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Abstract. Various logical formalisms with the freeze quantifier have been recently con-
sidered to model computer systems even though this is a powerful mechanism that often
leads to undecidability. In this paper, we study a linear-time temporal logic with past-
time operators such that the freeze operator is only used to express that some value
from an infinite set is repeated in the future or in the past. Such a restriction has been
inspired by a recent work on spatio-temporal logics. We show decidability of finitary
and infinitary satisfiability by reduction into the verification of temporal properties in
Petri nets. This is a surprising result since the logic is closed under negation, contains
future-time and past-time temporal operators and can express the nonce property and
its negation. These ingredients are known to lead to undecidability with a more liberal
use of the freeze quantifier. The paper contains also insights about the relationships
between temporal logics with the freeze operator and counter automata.

1 Introduction

Temporal logic with freeze. In logical languages, the freeze mechanism allows
to store a value in a register and to test later the value in the register with
a current value. This operator is useful to compare values at distinct states
of Kripke-like structures. The freeze quantifier has found applications in real-
time logics [Hen90], in hybrid logics [Gor96,ABMO01], in modal logics with pred-
icate A-abstraction [Fit02] and for the specification of computations of systems
with unboundedly many locations as resources [LP05]. Although it is known
that the freeze operator can lead to undecidability (even with only equality on
data [LP05,DLNO7]), many decidable temporal logics have a freeze mechanism,
sometimes implicitly, see e.g. [AH94,LMS02,KV06]. Recent developments have
shown the ubiquity of the freeze operator [LP05,tCF05,DLN07,Laz06,Seg06] and
its high expressive power as witnessed by the X[-completeness results shown
in [DLNO7].

The need to design decidable fragments of simple linear-time temporal logic
LTL with the freeze quantifier stems from [DLN07,Laz06] and most known de-
cidable fragments in [DLN07,Laz06] does not allow unrestricted use of negation.
Still, finitary and infinitary satisfiability for Boolean combinations of safety for-
mulae (with a unique register) is decidable [Laz06]. Potential applications range
from the verification of infinite-state systems [Hen90,DLNO07| to querying XML
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documents or more modestly data strings [BMS*06,Seg06]. In the paper, we
are interested in studying fragments of LTL with the freeze operator that are
decidable in the finitary and infinitary cases, that allow unrestricted use of nega-
tion (by contrast to the flat fragments in [DLNO07]) and that allow all standard
past-time operators (by constrast to what is done in [BMS*06,DL06]). These
are strong requirements. Even in terms of expressive power, the fragment newly
shown decidable in the paper can express the “nonce property” and its negation
(all the values of a variable are different at every position). Moreover, in [WZ00,
Sect. 7], the authors advocate the need to consider infinitary disjunction of the
form \/, 7 = X'y where X'y refers to the value of y at the i*® next position.
This states that a future value of y is equal to the current value of x. Our frag-
ment can express this property, with the formula =z = {y, as well as the dual
one: \,.oz = X'y can be expressed by the formula —(z # Qy). In the paper
we introduce the constraint logic CLTL(N, =) with atomic formulae z = Oy
and past-time operators X1 and S. This logic is denoted by CLTL®. Hence, in
CLTL?, the freeze quantifier is only used to specify that some values are repeated.
Even though CLTL® does not enjoy first-order completeness, see e.g. [Rab06], it
satisfies interesting computational properties as shown below.

Our contribution. We show that finitary and infinitary satisfiability for CLTL®
with temporal operators {X, X~ S, U} is decidable. We provide a uniform proof
for the finite and infinite cases based on some substantial extension of the
automaton-based approach for (constraint) LTL from [VW94,DD07]. The pos-
sibility to compare two values at unbounded distance requires a special class
of counter automata for which finitary and infinitary nonemptiness is shown
decidable. To do so, we take advantage of a deep result from [Jan90] establish-
ing that verifying fairness properties based on the temporal operator GF (“al-
ways eventually”) in Petri nets is decidable. By contrast model-checking for full
LTL over Petri nets is undecidable [HR89] (see also [Esp94] with linear-time
mu-calculi). Observe that infinitary CLTL® is the first decidable fragment of
CLTL}(N, =) [DLN07] with an unrestricted use of negation and that contains all
the temporal operators from {X, X~!,S U}. A nice by-product of our technique is
that the extensions with temporal operators definable in Monadic Second Order
Logic (MSOL) or with z = ¢~y (“a value of y in the past is equal to the cur-
rent value of ) are also decidable. Finally, we show that finitary and infinitary
satisfiability for CLTL? restricted to one variable is PSPACE-complete.

Structure of the paper. In Section 2, we introduce the temporal logic with re-
peating values, we state a few results about its expressive power and its known
decidable fragments. Section 3 presents the automata-based approach with sym-
bolic models in order to solve the satisfiability problem. The characterization of
satisfiable symbolic models is provided in Section 4. Section 5 presents how satis-
fiable symbolic models can be recognized by a specific class of counter automata
for which nonemptiness is decidable, whence the decidability of the temporal
logic with repeating values. PSPACE-completeness is established in presence of a



unique variable as well as the extension of decidability with repeating constraints
for past values. Concluding remarks and open problems are given in Section 6.

2 Preliminaries

2.1 Temporal Logic with Repeating Values

Let VAR = {x1, 29, ...} be a countably infinite set of variables. The formulae of
the logic CLTLC are defined as follows:

pu=z=Xylz=0y|oNd| 0| Xo|dUs|X 1| ¢S¢

where 2,y € VAR and i € N. Formulae of the form either z = X'y or z = Qy
are said to be atomic and an expression of the form X’z (i next symbols followed
by a variable) is called a term. Given a set of temporal operators definable from
those in {X,X~,S,U} and k > 0, we write CLTLY(O) to denote the fragment of
CLTLY restricted to formulae with temporal operators from @ and with at most
k variables.

A valuation is a map VAR — N and a model ¢ is a non-empty sequence of
valuations either finite or infinite. All the subsequent developments can be equiv-
alently done with the domain N replaced by an infinite set D since only equality
tests are performed. We write |o| to denote the length of o. The satisfaction
relation is defined inductively as follows where o is a model and 0 < i < |o| — 1:

—oiEr=Xyiff i+j <|o|—1and o(i)(x) = (i + j)(y),

— 0,1 = o = Qy iff there exists j > 0s.t. i+j < |o|—1and o(i)(z) = o(i+J)(y),

—oilEoNd iffoiE¢and oyi =@, 0,0 ¢ iff 0,i £ ¢,

—oiEXeiffi+1< o]~ land o,i+1}= ¢,

— o i EXiffi>0and o,i— 1 6,

— 0,1 | ¢U¢' iff there is i < j < |o] — 1 s.t. 0,7 | ¢ and for every i <[ <
jv O-vljng'

— 0,1 | ¢S¢ iff thereis 0 < j <ist.o0,j = ¢ and for j <[l <i, ol F ¢.

We write 0 = ¢ if 0,0 = ¢. We shall use the standard abbreviations about
the temporal operators (G, F, F~!, ...) and Boolean operators (V, =, ...). We
use the notation X'z = X’y as an abbreviation for X'(x = X7~y (when i < 7).

The finitary [resp. infinitary/ satisfiability problem consists in checking whe-
ther given a formula ¢, there is a finite [resp. infinite] model such that o = ¢.
It is known that finitary satisfiability for LTL can be easily reduced in logspace
to infinitary satisfiability by introducing for instance an additional propositional
variable p and by requiring that pUG—p holds true. In that way, p holds true
at every state of a prefix and p does not hold on the complement suffix. The
same principle does not apply to reduce finitary satisfiability for CLTL? to in-
finitary satisfiability even by introducing additional variables in order to simulate
a propositional variable. This is due to the additional atomic formulae of the form
x = Qy. That is why we distinguish the two problems in this paper.



We note that a constraint of the form z diff Oy (“the value of z differs from
some future value of y”) can be expressed in CLTLY:

v diff Oy < (=(z = Xy) AXT)V ((z = Xy) AX(y = Xy)U((y # Xy) AXT))) (1)

With infinite models, the conjunct XT can be deleted. We could also introduce
constraints of the form x = X~%y but this can be expressed in the language using
the equivalence z = X~y < X~*T AX~¥(y = X'z). Similarly, CLTL® can express
whether a variable is a nonce by the formula G—(z = Qz). The formula below
states a valid property when x and y are nonces:

(Go(z = 02) AG(y = 0y)) = G(z =y = ~(z = 0y)).

Other properties witnessing the high expressive power of CLTL? can be found
in [LP05, Sect.3] about systems of pebbles evolving in time.

Apart from the above-mentioned problems, we also introduce the model-
checking problem for constraint automata over CLTL specifications. Constraint
automata are finite-state automata with alphabet made of Boolean combina-

tions of atomic formulae. More precisely, a constraint automaton is a tuple
(Q,I,F, X §) such that

— ( is a finite set of states,

— I, F C @ are respectively the set of initial and final states,

— XY is a finite set of Boolean combination of constraints of the form either
x = X'y or z = Qy where z,y € VAR and i € {0, 1},

—0CQxXYxQ.

A run of A is an infinite sequence of the form ¢y 2> ¢1 2 ¢ 2> ... such that
(qi, vis qit1) € 0 for every i € N. We say that an infinite model o realizes a run
of A if for every ¢ € N we have 0,7 = ¢;.

The model-checking problem takes as input a CLTL® formula ¢ and a con-
straint automaton A and answers positively iff there is an infinite model o that
both realizes a run of A and satisfies ¢. This problem can also be reduced to the
infinitary satisfiability problem since we can encode the execution of a constraint
automaton into a CLTL® formula. In the rest of the paper, we restrict ourselves
to satisfiability but all the decidability results can be lifted to model-checking.

2.2 Known extensions of CLTL?

In this section, we recall the definition of a few known extensions of CLTL®
which is useful for future comparisons. The logic CLTL? is clearly a fragment
of the logic CLTLY(N, =) introduced in [DLN07] and restricted to one register.
An equivalent logic of CLTL!(N, =) is denoted by CLTL' in this paper and it is
defined as follows. We consider an additional set of registers REG = {ry,rq,...}
and the formulae of CLTL' are defined as those of CLTL? except that:

— we allow only atomic formulae of the form r = x where r € REG and = €
VAR,



— we add the inductive clause |,—, ¢.

The satisfaction relation is parameterized by a register assignment p : REG — N
with 0,4 |=pli—s ¢ i 0,0 Eppo@@) ¢ and 0,i =, r = 2 iff p(r) = o(i)(2).
Consequently, the atomic formula z = Oy in CLTL® can be naturally encoded
in CLTL! by |,_, XF(r = y) and 2 = X'y by |,—, X{(r = y).

We write CLTL%,CJC,)(O) to denote the fragment of CLTL! restricted to the
temporal operators from O with at most k variables and k' registers. Following
the notation from [DLO06], for o > 0 we write LTL!,(~, ©O) to denote the fragment
CLTL%LQ)(O) restricted to atomic formulae of the form r = x.

2.3 A decidable fragment of finitary satisfiability

It is shown in [DLNO7] that CLTL! is strictly more expressive than its freeze-
free fragment. The same argument applies to show that CLTL? is strictly more
expressive than its fragment without atomic formulae of the form x = {y. Ob-
serve also that CLTLC is neither a fragment of the pure-future safety fragment
in [Laz06] (where occurrences of U formulae are never in the scope of an even
number of negations) nor a fragment of the flat fragment of CLTL!. Unlike
these fragments, CLTL? contains past-time operators and negation can be used
without any restriction. Infinitary satisfiability for safety LTL%(N,X, U) is EX-
PSPACE-complete [Laz06], for full LTL}(~,X,U) is II%-complete and, finitary
and infinitary satisfiability for flat CLTL! are PSPACE-complete. By contrast, in
this paper we show that finitary and infinitary satisfiability for CLTL® (with
full past-time temporal operators) are decidable problems. By taking advantage
of [DLNO7,DL06], it is already possible to establish decidability of finitary satis-
fiability for strict fragments of CLTLY.

Theorem 1. (I) Finitary satisfiability for CLTL®(X,U) is decidable.
(I1) Finitary satisfiability for CLTLO(X,X~1,F,F~1) is decidable.

Showing similar results in the infinitary case with the same approach of
the proof seems difficult since infinitary satisfiability for LTL}(~, X, F) is I19-
complete. In the paper we shall show much stronger results: finitary and infini-
tary satisfiability for full CLTL? even augmented with MSOL definable temporal
operators are decidable. In the rest of the paper, we systematically treat the fini-
tary and infinitary cases simultaneously. However, we provide the full technical
details for the infinitary case only and we sketch the main ideas for the finitary
case. This latter case cannot be reduced in the obvious way to the infinitary case
but its solution is close to the one for the infinitary case.

3 Automata-based Approach with Symbolic Models

In this section we explain how satisfiability can be solved using symbolic models
which are abtractions of concrete CLTL® models. We provide the outline of our
automata-based approach, and consider the technical details in Sects. 4 and 5.



3.1 Symbolic Models

Let ¢ be a CLTL® formula with k variables {xy,...2;} and we write [ (the “X-
length” of ¢) to denote the maximal ¢ such that a term of the form X'z occurs
in ¢. In order to define the set of atomic formulae that are helpful to determine
the satisfiability status of ¢, we introduce the set of constraints {2} that contains
constraints of the form either X'z = X7y or X'(z = {y) and their negation with
z,y € {x1,...x,} and 4,5 € {0,...,l}. Models are abstracted as sequences of
frames that are defined as maximally consistent subsets of (2.

An [-frame is a set fr C (2! that is maximally consistent in that it satisfies
the conditions below:

(F1) For every constraint ¢ € 2! either ¢ or = belongs to fr but not both.
(F2) For alli € {0,...,l} and = € {1,... 2}, X'z = X'z € fr.
(F3) For all 4,5 € {0,...,1} and z,y € {xy,... 24}, X'w = Xy € fr iff Xy =
Xix € fr.
(F4) For all i,7,7' € {0,...,1} and z,y,2 € {x1,..., 21}, {X'z = Xy, Xy =
XJ'2} C fr implies X'z = XI'z € fr.
(F5) For all 4,5 € {0,...,l} and z,y € {x1, ...z} such that X'z = X/y € fr:
— if 4 = j, then for every z € {w1,..., 2} we have X{(z = Oz) € fr iff
XI(y = Oz) € fr;
— if i < j then X(z = Qy) € fr, and for z € {w1,..., 2.}, X'(z = Qz) € friff
either X/ (y = {z) € fr or there exists i < j' < j such that X'z = X'z € fr.

Conditions (F2)—(F4) simply encode that equality is an equivalence relation.
For an [-frame fr, x € {zy,...,2;} and i € {0,...,l}, we define

— the set of future obligations for x at level i in fr as Op(z,i) = {y | X(z =
Oy) € fr},
— the equivalence class of x at level-i in fr as [(z,1)]5 = {y | X'z = X'y € fr}.

An [-frame fr can be represented as an annotated undirected graph G which
has vertices (z,7) for z € {z1,..., 2} and ¢ € {0,...,l}, and an edge between
(x,i) and (y, j) iff the constraint X'z = X7y belongs to fr. A vertex (x,i) in the
graph is annoted with an “open” arc labelled by the set of future obligations
O (z,1) for that vertex. Fig. 1 shows an example of a 3-frame over the variables
{z,y, z}. For convenience we avoid showing transitively inferable edges.

o Yy 5. 6. 5. 8. 2. O- Oo
z z
2 .f 6 ° T 5. 6o 0Oy 9% % 6o 6o
Y, 2 x z
f/j\
G m Y ‘. . - z s z
Y,z x Y z ° [} o .
el s :

Fig. 1. Example 3-frame graph, concrete model o, and its induced 3-frame graph G,,.



We denote by Frame! the set of such frames built w.r.t. k and [. We say that
a model o satisfies a frame fr at position i (denoted o,i |= fr) iff 0,i = ¢ for
every constraint ¢ in fr.

Since a frame can be viewed as a set of constraints about [ 4+ 1 consecutive
positions, for finitary satisfiability we need to add an information about the
possibility to end the model before the end of the current window of length [+ 1.
This can be done with O(l) bits and then the conditions (F1)—(F5) need to be
updated accordingly in order to take into account this possibility. Note that this
method allows to handle the particular case where there exists a model whose
size is smaller than the X-length of the formula.

Lemma 1. For all models o with k variables and 0 < i < |o| — 1, there exists a
unique frame fr € Framel such that o,i |= fr.

Proof. We treat only the infinitary case, the finitary case being similar with the
proper notion of frame. We can easily show that {{o | o = fr} | fr € Framel} is
a partition of the set of models N — ({x1,...,7x} — N). So the i*® prefix of &
has a unique frame abstraction. O

A pair of I-frames (fr, fr') is said to be one-step consistent &

—forall 0 <i,j <, Xz =Xy e friff Xi7le = X"ty € fr,
— forall 0 < i <[, Xi(x = Qy) € friff X"z = Oy) € fr'.

A symbolic model of X-length [ is a (finite or infinite) sequence of [-frames p
such that for 0 < i < [p| — 1, (p(i), p(i + 1)) is one-step consistent. We define
the symbolic satisfaction relation p, i Fgympb ¢, for a formula ¢ of X-length [ and
a symbolic model p of X-length I, as done for CLTL® except that for atomic
formulas ¢ we have: p,i Egmp ¢ & ¢ € p(i). We say a model o realizes
a symbolic model p (or equivalently that p admits a model o) & for every
0<i<|o|—1, we have o,i = p(i).

A symbolic model p of X-length [ can also be represented as an annotated
graph G, in a similar manner to [-frames. Thus the vertices of G, are of the form
(x,4) with an edge between (z,4) and (y,j) with 0 < j — ¢ < [ iff there was an
edge between (z,0) and (y,j — %) in the frame graph G ;). The annotations for
future obligations are added similarly. Fig. 1 shows the graph representation of
a symbolic model p of X-length 3, and a model it admits. By a path p in G, we
will mean as usual a (finite or infinite) sequence of vertices vy, vy ... in G, such
that each v;,v;41 is connected by an edge in G,. We call p a forward path if each
vi11 18 at a level strictly greater than v;.

3.2 Automata for Symbolic Models

In order to check whether a CLTL® formula is satisfiable we use Lemma 2 below
based on the approach developed in [DDO7].

Lemma 2. A CLTL® formula ¢ of X-length 1 is satisfiable iff there exists a
symbolic model p of X-length 1 such that p Esymb ¢ and p admits a model.



Proof. Only the infinite case is explicitly presented. Suppose that ¢ is satisfiable
and let o = ¢. From o we can build a symbolic model p such that for every
i >0, we have 0,7 = p(i). By Lemma 1, p is unique. By definition of a frame, if
o satisfies an atomic constraint ¢ € 2! at position i then ¢ € p(i) (consequence
of (F1)) and so p, i F=symb - Using this property we can prove by induction on
the structure of ¢ that p Fgymb ¢

Conversely, suppose there exists ¢ and p such that p F=gmb ¢ and o = p. By
definition we have 0,7 |= p(i) for every i > 0 and p,i FEgmb ¢ implies ¢ € p(i).
So for every atomic formula ¢ € 2! if p,i Fqmp ¢ then o,i = ¢. By induction
on the structure of ¢, we get o F=gymp ¢. a

In order to take advantage of Lemma 2, we use the automaton-based approach
from [VW94]. We build an automaton A4, as the intersection of two automata
Agsymp and Ag,e such that the language recognized by Agymp is the set of symbolic
models satisfying ¢ and the language recognized by A, is the set of symbolic
models that are realized by some models.

We define the automaton Agym, by adapting the construction from [VW94] for
LTL. We define cl(¢) the closure of ¢ as usual, and an atom of ¢ is a maximally
consistent subset of cl(¢). For the infinitary case, Asymb is the generalized Biichi
automaton (Q, Qo, —, F') such that:

— @ is the set of atoms of ¢ and Qy = {At € Q | ¢ € At, X7'T & At},

— At oAt i
(atomic constraints) for every atomic formula ¢ in At, ¢ € fr,
(one step) for every Xo € cl(¢), Xip € At iff ¢p € At’, and for every X1 €

cl(e), v € At iff X1 € AY/

— let {¢»1Uoy, ..., 1. U} be the set of until formulae in cl(¢). We pose F =
{F\,...,F,} where for every i € {1,...,r}, F;, = {At € Q : y;Up; &
At or ¢; € At}.

For the finitary case, the finite-state automaton Agymp, accepting finite words is
defined as above except that F'is a set of states At such that

— no atomic formula of the form x = Qy occurs in At,
— no formula of the form either X¢ or x = X%y with ¢ > 0 occurs in At.

Moreover, such final states can only be reached when the frame labelling the last
transition contains proper information about the end of the model.

In the next section, we explain how one can build the automaton Ag,; that
recognizes the set of satisfiable symbolic models. Since A, is the automaton
recognizing the intersection of the languages accepted by Agymp and Agy, the
following result is a direct consequence of Lemma 2.

Theorem 2. A CLTL® formula ¢ is satisfiable iff the language recognized by Ay
18 nonempty.

Note that we separate the temporal logic part and the constraint part by
defining two different automata. This allows to extend the decidability results to
any extension of LTL that induces an w-regular class of models. We only need
to change the definition of Agyp.



4 Characterization of Satisfiable Symbolic Models

In order to determine whether a symbolic model p is “satisfiable” (i.e. it admits
a model), we introduce counters that remember the satisfaction of constraints
x=3Q0y. lf v =0y A+ ANx = Qy, needs to be satisfied at the current position,
then we shall increment a counter indexed by {1, ..., y,} that remembers this set
of obligations. In a finite model, all the obligations need to be fulfilled before the
last position whereas in an infinite model either no more unsatisfied obligations
arise after a point, or they are essentially fulfilled infinitely often. The exact
conditions will be spelt out soon.

4.1 Counting Sequence

For each X € P*({z1,...,x}) (set of non-empty subsets of {xy,...,zx}), we
introduce a counter that keeps track of the number of obligations that need to
be satisfied by X. We identify the counters with elements of P*({z1,...,zx}).
A counter valuation ¢ is a map ¢ : Pt({z1,...,2x}) — N. For instance, we
write ¢({z,y}) to denote the value of the counter {z,y}, which will stand for the
number of obligations to repeat a distinct value in z and y.

We will define a canonical sequence of counter valuations along a symbolic
model. We introduce some definitions first. For an [-frame fr and X € P*({z1,...,x}),
we define a point of increment for X in fr to be an equivalence class of the form
[(z,0)]s such that O (z,0) = X and (x,0) is not connected by a forward edge to
a node in fr (i.e. there is no edge between (z,0) and (y, j) for any j € {1,...1}).
A point of decrement for X in fr is defined to be an equivalence class of the
form [(z, )] such that Op(z,1) U [(z,1)] = X, and (x,[) is not connected by
a backward edge to another node in fr (i.e. there is no edge between (z,l) and
(y,7) forany j € {0,...1—1}). Let u}; denote a counter valuation which records
the number of points of increment for each counter X, in fr. Similarly let uy,
denote the counter valuation which records the number of points of decrement
for each counter X in fr.

Now let p be a symbolic model of X-length [. We carry over the notations for
the set of future obligations and the equivalence class for x at level ¢ to symbolic
models as well. Thus ¢, (z,) is equal to ¢, (x,0) and [(x,1)], is [(«,0)],q). For
X € PT({x1,...,x1}), a point of increment for X in p is an equivalence class of
the form [(x,7)], such that [(x,0)],q) is a point of increment for X in the frame
p(7). Similarly, a point of decrement for X in p is an equivalence class of the form
[(x,7)], such that i > [ + 1 and [(x,1)],;—y is a point of decrement for X in the
frame p(i —1).

We can now define a canonical counter valuation sequence « along p, called
the counting sequence along p, which counts the number of “unsatisfied” points
of increments for each counter X. Let + denote the “proper addition” of in-
tegers, defined by n+m = max(0,n + m). We define « inductively for each
X € Pt({x1,...,2x}) and 0 < i < |p| as: a(0)(X) = 0; and a(i + 1)(X) =
(i) (X) + (1) () = 13, (X).



4.2 Characterising Satisfiable Symbolic Models

We characterize satisfiable symbolic models using their counting sequences.

Lemma 3. A finite symbolic model p is satisfiable (i.e. admits a model) iff the
final value of the counting sequence o along p has value 0 for each counter X
(i.e. a(|p| — 1)(X) = 0) and in the last frame fr of p, there are no “unsatis-
fied”obligations (where by an unsatisfied obligation in fr we mean a node (x,17) in
G with a variable y € O (x,1), but no edge from (x,1) to (y,j) for any j > i).

An infinite symbolic model p is satisfiable iff the following conditions are
satisfied:

(C1) There does not exist an infinite forward path p in p and a counter X, such
that every node in the path has future obligation X, and there is a variable
y in X which is never connected by a forward edge from a node in p (i.e. no
node in p is connected by a forward edge to a node of the form (y,1i)).
(C2) In the counting sequence along p, each counter X satisfies one of the cond-
tions:
(a) there is a point after which the value of counter X is always zero and after
which we never see a point of increment for X, or,
(b) infinitely often we see a point of decrement for X which is connected by
a forward path to a point of increment of the form [u], with O,(u) C X
(where ‘C’ denotes “strict subset”), or,
(c) for each x € X, we infinitely often see a point of decrement for X, which
is connected by a forward path to an x node (i.e a node of the form (x,1)).

Proof. Let p be a symbolic model of X-length [, which admits a concrete model
0. We show that p satisfies the conditions above.

Consider a point of increment [(z,7)], for a counter X. Then in the concrete
model o, the value o(i)(x) subsequently repeats in all the variables in X. Let
(y,7) be the first time this happens. So y € X and o(j)(y) = o(i)(z). We claim
that [(y,j)], must be a point of decrement for X. This is true since by the
choice of (y,j), it cannot be connected to any node to the left of it, and clearly
Op(x,i) = [(y,7)], U Op(y, 7). Further, the correspondence between points of
increment and points of decrement described above is injective. If not, let [(z, )],
and [(2/,7")], be two distinct points of increment with the same corresponding
point of decrement [(y, j)],. Without loss of generality, we assume ¢ < ¢'. If § = 7/,
it would mean o(i)(x) = o(i)(z’) (since they both have the same value as (y, j)
by assumption), which would contradict the fact that [(x, )], and [(z',4')], were
assumed to be distinct. If 7 < ¢/, then (y, 7) could not have been the first repeat
for (z,1) since (2',i") is one such repeat and it occurs strictly before (y, 7).

Now if p was a finite sequence, then clearly the value of each counter X is 0
in a(|p| — 1). This is because of the fact that by the above correspondence, each
point of increment for X is cancelled out by a unique point of decrement for X.
Furthermore, the last frame in p clearly cannot have any unsatisfied obligations.
This proves that the conditions of Lemma 3 are satisfied for the case of finite
symbolic models.



Consider now the case when p is an infinite symbolic model. We show that
conditions (C1) and (C2) are satisfied. Let p be an infinite forward path from
a vertex v in G, and let y € ¢,(u). Since y € ¢, (u), it must be the case that
the value of u in the concrete model o repeats at some future point in a y-node,
say (y,7). Now the path p must pass through a node v in the [-frame p(j — )
to which (y, j) belongs. Since the value of v must be same as that of u, which
in turn is same as that of (y, j), there must be an edge between v and (y, j) in
p(7 —1). This proves that p satisfies the condition (C1).

To see that condition (C2) is satisfied, let X be any counter. Two cases arise:
either we have only finitely many points of decrement for X in p, or there are
infinitely many. For the first case, let ¢ be the level at which the last point of
decrement corresponding to a point of increment for X occurs. Then it is clear
that a(i—1)(X) = 0. Further, by the choice of ¢, we never see a point of increment
for X after level ¢, and the value of X in « stays 0. Thus in this case condition
C2(a) is satisfied.

For the case when there are infinitely many points of increment for X, suppose
that X satisfies neither C2(b) nor C2(c). Then there must be a variable y € X and
a level 7 after which we never see a point of decrement for X which is connected
by a forward path to a point of increment for X with future obligation strictly
smaller than X, nor a point of decrement for X which is connected by a forward
path to a y-node. Consider any point of increment [uo], for X after level 7. Let its
value in the concrete model be m. In the concrete model, m must subsequently
repeat in a y-node. Let this node be (y, j). Now for [u], there is a corresponding
point of decrement [vy], for X (obtained as above by taking the first node where
the value m repeats). Note that there cannot exist an infinite forward path from
Vg, since otherwise by an argument similar to the one for C1 above, we would
have a forward path from vy to (y,j), contradicting our assumption. So there
is a maximal forward path (possibly of length 0) from vy to a node w;, which
(again by our assumptions) must necessarily be such that [u,], forms a point of
increment for X. This argument can be repeated to construct a sequence of nodes
U, Vo, U1, V1, . . . such that each [u;], and [v;], are respectively points of increment
and decrement for X, and there is a forward path from each v; to each u;, 1. This
is shown below:

O o / | |
U Lo ./\/\/\O U1
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It is also clear that by construction, all the nodes above (as well as the nodes
in the paths between the v;’s and w;,1’s) have the value m in the concrete model
o. Now consider the node (y, j). Clearly it cannot lie between any u; and v;. Thus
it must lie between some v; and wu;,1, and must be connected by a forward edge
from a node in the path between them. This contradicts our assumption that
after level 7, no point of decrement for X was connected by a forward path to a
y-node.

Thus for the case when p is infinite, we have shown that p must satisfy the
conditions of Lemma 3.



For the converse direction, let p be a symbolic model of X-length [ satisfying
the conditions of Lemma 3. We will show that p admits a concrete model by
first describing an augmented graph G, which is obtained from G, by adding
additional edges, and then describing a labelling procedure for G, which respects
the edges in G,.

For the case when p is finite, the augmented graph G/, is obtained from G/,
by adding edges (which we call augmented edges) as follows:

From each level i going from [ + 1 upto |p| — 1, for each counter X, and
for each point of decrement [v], for X at level 4, if there is a point of
increment [u], for X at a level less than ¢ — [ for which an augmented edge
has not been added (we call this an “unmatched” point of increment), add
augmented edges between every node in [u], and every node in [v],.

Here is (the only) way of adding augmented edges according to the procedure
above in the example symbolic model of Fig. 1:
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We note that when the procedure has completed for level i, the number
of unmatched points of increment for any counter X is precisely «(i)(X), the
value for the counter X at position ¢ in the counting sequence o for p. Since
af|lp] = 1)(X) = 0 for each X, it follows that at the end of the procedure above,
we will have no unmatched points of increment.

For the case when p is infinite, we add the augmented edges in a slightly
different way. If a counter X is such that a point of increment for it occurs only
finitely often in G,, we add the augmented edges between points of increment
and points of decrement for X in the same way as the procedure above for the
case of finite models. By condition C2(a), every point of increment for X will
be matched. If X is a counter for which points of increment occur infinitely
often, then by conditions C2(b) and C2(c) two cases are possible: either there
are infinitely many points of decrement for X which are connected by a forward
path to a point of increment with a strictly smaller set of obligations than X,
or for each x € X, we infinitely often see a point of decrement for X which is
connected by a forward path to an xz-node. In the former case, we assign matches
by proceeding from left to right, adding augmented edges from each point of
increment for X to a subsequent point of decrement for X from which there is a
forward path to a point of increment with a strictly smaller set of obligations than
X. In the latter case, suppose X = {z1,...,2z,}. We assign matches by cycling
through the z;’s repeatedly: thus, we proceed from left to right, and assign to
the first point of increment for X, a point of decrement for X that is connected
to a z;-node, to the next point of increment for X a point of decrement for X
that is connected by a forward path to z3 node, and so on till z,,; and keep



repeating this process. Thus, this process of matching points of increment covers
all points of increment, and so every point of increment has an augmented edge
to a subsequent point of decrement.

We now describe a way of labelling the nodes of G, with natural numbers.
We use a natural ordering on nodes in G, given by (x,,1) < (x,,7) iff i < j or,
t=j and m < p.

We label the first vertex (x1,0) by 0. The remaining vertices are labelled

in order according to the following rule: If L is the portion of the graph

already labelled, and wu is the next vertex to be labelled:

L. if there is a path in G, from u to a vertex v in L, give u the same label
as v.

2. else, label u by n 4+ 1 where n is the maximum label used so far in L.

We note that the labelling above is deterministic, in the sense that in step 1 u
can only be assigned a single value. If not, consider the first point that a vertex u
had a path to two vertices v and v" with distinct labels. Without loss of generality,
say v was labelled before v. Then there is a path from v to v in G/, (via u), and
hence v' must have been labelled with the same value as v.

The labelling above thus gives us a concrete model o, and we claim that p is
in fact the symbolic model of X-length [ induced by o. For this it is sufficient to
argue that the labelling o respects all the edges of G, (i.e. the normal as well as
annotated edges).

Before we do this let us first observe a useful property of /..

Claim (1). Let uw = (x,7) and v = (y, j) be distinct vertices which are connected
by a path in GJ,. Then

1. if the level of w is strictly less than the level of v (i.e. i < j), we have a forward
path from u to v in G,
2. if u and v are at the same level (i.e. i = j), we have an edge between u and v.

Proof (of claim). We proceed by induction on the length of the shortest path
between u and v. In fact we show that the shortest path must be a forward path
in the case of ¢ < j, and a single edge in the case of i = j. If the shortest path
between u and v is of length 1, then if i < j we have a forward edge from u to v,
and if ¢ = j, an edge at level ¢ between u and v.

For the induction step, let us assume it holds for nodes connected by a shortest
path of length m or less, and suppose the shortest path between v and v is of
length m + 1. Consider the case when ¢ < j. Let the first node on this shortest
path after u be w. Now w cannot be to the left of u: for if this was the case,
there must be either an original edge (i.e. an edge of G,) from u to w, or an
augmented edge. Suppose it was an original edge, then by induction hypothesis
we have a forward path from w to v. The first edge in this forward path from
w clearly cannot be an augmented edge, since a forward augmented edge must
begin at a point of increment, and w cannot be a point of increment since it is
connected by a forward edge to u. Neither can the first edge in the forward path



from w be an original edge, since then we must have an edge between u and the
target vertex of this edge, which gives us a strictly shorter path from v to v. For
the case when have an augmented edge from u to w, the forward path from w
to v must pass through this or an “equivalent” edge, i.e. an edge from w to u’
where u' € [u],. In either case, we have a contradiction to the fact that we had
started out with a shortest path from u to v.
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Similarly, the first edge from u to w cannot be an edge at the same level,
since this would again contradict the fact that it was part of the shortest path
from u to v.

Hence it must be a forward edge from u to w, and using the induction hy-
pothesis we obtain a forward path from u to v.

The case when ¢ = j is handled similarly. This completes the proof of our
claim. ad

Here are some more properties of G, which are easily verified:
Claim (2).

1. If we have forward path from a node u to an r-node in &, then we must have
z € Qpu).

2. If we have a forward path p from u to v in G}, and = € O,(u), then either
some node in p is connected by a forward edge to an z-node, or z € {,(v). O
We can now prove that the labelling o of GG, is an edge-respecting one. We

first argue that o respects the normal edges in G,. Let (u,v) be an edge in G,

with say u < v. Then by the deterministic property of the labelling procedure, v

would be given the same value as u in step 1. Further, if v and v were in the same

[-frame (i.e. their levels differ by at most [ + 1) and there was no edge between

them in G,, then we argue that they would be given different labels. Suppose to

the contrary that v and v were given the same label m. Then it is easy to see
that both v and v must be connected to a vertex w which was the first vertex to
be labelled m. Thus there is a path between u and v, and by Claim 1 we must
have a forward path from u to v. Since v and v lie in a common [-frame, this

means that they must be connected by an edge in G,,.

Let us now consider the annotated edges in GG, and show that the labelling

o respects these edges also. Let u be a node in G, with a variable z € ¢,(u).

Let us first consider the case when p is finite. Consider a maximal forward path

from v in G, and let w be the final node in this path. Then w cannot have any

future obligations: for otherwise w would either be a point of increment, in which
case we could have continued the path by an augmented edge, contradicting the

assumption that the path was maximal; or w would lie in the final [-frame of p,

contradicting the assumption that p satisfies the conditions of Lemma 3. So in

particular z ¢ O,(w). Thus by Claim 2, we have that there must be a vertex

v in the path which is connected by a forward edge to an x-node. This xz-node



would have been labelled m, and we have a required z-node which satisfies the
obligation = of u.

For the case when p is infinite, let ¢,(u) = X (with z € X). We argue by
induction on the size of X, that the x-obligation of u is satisfied. When X is a
singleton, i.e. X = {x}, suppose u was not connected by a forward path to an
z-node in G, Then it must be the case (using Claim 2) that we have an infinite
forward path from u in G, along which all nodes have future obligation exactly
{z}. If this path uses only finitely many augmented edges, we have a contradiction
of the assumption that p satisfies the condition C1 of Lemma 3. If the path
uses infinitely many augmented edges, we must have infinitely many points of
increment for {x} along the path, and by the way we added the augmented
edges in 7, these augmented edges are to points of decrement for {z} which are
necessarily connected by a forward path to an xz-node. For the induction step,
suppose X had more than 1 element, and suppose once again that u was not
connected by a forward path to any z-node in G, Then again, there must be
an infinite forward path from u in G, along which the obligation x is preserved.
Since the obligations along a forward path can only decrease (or stay the same),
it must be the case that after a point the set of future obligations remains at some
X" with x € X', Again, if this path had only finitely many augmented edges,
it would contradict condition C1. Otherwise, it has infinitely many augmented
edges (and hence points of increment for X’) and by the way augmented edges
were added, it must be the case that these edges are to points of decrement for X’
from which there is a forward path to a point of increment for X” with X" C X".
By our induction hypothesis, there is a path from these points of increment for
X" to a y-node for each y € X”. Since x € X", we have a path from u to an
r-node, contradicting our assumption. Thus, it cannot be the case that there is
no forward path from u tox an z-node. Thus there is a forward path from u to
an r-node, say v. By our labelling procedure, v would also be given the same
value as u. Thus the obligation = in ¢,(u) is satisfied.

We now argue that for any node w in G, that if x ¢ {,(u) then there is no -
node at a level greater than that of v which is given the same label. Suppose some
such z-node v was given the same label, say m, as u. Then, as similarly observed
before, both u and v must be connected by a path in G, (via the first vertex
labelled m). By Claim 1, there is a forward path from u to v. By Claim 2(1), we
must have z € O,(u).

This completes the proof of the fact that the labelling o respects the edges
of G, and hence p is the symbolic model induced by o.

With this we have finally completed the proof of Lemma 3. O

In Sect. 5 we show that we can check these conditions on counting sequences
using counter automata with a decidable nonemptiness problem.



5 Decidability

We introduce a class of counter automata with a disjunctive variant of generalized
Biichi acceptance condition in which, along any run, a zero test is performed at
most once for each counter.

5.1 Simple Counter Automata
A simple counter automaton A is a tuple (X, C, @, F, I, —) such that

— X is a finite alphabet, C'is a finite set of counters,

— ( is a finite set of locations, I C () is the set of initial locations,

— F =A{Fy, F1,...,Fx} for some K > 0 where F; C P(Q) foreachi=1... K,
— — is a finite subset of Q x P(C) x Z€ x X x Q.

Elements of — are also denoted by ¢ Yupg ¢ where Y is interpreted as zero
tests on all counters in Y. A configuration (g, c) is an element of ) x N¢ and,

{(q,¢c) — (¢, &) iff there is a transition ¢ Yupg ¢ in As.t. force Y, e(c) =0 and
for c € C, (c) = ¢(c) + up(c). As usual, a run is a sequence of configurations

ruled by the transitions of A. An infinite run is accepting iff there exists a set
F € F such that every set Y € F' is visited infinitely often. Elements of X“
labeling accepting runs define the language accepted by A. In order to accept
finite words, we suppose that F defines a single set of final states and a finite
run is accepting iff it ends at a final state with all the counters equal to zero.

However, we require additional conditions on the control graph of A to be
declared as simple. We require that there is a partition {Qy,..., @k} of @ and
corresponding sets of counters Cy, C1, ..., Cx with Cy = () such that I C Qyand
for : € {1,..., K}, a transition from a location in @y to a location in @; can
be fired only if the counters of C; are equal to zero and all the transitions from
a location in ); go to another location of ();. Moreover every transition from a
location of (); does not modify the value of the counters in C;. As a consequence,
when we enter in the component made of the locations of (); the counters in
C; are equal to zero forever. Finally, for ¢ € {0,..., K}, F; C P(Q;). Let us
summarize the conditions:

L Q=QoW - -WQk and I C Qy,

2. F={F, F,...,Fx} where each F; C P(Q,),

3. there exist K + 1 sets of counters Cj, ...,Cx C C with Cy = () such that the
transition relation —C Q x P(C) x Z x X x Q verifies the conditions below:

for all 4,7/ € {0,..., K}, ¢ € Q; and ¢’ € Qy, the transitions from ¢ to ¢ are

of the form ¢ ’—p’> ¢’ where

(a) i # ¢ implies i =0 and Y = Cy,

(b) i =4 implies Y = 0),

(c) for c € Cy, up(c) = 0.
In the sequel we consider simple counter automata with C' = P ({z1,...,x}),
K = 2% — 1 and each set F}; contains sets of states reached by decrementing the
counters in C;. Lemma 4 below states that simplicity implies decidability of the
nonemptiness problem thanks to [Jan90].



Lemma 4. The nonemptiness problem for simple counter automata is decidable.

Proof. We focus on the infinite case only. We reduce this problem to the prob-
lem Pieyp shown decidable in [Jan90]. Let us briefly recall a fragment of the
problem Py, that consists in checking fairness conditions in Petri nets. Let
N = (S, T, W, My) be a Petri net [Pet81] where S is a set of places, T is a set of
transitions, W : (S x T)U (T x S) — N is a weight function and M, is an initial
marking. The fragment of the language L(Q’, GF) [Jan90] we consider here is the
following;:

bu=s=i| Vv | pAad | GFY,

where s € S and ¢ € N. A formula “s = ¢” states that the number of tokens in
the place s is i. As expected, “GFi)” states that infinitely often ¢ holds true. In
full generality, the problem Pyey,, takes as input a formula ¢ in L(Q’, GF) and an
initial marking M, for a Petri net N and checks whether there is a an infinite
execution from M, that satisfies ¢. This problem is decidable by [Jan90].
Consider a simple counter automaton A (we use the previous notations). We
can build a Petri net N4 that simulates A apart from the zero tests. As usual,

for every location ¢ in A, we introduce a place s, in N4 and for every counter

1 S .. . Y, up,
¢ € C, we introduce a place s.. Similarly, for every transition in A, say ¢ ——== ¢/,

we consider a transition in N4 that consumes a token in s,, produces a token in
sy and produces [resp. consumes| up(c) counters in the place s, when up(c) > 0
[resp. when up(c) < 0]. The zero tests Y will be taken into account separately
in the L(Q’, GF) formula below. An initial marking contains one token in some
place s,, for some initial location gy and no token in places of the form s.. From
this marking, we obtain markings where a unique token belongs to a place of the
form s,.

We claim that checking the nonemptiness of A is equivalent to verify whether
the formula below holds true in N4

(%) \/ (GF(A se=0)A( A GF(\/ s, =1)).

0<i<K ceC; YEF; qeY

Indeed, if this property holds true there is i € {0, ..., K} such that all the coun-
ters of C; are equal to zero infinitely often and each set of places corresponding
to the set of locations of F; is visited infinitely often. Since N4 is obtained by
translation of a simple counter automaton, whenever we enter a subcomponent
@; with + > 0, the counters of C; are not modified anymore. For j > 0, if s, = j
for a marking of N4 where s, = 1 also holds for some location of @);, then s. = j
always holds in the future. So the conjunction implies that the counters of Cj
are equal to zero before entering the subcomponent (); and they remain equal to
zero afterwards. The second part expresses the acceptance condition. Then it is
obvious that () holds iff A has an infinite accepting run.

Finite case can be solved by using the decidable reachability problem for Petri
nets [Kos82]. 0



5.2 Automata recognizing satisfiable counting sequences

Now, we can build a simple counter automaton A% recognizing the set of satisfi-
able symbolic models of X-length [. We describe the construction for the infinite
case and the automaton that recognizes finite satisfiable symbolic models can be
defined similarly.

The simple counter automaton Al is defined to be the intersection of the
automata A' and A? which check conditions (C1) and (C2) respectively. Au-
tomaton A! is a Biichi automaton and is easy to define. We focus on defining the
counter automaton A% We define A? = (X, C,Q, F, {s}, —), where ¥ = Frame!
C =Pr{z1,...,74}), Q = {s} UFramel, UJ,c, Qa,, where Q 4, is the set of
states of the automaton A, which we define below, — is given by

waupOme
s —— fr

Ir fr!
Z,up,fr'
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where up, is the zero update (i.e. upy(X) = 0 for each X € O), uz(X) <
up(X) < u;;(X)—u];/(X) for each X € C, and s 4, is the start state of automaton
Az. Moreover, we require in the last rule that for every counter X € Z (i.e. every
counter that is tested to zero) we have up(X) = 0.

The Biichi automaton Ay is given by:

Ap =A%, 0 | (A% UA%)
XezZ

A¥ =) Axa

reX
where the automata are defined as follows.

— The automaton A%“\Z accepts symbolic models in which there are no points
of increment for any X in C'\ Z.

— The automaton Ay, checks condition C2(c) for X and a variable z € X.
The automaton Ax, is the complement of the Biichi automaton Bx , which
accepts symbolic models in which there is a point after which we never see
an x-node reachable by a forward path from a point of decrement for X. The
automaton By, has states of the form (fr,S) where fr is a frame and S is
a subset of nodes in fr. We have a transition from (fr,S) to (fr, S") iff S is
the set of nodes in fr’ which are either a point of decrement for X in fr’ or
are connected by a forward edge to a node in S in fr’. The automaton non-
deterministically moves to a second copy where it allows the above transitions
only if S” does not contain a node of the form (x,7). All states in the second
copy are final.

— The automaton A% checks that infinitely often there is a point of decrement
for X that is connected by a forward path to a point of increment of the form
[u], with ¢,(u) C X. Its construction is similar to that of Ax ,.



Observe that the automaton Az does not any essential use of the counters,
namely they remain unchanged.

We can easily check that all the properties of simple counter automata are
verified by this construction. For the finite case, A is similar to A% above, except
that a word is accepted when the run ends with all the counters equal to zero.

Lemma 5. Let p be a symbolic model of X-length 1. Then p is accepted by A iff
p is satisfiable.

We are now in position to state the main result of the paper.
Theorem 3. Finitary and infinitary satisfiability for CLTL® is decidable.

Proof. Let ¢ be a CLTLC formula over k variables with X-length I. Let A, be the
simple counter automaton built as the intersection of Agymp, A} and A;. that ac-
cepts sequences in which consecutive frames are one-step consistent. Synchroniza-
tion between AgympMNA;i and Al is done as follows: for all Qsymb, qumb € AgymbN A

X,up,fr
) — (

. fi . ..
and ¢,¢" € AL, (Gsymb, q Gyt @) 1 Goymby 4 Gymp 18 @ transition of

X?“p?f,r‘ M . . .
Agymb N Aje and ¢ == ¢’ is a transition of A}. Since Agu, have no coun-

ters, the automaton A, is a simple counter automaton once we combine the
acceptance conditions. We can check whether the language accepted by A, is
non-empty (Lemma 4). Thus, by Theorem 2, checking the satisfiability of ¢ is
decidable.

According to the acceptance condition of A% in the finite case, finitary satis-
fiability reduces to the reachability problem in Petri nets. ad

Theorems 2 and 3 entail that this decidability result can be extended to any
extension of LTL as soon as the temporal operators as definable in MSOL, see
for instance [GKO03].

Corollary 1. Finitary and infinitary satisfiability for CLTL® augmented with
MSOL definable temporal operators is decidable.

5.3 A PSPACE fragment of CLTL®

In this section, we consider the fragment CLTL}> with a unique variable x. The
models are sequences of natural numbers and the only counter in counting se-
quences « is {z} (we identify a(i)({z}) with «(7)). Given a symbolic model p over
the alphabet Frame! and the counting sequence a along p, for every 0 < i < |p|,
afi+1) = a(i)+ (v — ug,) with w7, u,, € {0,1}. By Lemma 3, when p is
satisfiable, in the counting sequence along p either the unique counter remains
equal to zero after a finite number of steps or it is decremented infinitely often.
Moreover, the value of the unique counter in the counting sequence is nicely
bounded unlike in general with strictly more than one variable.

Lemma 6. Let p be a symbolic model and o be the counting sequence along p.
For 0 <i<|p|, a(i) <.



Proof. Let p be a symbolic model and « be the counting sequence along p. We
show that for 0 <i < |p| — 1, the number of equivalence classes p(i) is bounded
by [ + 1 — «(i). We proceed by induction on 1.

The number of equivalence classes in p(0), denoted by #(p(0)), is bounded by
[+ 1 since there are [+ 1 terms in a frame. Since a(0) = 0, (p(0)) < I+1—«a(0)
holds true. Now we suppose that #(p(i)) < [ + 1 — «(i) and we consider the
different cases.

Case a(i+ 1) = a(7) + 1.
Necessarily, uj” = 1 and u; = 0. Hence, there is no constraint of the form z = XJz
with j > 0 in p(z) and {z} is an equivalence class of p(i). Since u; = 0, there
exists a constraint in p(i + 1) of the form X/z = X!z with j < I. The term X'z
in p(i + 1) does not add any new equivalence class compared to p(i). Remember
that p is one-step consistent and, the term X'z in p(i + 1) and the term X1z
in p(7) refer to the same value. As a consequence we have £(p(i)) = f(p(i+1))+1

and f(p(i+1)) <l+1—a(i+1).

Case a(i+ 1) = a(i) — 1.
Necessarily, v = 0 and u; = 1. Following a reasoning similar to the previous
cases, we obtain £(p(7)) = f(p(i+1)) — 1 and the inequality holds at position i+ 1.

Case a(i+ 1) = a(i) and v =u; = 1.
We can show that f(p(i)) = #(p(¢ + 1)) which implies that the inequality holds
at position i + 1.

Case a(i + 1) = a(i) and u; = 0.
Two cases need to be distinguished depending whether u; = 0 or u; = 1.
If u; = 0 (conditions for decrementation are not meet), then we obtain as in
the previous case that #(p(i)) = #(p(i + 1)) and we can conclude. Otherwise,
u; = 1 and this entails that a(i + 1) = a(i) = 0. Indeed if u]” — u; = —1 and
a(i+1) = (i), this means that the counter cannot be decremented because it is
equal to zero. In this case, §(p(7)) = t(p(i+1)) —Land §(p(i+1)) < l+1—a(i+1)
because the number of equivalence classes is always bounded by [ + 1.

Since the number of equivalence classes is strictly positive, we have [ + 1 —
a(i) > 0 and therefore a(i) <[ for every position i of a. O

Boundedness entails the possibility to use automata without counters.

Lemma 7. The set of satisfiable symbolic models over the alphabet Frame! can

be recognized by a standard Biichi automaton A% for the infinite case, or by a
finite-state automaton for the finite case.

Proof. We know that p is satisfiable iff the counting sequence a over p satisfies
the conditions (C1) and (C2). Again, we treat below only the infinite case. Since
the only counter is {z}, the conjunction of (C1) and (C2) is equivalent to: either
there is a position after which the value of the counter {z} is always zero and



after which we never see a point of increment for {z} or we infinitely often see a
decrement point for the counter {z}. By Lemma 6, the value of the counter {z}
in « is bounded by (.

The Biichi automaton defined below is obtained by simplifying the previous
construction with a bounded counter.

— The set of states @ is equal to Frame! x {0,...,1} x {dec, ~dec,zero}. The
second component encodes the value of the counter and the third one encodes
whether the counter is equal to zero from now on (zero), or a transition
decrementing the counter has been just fired (dec) or the last transition has
not decremented the counter and the first condition does not hold (—dec).

— For all fr € Frame!, i € {0,...,1} and 6 € {dec, ~dec} we have {(fr,i,®) r,
(fr', ', 0") iff (fr, fr') is one-step consistent and

o if uj =1 and u,, =0, then ' =i+ 1 and ¢ = ~dec,

o if uy =1 and ug, =1, then ' =i and ¢’ = dec,

e if u; =0 and g, =1, then either ' =i —1=0 and ¢’ € {dec, zero} or
i'=1—1>0 and # = dec,

o ifuj = ug,, = 0 then either ¢/ =i =0 and ¢ € {~dec,zero} or i’ =i >0
and ¢’ = —~dec.

— for every fr € Framel, we have (fr,0,zero) r, (fr',0,zero) iff (fr,fr') is
one-step consistent and u;; = uf_r,.

— The set of final states is {(fr,i,6) | 8 € {dec,zero}}.

The transition relation simulates the behaviour of the counter in the counting
sequence « along p. By construction, when a location of the form (fr,0, zero)
is reached, all the future locations are of the form (fr’, 0,zero). Otherwise, the
acceptance condition ensures that the run has to visit infinitely often states where
the counter {z} is decremented. 0

The automaton A} has an exponential size and can be built in polynomial
space in [. Checking nonemptiness for this automaton can be done in non deter-
ministic logarithmic space which allows to establish Theorem 4 below.

Theorem 4. Finitary and infinitary satisfiability for CLTLi> 1S PSPACE-complete.

Proof. The finitary case is analogous to the infinitary case and we treat below the
latter one. Satisfiability for CLTL(N, =) is PSPACE-hard (propositional variables
can be encoded by constraints of the form z = y) and CLTL(N, =) restricted to a
single variable is also PSPACE-hard by using [DGO07, Lemma 2]. Since CLTL(N, =)
restricted to a single variable is a fragment of CLTL?, we obtain the PSPACE lower
bound.

In order to show the PSPACE upper bound, we recall the standard analysis.
Given a CLTLi> formula ¢, the automaton Ay is defined as the intersection Agymp
and A}. The construction of Agsymp described in Section 3.2 and the construction
of Al in the proof of Lemma 7 can both be performed in polynomial space in
the size of ¢ even if their size is exponential. Synchronizing these two Biichi
automata w.r.t. the alphabet of frames can be done in PSPACE, and the resulting



automaton A, is a Biichi automaton. We recall that A, is satisfiable iff the
language recognized by A, is nonempty (see Theorem 2). Since checking the
nonemptiness of a Biichi automaton can be done in NLOGSPACE, we get a whole
procedure in nondeterministic polynomial space which is equivalent to PSPACE
by Savitch’s theorem. O

The models for CLTLY corresponds to models of LTL!(~, X, U). Therefore, fini-
tary and infinitary satisfiability for LTL%(N, X, X7 U,S) restricted to formulae
such that the freeze operator is restricted to subformulae of the form |,—, XF(r =
r) and |,—, X'(r = z) is decidable in polynomial space (r is the unique register
and z the unique variable).

5.4 Repeating values in the past is still decidable

In this section we explain why we can allow the constraints of the language to
state properties about past repetitions of a value without loosing decidability.
Let CLTLY®" be the extension of CLTL? with atomic formulae of the form
x = O~ ly. The satisfaction relation is extended as follows:

o,i =z = Oty iff there exists j > 0s.t. z =0(i — j)(y) and 0 < i — j.

Similarly to what is done in Section 2.1, x diff ¢ 'y can be omitted since it can
be defined from z = { 'y (a variant of the equivalence (1)).

In order to deal with satisfiability for CLTL®®"" we need to extend the Sym-
bolic representation of models. In addition of the conditions(F1)—(F5) defined in
Sect. 3.1, a frame fr has to verify the following property (the finitary case admits
a similar update):

(F6) foralli,j €{0,...,1} and 2,y € {x1,... x4}, if X'z = Xy is in fr then
— if ¢ = j, then for every z € {z1,..., 24} we have X'(z = 07 '2) € friff
Xi(y = O~ 'z) € fr (we extend the notion of frames);
— if ¢ > j then X(z = O~ 'y) € fr, and for every z € {zy,...,x}, X(z =
O~ 12) € friff either XI(y = ¢712) € fr or there exists 1 > j' > j such
that X’z = X'z is in fr.

We pose O, (X'x) = {y | X{(z = O~y) € fr}. Since we need to deal with past
obligations, a counter is a pair (X,, Xy) in PT({z1,...,zx}) x PT({z1,...,2%})
where X, is for past obligations and Xy for future obligations. We update the
notion of counter valuations accordingly. A value n for (X, Xy) is the number
of values that occurred in a past state of every variable of X, and that have to
be repeated in a future state of every variable in Xjy.

We extend some earlier definitions. For an [-frame fr and counter (X,, Xy),
we define a point of increment for (X,, Xy) in fr to be an equivalence class of the
form [(x,0)]s such that O (z,0) = Xy, (x,0) is not connected by a forward edge
to a node in fr and [(z,0)]s U O]Trl (x,0) = X,. A point of decrement for (X,, Xy)
in fr is defined to be an equivalence class of the form [(z, )]s such that ¢ (x, 1)U
[(z,D)]p = Xy, (z,1) is not connected by a backward edge to another node in fr
and O~ (z,1) = X,,. Let u}; denote a counter valuation which records the number



of points of increment for each counter (X, X¢), in fr. Similarly let u; denote
the counter valuation which records the number of points of decrement for each
counter (X,,, Xf) in fr. We can now define a canonical counter valuation sequence
a along p, called the counting sequence along p, which counts the number of
“unsatisfied” points of increments for each counter (X,, X;) with X, # 0. We
define a inductively: a(0)((X,, Xf)) = 0 and for 0 < i < |p|, a(i+1)((X,, Xy)) =
a(i)((Xp, Xy))+ (u:;(i) ((Xp, X)) = w41y ((Xp, X))). Note that decrementations
are this time compulsory and we allow a(i)((X,, X)) to be negative (but not
in the acceptance condition). Though we need more counters, dealing with past
repeating values, does not introduce real complications. This is analogous to
the passage from LTL to LTL with past-time operators since past is finite and
information about past can be accumulated smoothly.

Lemma 8. A symbolic model p for the logic CLTL®®™" s satisfiable iff the
counting sequence along p satisfies the conditions from Lemma 3 for the future
part of the counters and for every 0 <i < |p|, a(i)((X,, X)) > 0.

The proof is similar to the proof of Lemma 3. In order to define an augmented
graph, we use counters of the form (X, X) instead of X. Moreover, the condition
a(i)((Xp, X)) > 0 guarantees that in the procedure to add augmented edges,
for each point of decrement for (X, Xy) with X, # 0, there is an unmatched
point of increment for (X,,, X). Indeed, in the proof of Lemma 3, it was possible
to find points of decrement that do not create augmented edges.

As a consequence, we can easily update the construction of A4 in order to
deal with past repeating values. The definition of the automata Agym, and A} are
just extended by considering the new definition for frames. By way of example, in
the definition of A2, the update function up for each transition satisfies: for every
counter (X, Xy) with X, # 0, up((X,, X)) = up((Xp, Xy)) — up, ((X,, Xy)).
It is also worth observing that the automaton A, obtained by synchronization
of these automata still belongs to the class of simple counter automata and the
decidability result also holds for CLTL®™ satisfiability problem.

Theorem 5. (I) Finitary and infinitary satisfiability for CLTL®®" is decidable.
(IT) Finitary and infinitary satisfiability for CLTL?’O_1 is PSPACE-complete.

Proof. (I) Proof similar to the proof of Theorem 3.

(I) In presence of a unique variable x, the unique counter of the form (X, Xy)
with X, # 0 is ({z},{z}). Lemma 6 still holds true for this extension and the
proof disregards the case a(i) = a(i+ 1) with u] = 0 and u; = 1. Consequently,
Lemma 7 and Theorem 4 can be adapted accordingly.

6 Concluding Remarks

We have shown that satisfiability for CLTL® with operators in {X,X"1 S U}
is decidable by reduction into the verification of fairness properties in Petri
nets [Jan90]. The proof is uniform for the finitary and infinitary cases and it



can be extended to atomic constraints of the form xz = ¢!y and to any set
of MSOL definable temporal operators. Moreover, satisfiability for CLTL® re-
stricted to one variable is shown PSPACE-complete. Hence, we have defined and
studied a well-designed decidable fragment of LTL with the freeze quantifier
answering some question from [WZ00] and circumventing some undecidability
results from [DLO06]. Finally, as done also in [DL06,Laz06,BMS*06], we show re-
lationships between fragments of LTL with freeze and counter automata. Our
connection is all the more interesting because we deal with the finitary and in-
finitary cases while preserving decidability.

The main question left open by our work is the complexity of satisfiability
for CLTL® and more precisely we do not know whether CLTL satisfiability
has elementary complexity. Similarly, are there natural fragments of CLTL that
are of lower complexity, for instance the one involved in Theorem 17 Another
promising extension consists in considering other concrete domains as (R, <, =)
and to allow atomic formulae of the form x < {y. The decidability status of
such a variant is still open, even if in absence of the restricted use of the freeze
quantifier, PSPACE-completeness is known [DDO07]. Finally, it would be interesting
to investigate branching-time extensions.

Acknowledgements: We are grateful to Petr Jancar (TU Ostrava) for point-
ing us to [Jan90] in order to solve the nonemptiness problem for simple counter
automata and for suggesting the proof of Lemma 4 and Ranko Lazi¢ (U. of
Warwick) for remarks about a preliminary version.
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A  Proof of Theorem 1

(I) Finitary satisfiability for CLTLO(X, U) can be easily reduced to finitary satis-

fiability for CLTL%WJ)(X, U). By [DLNO07, Proposition 4], this latter problem can

be reduced to finitary satisfiability for LTL! (~, X, U) that is decidable by [DLO06,
Corollary 13].

(IT) Let ¢ be a CLTLY(X, X!, F, F~1) formula over the variables {1, ...,z;} and
[ be the maximal 4 such that a term of the form Xz occurs in ¢. This formula
can expressed into an equivalent formula of CLTL%WJ)(X, X~1 F,F~!) using the
equivalence below:

(X) =Xy &= X'(r=y),

Let N = 3k(l+ 1) and Oy be the set of temporal operators below:
On = {X, X%, XN XNHE X1 x=2, XN X~ (VD=1

Using a proof technique from [DGO07], we build a formula ¢’ in the simple
fragment of CLTL%M)(ON) such that ¢ is satisfiable iff ¢’ is. The simple fragment

of CLTL%M)(ON) is defined as the fragment such that every temporal operator
O € Oy 1s in the direct scope of a freeze operator |,—, O¢ and there is no other
occurrences of the freeze operator. Finitary satisfiability for the simple fragment
of CLTL, ;)(Ox) is decidable [BMS*06,DL0G].

The idea is to encode one state from a k-variable model into 3k states in
1-variable models. Only one state over three encodes values. Intermediate states
are used to know when a sequence of 3k states corresponds to a state in of the
k-variable model. For instance, if K = 2, then the 2-variable model below

(yl ) (y ) o

W=ofotyFototy=oFoFtyFoto..

where o denotes arbitrary values satisfying the mentioned relations with its neigh-
bors (each occurrence of o corresponds to a possibly distinct value). The begin-
ning of the encoding of some state from the 2-variable model satisfies that two
consecutive values of x; are identical. More generally, in the 1-variable model,
x = Xz holds true when the current position starts the encoding of a position in
the k-variable model and access to the value of X'z; in the k-variable model is
done via the term X3**3/z. We can impose that = Xz every 3k states and the
model is of length multiple of 3k by using the formula below:
o (x = Xx) A /\ Xz # Xx)A

0<i<3k



G(((x = Xa) AX*HT) & X (2 = X2)) AG((x =Xz) =\ X'T)

0<i<3k

which is equivalent to

e X(r=2) A\ X Loa X(r = 2) A =F((Jra X(r = ) AXPFHT

0<i<3k
AXF e X(r # 2)) V (L X(r # 2) V=XFTYAXE |20 X(r = 2))))A
Fllome Xr=2)A(\/ ~XT))
0<i<3k
This formula can be expressed in the simple fragment using the equivalences
(x) Fp =& oV XpV---VXNpVXNFLFg (and similarly with F~1) |
(**) O(lr:v 451 @ lrzz (bm) <:>Jz7':$ O(lr::p ¢1 K ® l?‘zm ¢m)
for all O € Oy and ® € {A, V}.

Formally, we define a map f over the set of CLTL® formulae such that:

def

(X) flzm = szn) = fllr=am Xi(r = 1)) =|,=x3ma Xgik(r = Xgnx>7

(0) f(@m = 020) = F(lrea, XF(r = 23)) =|,_xame XFFX30(z = Xz) A (r =
o f I)S) 7homomorphic for the Boolean operators,

o f(X¢) =X*f(9),

. f(ﬁb) = F((z = Xz) A f(¥)),

o f(X7lp)=X" 3’“f(¢),

o [(F'¢) =F ' ((x =Xz) A f(1)).

Finally, we can prove that any formula obtained by applying the map f is
equivalent to a formula in the simple fragment of CLTL%1 1)((91\;). We develop the

cases (X) and (0):

(X) Lexamy X3 (r = X372)
= X3m lr:m X3(ik7m) (T — X3nx)
Elr:x X3m lT:x X3ik7m+n(r — ZL‘)

(0) |rexsme X3FF(X73(x = Xz) A (1 = 1))
= X3 |, X3ETmE(X3 | X(r =2) A (r = 2)).
Elr:x X3m lr:x Xg(k_m)F(lrzz Xn \Lr::c X(T = .17) A (T = 33))

We can see that these formulae have one register, one free variable and all the
temporal operators are directly under the scope of a freeze quantifier. For the
temporal operators Oy we need to use (x) and (%*) to find an equivalent formula
in the simple fragment of CLTL%M)(ON).

The formula ¢ is satisfiable iff ¢, A f(¢) is satisfiable. O



