according to
an advice functionf if τ is according to the induced imme-
diate advice functionf i. A deterministic timed transition
systemT overΣ induces an advice functionfT given by
fT (τ) = Lτ (T ) if τ ∈ L(T ), and∅ otherwise. We say a
safety specificationL overΣ is (timed)regular if it is given
by a deterministic timed transition systemT overΣ.

We now define the notion of a base system. LetΣ be an
alphabet which is partitioned into “environment events”Σe

and “system events”Σs.

Definition 2 (Base System). A base system (or plant) over
Σ is a deterministic timed transition systemB overΣ, which
we assume to benon-blockingin that wheneverσ ∈ L(B),
theniextσ(L(B)) 6= ∅. Further, for all statesq, we assume
that tcp(q) = true, i.e. B does not impose any constraints
on progress of time in any of its states.

Let B be a base system overΣ which is partitioned into
environment eventsΣe and system eventsΣs.

Definition 3 (Controller). A controller (or feature imple-
mentation) forB is a deterministic timed transition system
C overΣ. The controllerC is validB if

• C is non-restricting: If σ ∈ L(B‖C) andσe ∈ L(B)
for some environment evente ∈ Σe, thenσe ∈ L(C).
Thus the controller must not restrict any environment
evente enabled in the base system after any controlled
behaviourσ.

• C is non-blocking: If σ ∈ L(B‖C), then
extσ(L(B‖C)) 6= ∅. Thus the controller must not block
the base system after any controlled behaviorσ.

We carry over the notions of advice functionfC and cor-
responding immediate advice functionf i

C for a controllerC.
LetB be a base system andL a safety specification overΣ.
We say a controllerC for B satisfiesL if L(B‖C) ⊆ L.

As a running example, we consider an electronic control
unit (ECU) that controls the motors for locking and unlock-
ing the doors of a car. The transition system for the motor
(the base system) is shown in Fig. 3. We denote the envi-
ronment events in italics and system events in bold. The set
Σe compriseslock req , unlock req andcrash , while Σs is
{lock,unlock}. We use the convention that self-loops on
states are labeled with all events inΣ, excluding those on

which there is an outgoing transition from the state, as well
as those eventsa for which the self-loop has a label∼ a.
Thus, the state labeledU has an edge to itself on all events
exceptlock andunlock. The initial state is shown by an
incoming arrow. To avoid clutter, we do not show guards or
tcp when they are true, and resets when they are empty.

lock

unlock

U L

~unlock ~lock

Figure 3. Motor Base System B.

The environment eventslock req or unlock req occur
respectively, when the lock or unlock button on a remote
key is pressed. The environment eventcrash occurs when a
car crash is sensed. The system eventlock occurs when the
door is locked and the system eventunlock occurs when
the door is unlocked.

The base system is typically run with several controllers
including a “vanilla” controller which locks or unlocks the
doors in response to passenger requests. Consider a feature
calledcrash safety[4] which requires that if the doors are
locked and a crash occurs, then the doors must be unlocked
within 15 seconds. Fig. 4 shows a possible specification
SCS for this requirement. If the doors are locked and a
crash occurs, then the clockz is reset and we are in the
state labeledC. The delay advised in this state is at most15
seconds as specified by the time can progress condition.

lock

unlock

crash
  {z}

      z <= 15
       unlock

C z < 15

Figure 4. Crash Safety Spec SCS .

Fig. 5 shows a possible controller implementationCCS

for the specificationSCS . This controller advises the base
system to unlock the doors within10 seconds after a car
crash. In general, controllers may constrain the base system
further than the specification based on other implementation
considerations.

Now consider another feature calledoverheat protec-
tion [4]. This feature is required as it is found that excessive
locking and unlocking of the doors within a short time (say,
when children play with a remote key) could cause the mo-
tor to burn due to overheating. To prevent such a scenario, it



lock

unlock

crash
  {z}

    z <= 10
    unlock

C z < 10

Figure 5. Crash Safety Controller CCS .

is recommended thatunlock must be disabled for at least
180 seconds if there are3 successivelock operations during
a 30 second interval. Note that the designer of this feature
may not be aware of the details of the crash safety feature.
Figure 6 shows a possible specificationSOHP for this fea-
ture. The state labeledXD or Y D is reached after a third
successive lock during a30 second interval. Thenunlock

is advised only after180 seconds. We take the controller
COHP for this feature to be the same as the specification
SOHP . It is easy to see that each of the controllersCCS

andCOHP are valid with respect to the base systemB and
satisfy their respective specifications.

lock
 {x}

unlock lock
 {y}

unlock

x <= 30
  lock
   {x}

x >= 180
  unlock

 x > 30
  lock
   {x}

unlock

y >= 180
  unlock

y <= 30
  lock
   {y}

 y > 30
  lock
   {y}

unlock

XD YD

Figure 6. Overheat Protection Spec SOHP .

We now illustrate the notion of conflict between con-
trollers.

Definition 4 (Conflict). Let C1 andC2 be valid controllers
for a base systemB. The controllersC1 and C2 are in
conflict with respect toB, if there exists a behaviourτ
in L(B‖C1‖C2) such thatextτ (L(B‖C1‖C2)) is empty. In
other words, there exists a behaviourτ ∈ L(B) which is ac-
cording to bothC1 andC2, butf i

B(τ)∩f i
C1

(τ)∩f i
C2

(τ) = ∅.

ThusC1 andC2 are in conflict with respect toB if C1‖C2

is blocking with respect toB. Consider the behaviour from
the initial state ofB

0 lr 1 ls 1 ur 1 us 1 lr 1 ls 1 ur 1 us 1 lr 1 ls 5 c 10

where lr , ur , c denote the environment events
lock req , unlock req , crash and ls,us the system events
lock,unlock respectively. Here, the third lock operation
has occured at9 seconds, a crash5 seconds later, and
then10 seconds have elapsed. The base systemB allows
unlock or delay. The controlled system is blocked as the
advice ofCCS is {unlock} and the advice ofCOHP (in
the stateXD as a third lock operation has occurred in a 30
second interval) is{δ}, i.e. CCS does not advise any more
delay beforeunlock whereasCOHP advises further delay.

4. Conflict-Tolerant Controllers

In this section we introduce our notion of conflict-
tolerance. Analogous to the notion of a specification as an
advice function given in Section 3, aconflict-tolerantsafety
specification over an alphabetΣ is aconflict-tolerantadvice
function as defined below:

Definition 5 (Conflict-Tolerant Advice Function). A
conflict-tolerant advice function over an alphabetΣ is a
functionf : TΣ∗ → 2TΣ∗

which satisfies the following
conditions:

• for everytimed wordσ ∈ TΣ∗, f(σ) is a prefix-closed
language.

• f is consistent in the sense that forall σ ∈ TΣ∗ with
τ ∈ f(σ), we havef(στ) = extτ (f(σ)).

A conflict-toleranttimed transition system overΣ is a
tuple T ′ = (T , N, tcp) whereT is a deterministic TTS
overΣ whose timed-can-progress condition for each state
is true, N ⊆→ is a subset of transitions designated asnot-
advised, andtcp is a time-can-progress condition for states
in T . Let (q, v) be a configuration of the TTST . Then
the unconstrainedlanguage generated byT ′ starting from
(q, v), denotedL(q,v)(T

′), is defined to beL(q,v)(T ). The
constrainedlanguage generated byT ′ starting from(q, v)

is denotedLc
(q,v)(T

′), and defined to beL(q,v)(T̃ ), where

T̃ is the transition system obtained fromT by deleting all
not-advised transitions (i.e. transitions inN ) and adding the
time-can-progress conditions given bytcp. Letσ be a timed
word in L(T ). Then there is a unique configuration(q, v)
reached byT onσ. Then, byLc

σ(T ′) we meanLc
(q,v)(T

′).
We sayT ′ is completewrt a timed languageL ⊆ TΣ∗ if
L ⊆ Lε(T

′).
A complete conflict-tolerant TTST ′ induces a natural

conflict-tolerant advice functionfT ′ given by fT ′(σ) =
Lc

σ(T ′). We say a conflict-tolerant advice function istimed
regular if it is given by a conflict-tolerant TTS overΣ.

We define the synchronized product of a timed transition
systemT1 and a conflict-tolerant TTST ′

2 = (T2, N2, tcp2)
to be the conflict-tolerant TTS(T1‖T2, N

′
2, tcp

′
2), where the



unadvised transition setN ′
2 andtcp′

2 are inherited fromN2

andtcp2 respectively.
Let B be a base system over the partitioned alphabetΣ.

Definition 6 (Conflict-Tolerant Controller). A conflict-
tolerant controllerC′ for B is a conflict-tolerant TTS over
Σ that is complete with respect toL(B). The controllerC′

is valid wrt B if

• C′ is non-restricting: If σe ∈ L(B) for some environ-
ment evente ∈ Σe, thenσe ∈ Lc

σ(C′) (or equivalently
e ∈ f i

C′(σ)). Thus the controller must not restrict any
environment evente enabled in the base system after
anybase system behaviourσ.

• C′ is non-blocking: If σ ∈ L(B), thenLc
σ(B‖C′) 6= ∅

(equivalentlyf i
C′(σ)∩f i

B(σ) 6= ∅). Thus the controller
must not block the base system afterany base system
behaviourσ.

Thus a conflict-tolerant controllerC′ must observe and
advise how to extend each behaviourσ of the base system.
Note that such a behaviourσ may not be according to the
advice ofC′, in thatσ 6∈ Lc

ε(C
′). In contrast, a classical con-

troller C (see Definition 3) assumes that its advice is always
followed by the base system, and advises extensions of only
controlled behaviours (i.e. those inLε(B‖C)).

Definition 7 (C′ satisfiesf ). Let f be a conflict-tolerant
specification overΣ. A conflict-tolerant controllerC′ for B
satisfiesf if for eachσ ∈ L(B), Lc

σ(B‖C′) ⊆ f(σ). Thus
after any base system behaviourσ, if the base system fol-
lows the advice ofC′, then the resulting behaviour conforms
to the safety languagef(σ).

We now illustrate these definitions with our running ex-
ample. Fig. 7 shows a possible conflict-tolerant specifica-
tionS′

CS
for the crash safety feature. Note that the classical

specification for crash safety shown in Fig. 4 required the
doors to be unlocked within15 seconds after a car crash and
did not specify what needs to be done ifz > 15 (this could
be the case if a feature with priority greater than crash safety
requires more delay before the doors can be unlocked). In
contrast,S′

CS
specifies that the doors must be unlocked as

soon as possible whenz ≥ 15, i.e. δ is not advised from the
stateC whenz ≥ 15. A conflict-tolerant controller that sat-
isfies this specification must meet the obligation that delay
is not advised if15 or more seconds have elapsed after the
car crashed and the doors have not yet been opened.

Fig. 8 shows a possible conflict-tolerant specification
S′

OHP
for the overheat protection feature. The not-advised

transitions are shown using dashed transitions. In this spec-
ification, even if the doors are unlocked before180 seconds
in one of the states XD or YD, the specification still looks
for a lock operation that may correspond to a “bad” lock
(i.e. a third consecutive lock in a 30 second interval), and

lock

unlock

crash
  {z}

unlock

C z < 15

Figure 7. Conflict-Tolerant Crash Safety
Specification S′

CS
.

advises a 180 second break before the next unlock. We note
that the induced classical specification is the same asSCS

in Fig. 6.

lock
 {x}

unlock lock
 {y}

unlock

x <= 30
  lock
   {x}

x >= 180
  unlock

 x > 30
  lock
   {x}

unlock

y >= 180
  unlock

y <= 30
  lock
   {y}

 y > 30
  lock
   {y}

unlock

  x < 180
  unlock

  y < 180
  unlock

XD YD

Figure 8. Conflict-Tolerant Overheat Protec-
tion Specification S′

OHP
.

As example valid CT controllers forB which satisfyS′
CS

andS′
OHP

, we can take the specificationsS′
CS

andS′
OHP

themselves, respectively. In general however, a conflict-
tolerant controller may be quite different from the speci-
fication. This is because the specification captures only one
aspect of safety, while there may be other functional, perfor-
mance, and resource related requirements on the controller.
Thus, it makes sense to consider the natural feasibility and
verification problems in this setting, which we do in the next
section.

5. Verification

In this section we address the natural problems of feasi-
bility and verification in the conflict-tolerant framework.

Let Σ be an alphabet, partitioned intoΣe andΣs. For
a TTST overΣ, a stateq ∈ Q, and an eventa ∈ Σ, we
denote bycondT (q, a), the condition under whicha is en-
abled inq, i.e. condT (q, a) =

∨
(q,g,a,X,q′)∈→ g, where→



is the transition relation ofT . For a conflict-tolerant TTS
T ′, condT ′(q, a) gives the condition under whicha is ad-
vised fromq, i.e. condT ′(q, a) =

∨
(q,g,a,X,q′)∈→\N g.

Theorem 1 (Feasibility). Given a base systemB over Σ,
and a regular conflict-tolerant specificationS′ overΣ, we
can check ifS′ is feasiblewith respect toB in that there
exists a valid conflict-tolerant controller forB that satisfies
S′.

Proof. We claim that there exists a valid controller forB
satisfyingS′ iff in the synchronized productB‖S′, there
does not exist a configuration((b, q), v) which is reach-
able from the initial configuration((sB, sS′),~0), and sat-
isfies one of the following conditions:

1. (((b, q), v) is “restricting”) there is an environment
evente ∈ Σe allowed byB, but not advised byS′,
i.e. there existse ∈ Σe such thatv � condB(b, e) and
v 2 condS′(q, e).

2. (((b, q), v) is “blocking”) there is no discrete or delay
step that is both enabled inB and advised byS′, i.e.
v 2 tcp(q), and for eacha ∈ Σ, v 2 (condB(b, a) ∧
condS′(q, a)). Recall the assumption thatB is non-
blocking.

If such a configuration((b, q), v) exists, then clearly a con-
troller cannot be valid forB and satisfyS′ at the same time.
Conversely, if no such((b, q), v) exists, thenS′ itself is a
valid controller forB that satisfiesS′.

The condition above can easily be checked in linear time
using the region automaton [1] forB‖S′. The size of the
region automaton is exponential in the number of clocks
and the maximal constants in the guards.

Theorem 2 (Verification). Given a base systemB overΣ,
a regular conflict-tolerant specificationS′, and a conflict-
tolerant controllerC′, we can check whetherC′ is a valid
conflict-tolerant controller forB satisfyingS′.

Proof. It is easy to see that a necessary and sufficient con-
dition for C′ to be a valid controller forB and satisfying
S′, is to check that in the synchronized productB‖C′‖S′,
there doesnot exist a configuration((b, p, q), v) which is
reachable from the initial configuration((sB, sC′ , sS′),~0),
and satisfies one of the following conditions:

1. (C′ is restricting) there is an environment evente ∈ Σe

allowed byB, but not advised byC′, i.e. there ex-
ists e ∈ Σe such thatv � condB(b, e) and v 2

condC′(p, e).

2. (C′ is blocking) there is no discrete or delay step that
is enabled byB and advised byC′, i.e. v 2 tcp(p) and
v 2 (

∨
a∈Σ condB(b, a) ∧ condC′(p, a)).

3. (C′ does not satisfyS′) there is a discrete or delay step
that is both enabled byB and advised byC′, but not
advised byS′. That is, either for somea ∈ Σ, v �

condB(b, a) ∧ condC′(q, a) but v 2 condS′(q, a), or
v � tcpC′(p) andv 2 tcpS′(q).

Once again this condition can be checked in linear time us-
ing the region automaton for the synchronised product ofB,
C′ andS′.

6. Composition

We now give a way of composing conflict-tolerant con-
trollers based on a prioritization of the controllers. The
composition guarantees that the advice of each controller
is used in the “best possible” way.

Let B = 〈B, C0, s0,→B〉, be a base system over
Σ, and let C′

1 = 〈Q1, C1, s1,→1, N1, tcp1〉 and C′
2 =

〈Q2, C2, s2,→2, N2, tcp2〉 be valid conflict-tolerant con-
trollers for B. We assume that the set of clocksC0, C1

andC2 are disjoint. LetP be a priority ordering between
C′
1 andC′

2, and sayP assigns a higher priority toC′
1. We

denote this byC′
1 >P C′

2.
For a ∈ Σ, and p ∈ Q, q1 ∈ Q1, and q2 ∈ Q2,

let ga
11(p, q1, q2) stand for the disjunction of constraints

of the form g ∧ g1 ∧ g2 such that there exist transitions
t = (p, a, g, X, p′), t1 = (q1, a, g1, X1, q

′
1) and t2 =

(q2, a, g1, X1, q
′
2) in B, C′

1 andC′
2 respectively, witht1 6∈

N1 andt2 6∈ N2. Let g11(p, q1, q2) stand for the constraint∨
a∈Σ ga

11(p, q1, q2). Also, let tcp11(p, q1, q2) denote the
constrainttcp1(q1) ∧ tcp2(q2). Then:

Definition 8 (Prioritized Composition of Controllers). The
P -prioritized compositionof the controllersC′

1 andC′
2, with

respect to the base systemB, is denoted‖P,B(C′
1, C

′
2), and

defined to be the timed transition systemC = 〈B × Q1 ×
Q2, C0 ∪ C1 ∪ C2, (s0, s1, s2),⇒, tcp〉, where⇒ and tcp

are defined as follows. Leta ∈ Σ, andt = (p, a, g, X, p′),
t1 = (q1, a, g1, X1, q

′
1) andt2 = (q2, a, g1, X1, q

′
2) be tran-

sitions inB, C′
1 andC′

2 respectively. Then we have transi-
tions inC according to the following rules:

1. If t1 6∈ N1 andt2 6∈ N2 (that is they are both advised
transtions) then add the transition

((p, q1, q2), a, g ∧ g1 ∧ g2, X ∪X1 ∪X2, (p
′, q′1, q

′
2)).

2. If t1 6∈ N1 andt2 ∈ N2 (that ist1 is advised butt2 is
not) then add the transition

((p, q1, q2), a, g′′, X ∪ X1 ∪ X2, (p
′, q′1, q

′
2)

where g′′ = g ∧ g1 ∧ g2 ∧ ¬g11(p, q1, q2) ∧
¬tcp11(p, q1, q2).



The time-can-progress conditiontcp is given by
tcp(p, q1, q2) = tcp11(p, q1, q2) ∨ tcp10(p, q1, q2), where
tcp10(p, q1, q2) = tcp1(q1) ∧ ¬tcp2(q2) ∧ ¬g11(p, q1, q2).

Lemma 1. The controllerC = ‖P,B(C′
1, C

′
2) defined above

is a valid classical controller forB. The immediate advice
functionf i

C it induces is given as follows. For eachτ ∈
L(B):

f i
C(τ) =





f i
B(τ) ∩ f i

C′

1

(τ) ∩ f i
C′

2

(τ)

if f i
B(τ) ∩ f i

C′

1

(τ) ∩ f i
C′

2

(τ) 6= ∅

f i
B(τ) ∩ f i

C′

1

(τ) otherwise.

We can now generalize this prioritized composition to
any number of controllers. LetC′

1, . . . , C
′
n be valid conflict-

tolerant controllers for the base systemB, with eachC′
i =

〈Qi, Ci, si,→i, Ni, tcpi〉. Let P be a priority ordering
that induces a total ordering>P on the controllers, say
C′
1 >P · · · >P C′

n. For a ∈ Σ, andp ∈ Q, andqi ∈ Qi

we extend the earlier definitions ofga
11, g11, andtcp11 in

the expected way toga
1n(p, q1, . . . , qn), g1n(p, q1, . . . , qn),

and tcp1n(p, q1, . . . , qn). Then the transitions inC =
‖P,B(C′

1, . . . , C
′
n) are defined inductively (on decreasing

values ofn-length bit stringsu) as follows: Leta ∈ Σ,
and t = (p, a, g, X, p′), ti = (qi, a, gi, Xi, q

′
i) be transi-

tions in B, and eachC′
i respectively. By therank of the

transitionst1, . . . , tn we mean then-length bitstringu such
that u(i) = 1 iff ti 6∈ Ni. Then we have transitions inC
according to the following rules:

1. If the rank oft1, . . . , tn is 1n (that is they are all ad-
vised transtions) then add the transition

((p, q1, . . . , q2), a, g′′, X∪X1∪· · ·∪Xn, (p′, q′1, . . . , q
′
n))

whereg′′ = g ∧ g1 ∧ · · · ∧ gn.

2. If rank of t1, . . . , tn is u with 1n > u ≥ 10n−1, then
add

((p, q1, . . . , qn), a, g′′, X∪X1∪· · ·∪Xn, (p′, q′1, . . . , q
′
n))

where g′′ = g ∧ g1 ∧ · · · ∧
gn ∧ ¬

∨
u′>u gu′(p, q1, . . . , qn) ∧

¬
∨

u′>u tcpu(p, q1, . . . , qn).

The time-can-progress conditiontcp is given by
tcp(p, q1, . . . , qn) =

∨
u tcpu(p, q1, . . . , qn) (for

u ≥ 10n−1), where tcp1n is defined as above, and
inductively tcpu(p, q1, . . . , qn) =

∧
i:u(i)=1 tcpi(qi) ∧∧

i:u(i)=0 ¬tcpi(qi) ∧ ¬
∨

u′>u gu′(p, q1, . . . , qn).
Before giving the “correctness” condition satisfied by

our composition scheme, we state a useful observation
which says that the set of points along a timed word which
are according to a regular advice function, is finitely vary-
ing. It will be convenient to talk of “intervals” of prefixes

in a given timed wordσ. Thus, for example, for prefixesτ
andτ ′ of σ such thatτ � τ ′, the interval(τ, τ ′] denotes the
set of prefixes{α � σ | τ ≺ α � τ ′}. We say that intervals
I andJ of σ areadjacentif I ∩ J = ∅ andI ∪ J forms an
interval ofσ.

Lemma 2. Let C′ be a conflict-tolerant controller overΣ,
and letσ ∈ TΣ∗. Thenσ can be covered by a sequence
of adjacent nonempty intervalsI0, I1, . . . , Ik (k ≥ 0) such
thatσ is alternately according tof i

C′ in eachIi. More pre-
cisely, either in each even interval (of the formI2i) σ is ac-
cording tof i

C′ , and in each odd interval (of the formI2i+1)
σ is neveraccording tof i

C′ ; or in each odd intervalσ is
according tof i

C′ , and in each even intervalσ is neverac-
cording tof i

C′ .

Proof. It is sufficient to observer that in the unique run of
C′ on σ, the prefixes corresponding to action points are ei-
ther according to the advice ofC′ or not, and for the periods
of time elapse, the run remains in a single state throught
this period. Each such period can be partitioned into a fi-
nite number of periods which lie alternately inside thetcp

condition for the state or outside.

Let S′
1, . . . ,S

′
n be conflict-tolerant specifications. Sup-

pose that eachC′
j individually satisfies the specificationS′

j

w.r.t. B. By the nature of our composition construction it is
not difficult to see that:

Theorem 3. The timed transition systemC =
‖P,B(C′

1, . . . , C
′
n) is a valid controller for B. Further-

more, C satisfies each of the specificationsS′
1, . . . ,S

′
n in

the following “maximal” sense. For everyσ ∈ L(B‖C):

1. σ ∈ Lc
ε(S

′
1).

2. LetI0, I1, . . . Ik be the sequence of adjacent intervals
induced byfC′

j
on σ as given by Lemma 2. Then

throughout the even intervals (WLOG)σ is accord-
ing to the advice ofC′

j , and throughout the odd inter-
valsσ is conflict with the higher priority controllers, in
that for each prefixτ of σ in these intervals, for each
c ∈ f i

C′

j
(τ), there is a controllerC′

k such thatC′
k >P C′

j

andc /∈ f i
B(τ) ∩ f i

C′

k

(τ).

Consider the base system behaviour which we used to il-
lustrate conflict in Section 3. The controller for crash safety
advises that the doors must be unlocked without any delay
whereas the controller for overheat protection advises fur-
ther delay before unlocking the doors. With the priority or-
derC′

OHP
< C′

CS
, the conflict is resolved such that one pos-

sible extension (starting fromcrash) is ce 15 us 3 le 1 ls,
i.e. the doors are unlocked ignoring the advice ofC′

OHP
.

Later, the doors are locked again (perhaps, this was a mi-
nor crash). Note thatC′

OHP
is in the state labeledYD as

this is a third successive lock during a30 second interval.



The advice ofC′
OHP

can now be followed if there is no fur-
ther conflict. We emphasise that the same controllers can
be composed with the priorityC′

CS
< C′

OHP
to obtain a

system in which conflicts are resolved in favour ofC′
OHP

,
while maximally utilizing the advice ofC′

CS
.

7. Implementation

For verifying conflict-tolerant controllers, we use the
infinite state, bounded model checker [2, 21] from the
SAL [17] tool suite. We first translate the timed transition
systems to SAL modules. An explicit environment module
E is synchronously composed with the other modules. This
module (i) nondeterministically chooses a discrete or a de-
lay event that is enabled by all the other modules, and (ii)
alternates between a discrete and a delay transition [8]. The
synchronous composition ensures that time progresses by
the same amount in all the modules.

We translate the given transitions systems for base
systemB, conflict-tolerant specificationS′, and conflict-
tolerant controllerC′ to SAL modules. We then generate a
formula corresponding to each of the following conditions
(see Theorem 2 in Section 5).

1. (C′ is non-restricting) Let((b, p), v) be the configu-
ration reached after generatingτ ∈ L(B‖C′). Then
∀e ∈ Σe v � condB(b, e) ⇒ v � condC′(p, e) must
hold.

2. (C′ is non-blocking) Let((b, p), v) be the configura-
tion reached after generatingτ ∈ L(B‖C′). Then
v � tcp((b, p)) ∨ (

∨
a∈Σ condB‖C′ (b, p)) must hold.

3. (C′ satisfiesS′) For every transition((b, p, q), v) →
((b′, p′, q′), v′) of the composed systemB‖C′‖S′, the
auxiliary boolean variables advised is set to true iff
q → q′ is advised byS′ and the auxiliary boolean vari-
ablec advised is set to true iffp → p′ is advised by
C′. ThenAlways(c advised ⇒ s advised ) must hold.

The safety properties generated above are either proved us-
ing k-induction [18] or a counterexample is obtained.

8. Conclusion

We note that conflict-tolerant specifications are some-
what stronger than classical specifications, and may not al-
ways admit a conflict-tolerant controller even when the in-
duced classical specifications admits a classical controller.
Nonetheless, whenever the conflict-tolerant controllers can
be constructed, our framework provides a flexible way of
composing the controllers to obtain systems with guaran-
tees on the usage of each controller. Our framework is also
amenable to more flexible priority schemes like according
priority dynamically based on history of events.
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