Conflict-Tolerant Real-time Specifications in
Metric Temporal Logic

Sumesh Divakaran Deepak D’Souza
Raj Mohan M.
Department of Computer Science and Automation,
Indian Institute of Science,
Bangalore 560012, India.

October 16, 2009

Abstract

A framework based on the notion of “conflict-tolerance” wasgmsed in [3, 4]
as a compositional methodology for developing and reagoaliout systems that
are composed of multiple independent controllers. A céntrtion in this frame-
work is that of a “conflict-tolerant” specification for a cooiter. In this work
we propose a way of specifying conflict-tolerant real-tinentcollers in Met-
ric Interval Temporal Logic (MITL). We call our logic CT-MII for Conflict-
Tolerant MITL. We consider the associated verification andtsesis problems for
CT-MITL and give decision procedures to solve them.

1 Introduction

A framework based on the notion of “conflict-tolerance” wasgosed in [3, 4] as a
way of developing and reasoning about systems that are cssdpaf a base system
along with multiple independent controllers that each enpént a certain feature for
the system. Such systems appear commonly in software imethamains, examples
of which include a telecom switch which provide#fdrent features to subscribers, like
call forwarding and call screening; or an automobile withesal time-dependent fea-
tures like cruise control and stability control. Typicathe controller for each feature
is developed independently, and the controllers are a&biratted together using a hand-
coded supervisory controller. Unfortunately in certaimfigurations of the system —
as the reader may well imagine for the example features omediabove — the indi-
vidual controllers may profer conflicting advises on how #ystem should proceed
next. These conflicts are typically resolved by suspendieddwer-priority controller
and then waiting for a “reset” state of the system beforearéag the controller. As a
result the system loses out on the suspended featurety dtiliing this period.

The framework in [3, 4] proposes a way of designing each odletrso that, based
on a priority ordering among the features, it is easy to casppiem in a way in

which each controller is utilised “maximally.” Thus eachntwller’s advice is taken
at all times except wheeachof its advised actions is in conflict with a higher priority
controller. The key idea in this framework is to specify arfi@t-tolerant” behaviour
for each feature, and then to build a controller for eachuieathat meets its conflict-
tolerant specification. Unlike a classical safety spedifice which can be viewed as
a prefix-closed language of behaviours, a conflict-tolespetification is aradvice
functionwhich specifies a safety language feschpossible finite behaviour of the
system. This is depicted in Fig. 1: If one considers the seillgiossible behaviours
of the system as a tree growing downwards, then part (a) shtwsvshaded “cone”
denoting a classical safety language, and part (b) depitcés stolerant specification
may look like, with safety cones prescribed for each posdilehaviour of the system.
A controller for such a specification must itself be “tolet’én that it not only advises
the system on what actions to take next (like a classicalrobart), but also keeps
track of possible deviations from its advice, and goes ordtdsa next events so as to
control thesubsequertbehaviour of the system. A conflict-tolerant controllerisfags

a tolerant specification given as an advice functioif after everysystem behaviour
o, the subsequent controlled behaviour of the system stayéwihe safety language

f(or).

Figure 1: (a): A classical safety specification and (b) a ¢artiblerant specification.

An important component missing in the framework of [3, 4}ie tbility to specify
conflict-tolerant specifications in a popular specificateomguage like temporal logic.
In this paper our aim is to fill this gap in the domain of reafheisystems, by proposing
a way of specifying conflict-tolerant specifications in Metinterval Temporal Logic
(MITL) [6, 2].

The logic we propose, called CT-MITL for “Conflict-TolerdvfiTL,” is a syntactic
fragment of MITL. A CT-MITL specification is a conjunction éérmulas of the form
O(p =), wheregy is a past-MITL formula, andg is a disjunction of formulas of
the formc, wherec is a system action or the symbolic evénihich stands for “time
elapse”. A CT-MITL formula defines an “immediate” advice @tion in a natural way:
at the end of any behaviour, we check whether the past formulas true, and if so,
advise a set of next actions that satigfy

The associated verification problem for CT-MITL is to chegkien a base sys-
tem® and a conflict-tolerant controll€r (both modelled as Alur-Dill timed transition
systems), and a conflict-tolerant specification in the fofra €T-MITL formula 6,
whetherC satisfies theadvice functionnduced by, with respect to the given base sys-
tem& (as described above). We note that an advice function isiargéa richer object
than a classical safety specification, and thus the veificgroblem for CT-MITL is
more general dierent than the classical verification problem for MITL. Imeeal, a

controllerC may satisfyd as a classical MITL specification, botay notsatisfy it as a
conflict-tolerant specification.

Nevertheless, we show that the verification problem, as agthe associated fea-
sibility and synthesis problems, for CT-MITL can be solvddoaithmically, using
essentially the same technique as for classical MITL [2].7TBe main step is to build
for a given past-MITL formulg a deterministic transition system that “monitors” the
truth of ¢ along every timed word it reads. The construction we givaspired by the
simplecompositionatonstruction of a deterministic timed automaton for a pASTL
formula given in [8]. However our technique is more genesaltéhandles the full
fragment of past-MITL and not just closed intervals as deng3]. Further our con-
struction for the main inductive step &9, which we term “delay-then-extend,” is
provably clock-optimal. In fact, we show that this step carirbplemented very sim-
ply using just two @&-the-shelf “delay” and “extend” components, available aols
like Simulink.

A more detailed technical report is available in [10]. Ougitoand techniques can
also be specialized easily to the discrete (untimed) spttindetailed in [11].

2 Preliminaries

For an alphabet of symbol& we denote the set of words ovérby A*, and bye
the empty word. LeR.o andQs(denote the set of non-negative reals and rationals
respectively. We will use the standard notation to desdntervals of reals. So for
example the interval (2] denotes the sdt € Rso| 1 <t < 2}. An interval isnon-
singularif the set it denotes is not a singleton set. Whenever copwenve use
(resp. ') to denote a left-open or left-closed (resp. right-openght-closed) interval
bracket.

A timed wordo overX is a string in £ U R,)* of the formdpaid;axd; - - - andn,
wheren > 0, do, dn € Rx0, dj € Roo for 0 < i < n,anda; € £ for 1 < j < n. We use the
notationdur(c’) to denote the duration ef, in this casey[,di. We use the symbal
to denote the empty timed word whose representation is 0.

Let o = doayd; - - -amdm, andr = ebqeyg - - - bye,, be timed words such that it is
not the case than, m > 0 andd,, = e, = 0. Then we define theoncatenatiorof o
andr, denotedr - T (or simplyor when clear from the context), to be the timed word
doayd; - - - am(dm + €p)bs€1 - - - bpen. We say a timed word- is aprefixof a timed word
7, written o < 7, if there exists a timed word’ such that- - o’ = 7. We denote the
set of all timed words oveE by TX*. We note that our timed words are essentially
Alur-Dill timed words except that we use a delay-based regméation and allow timed
words to end with delays.

It will often be convenientto view a timed wordoverX as a map from [Qdur(o?)]
to X U {6}, which tells us whether the event at tirhé [0, dur(c)] is an action point
a € X, or the symbolic events” which denotes a non-action point or “time elapse.”
Thus ifo = dpagd; - - - andp, for eacht € [0, dur(o)] we can define

0| & if n>0and3Ike{l,...,n}: t=321d
o(t) = 6 otherwise

By last(c) we will mean the value-(dur(c)) in £ U {§}. Fort € [0, dur(c’)] we use the
notationo [0, t) to denote the prefix af of durationt which does not end in an action
point. Thuso[0,t) = T wherer < o, dur(r) = t, andlast(r) = 6.

A timed languag®verX is simply a set of timed words ov&: A timed language
L is calledprefix-closedf whenevero € L andr < o, we haver € L. We denote by <
the prefix-closure ok. For a timed languagke € TX* and a timed wordr, we denote
by ext, (L), theset of extensionsf o- that are inL. Thusext, (L) = {r € TX* | o7 € L}.

We use a variant of Alur-Dill timed transition systems [1] iafh have “time can
progress” conditions [9] as state invariants, to model tysesns we consider. To
begin with letC be a finite set of clocks. Aaluationfor the clocks inC is a map
v: C — Ry We denote b)ﬁ the valuation which maps all clocks @to 0. For a
valuationv andt € R, by v+t we mean the valuation that maps eachC to v(x) +t,
and byv[0/X], for a subset of clockX of C, the valuation which maps eastin X to
0, and each in C — X to v(X). A clock constraint goverC is a boolean combination
of atomic constraints of the form ~ ¢, wherex is a clock inC, ~¢ {<,<,=,>,>}
andc is a rational constant. We write = g to say that the valuation satisfies the
clock constraing, with the expected meaning. BF(C) we denote the set of clock
constraints oveC.

A timed transition systef TS) over an alphabét is a structure of the forri =
(Q,C, s, —, tcp), whereQ is a finite set of state€; is a finite set of clockss € Q is
the initial state,~C Q x X U {e} x ®(C) x 2° x Q is a finite set of transitions, and
tcp: Q — @(C) specifies the condition under whitime can progress a given state.
A configurationof 7~ is a pair €, v) whereq € Q andv is a valuation for the clocks in
C. From a given configuratiorg(v) of 7, there are two kinds of transitions:

discrete: (q,V) 5 (q,v) wherece XU {e}, if (g,¢,09, X,) €= ,VvE g, andv = Vv[0/X].

delay: (q,v) 9 (g, v+ d) whered € Ry, ifforall0 <d <d, (v+d) [tcp(q).
A run of 77 on a timed wordr is a sequence of time points
O=th<ti<tr<---<t, Sthr]_:dur(O'),

with n > 0, along with a sequence of configuration§af(qo, Vo), (01, V1), - . ., (C2n+1, Voni1),
satisfying

— (Qo. Vo) = (Q, V)

—ti1

. 1
— foreachi € {1,...,n+ 1}, (Qi-2, V2i-2) — (Q2i-1,V2i-1)

— foreach € {1,...,n}, (O2i-1, V2i-1) 5 (02, V2i) Whereg; = o (t) if o(t;) € £, else
€.

The timed language df, denoted_(7"), is the set of all timed words on which
has a run starting from the initial configuraticn@). Similarly, we denote bYqw(7)
the language of timed words on whiéh has a run starting from the configuration
(q7 V)

We say a TTSJ is deterministicif there is at most one run of on any timed
word o € TZ*. A sufficient condition for7™ to be deterministic is that for every pair of

transitions ¢, ¢, 91, X1, ") and @, ¢, 92, X2, 9”’), the constraing; A gz is not satisfiable.
Similarly, for every state] € Q, and every transition(€, g, X, '), g A tcp(q) should
not be satisfiable. A TTS is completef there is at least one run 67 on any timed
word in TZ*. For a deterministic and complete TTS there is a unique run of on a
given timed wordr. Let (g, V) be the unique configuration reached®byon o- and let
us denote it byonfig-(c). Then we defind,(7") = Lconfig (o) (7)-

It will be convenient to sometimes use constraints over llo¢hstates and clocks
in a TTS. Aconfiguration constraint @ver a set of state® and a set of clock€ is
a boolean combination of atomic constraints of the far(fior g € Q) andx ~ c (as
for clock constraints). Once again, the notion of when a gaoméition €, v) satisfies
a configuration constraimgis defined in the expected way. A TTS with configuration
constraints is a TTS which uses configuration constrairste&d of clock constraints,
and the notions of runs, etc, are defined in a similar manntrasrS’s.

Let 71 = (Q1,C1, S1, —1, tep;) and T2 = (Qz, Cy, 2, —2, tcp,) be two timed tran-
sition systems, possibly with configuration constraint&grdhe same alphabEt We
assume that the set of clocky and C,, and state€); and Q. are disjoint. Then
the synchronized produadf 77 and 72, denoted by7: || 72, is given by the TTS
(Q1 % Q2,C1 UCy, (51, S), —, tcp) where— andtcp are defined as follows.

= ((p,9),9,¢, X (P, q)) e— if either there exist transitiong(g, ¢, X1, p’) €—1
and @, 92, C, X2, Q") €—2, andg = g1 A g2, andX = X; U Xp; or ¢ = € and there
exists a transitionf, g, €, X, p’) €—1, andq = ' (or vice-versa).

— tep((p) = tepy(p) A tepy(a).

We note that the synchronized products as defined aboveajeadhe intersection of
the timed languages(71) andL(7>).

Finally, we define the notion of an “open” TTS which we will nealse of in our
inductive construction of monitoring TTS's. AopenTTS (overX) with respect to
the pairwise-disjoint set of states and clo&sg C, ..., Qn, Cy, is a structureld =
(Q.C, s —,tcp), similar to a TTS ovek, that uses “open” configuration constraints
over Q;,Cy,...Qn, Cy. Openconfiguration constraints are boolean combinations of
configuration constraints ov€), C, and atomic constraints of the form.q (whereq €
Qi), and7;.x ~ ¢ (wherex € C;). Given TTS'sT; = (Q;,Ci, s, =i, tcp), we can define
the composition ofi/ and7, ..., 7, denotedld || 71 || - - || Tn, to be the TTS with
configuration constraints obtained by taking the paratbehposition ofi/, 71, ..., Th
as defined above, but where the constraiftg and7;.y ~ c are interpreted as the
configuration constraint§' ycoxg, x.-xq,, ui)=q U andy ~ c respectively.

3 Conflict-tolerant Controllers

In this section we recall some of the key notions in the remaéttonflict-tolerant frame-
work from [4]. We begin with the notion of a base system. Sorhéhe example
systems we use here are adapted from [4, 5].

A base system is modelled as a TTS over an alphabet compfssisgm” or “con-
trollable” events and “environment” or uncontrollable ete We call such an alphabet

a partitionedalphabet, and it is of the fornk{, Xs). We will use the convention that
¥ = ¥e UZXs. Letus fix a partitioned alphabeid, Xs) for the rest of this section.

Definition 1. A base syster(or plan)) over(Ze, Xs) is a deterministic timed transition
systenB overx, which we assume to lm®n-blockingn that wheneves- € L(8), then
ext;(L(B)) # {&}.

x> 2,rel, {x}
rel x =1, rel, {x} x> 1,rel, {x}
x = 1,rel, {x} x = 1,rel, {x}
x < 1,rel, {x} e el x < 1,rel, {x} X " x> 1,rel, {x} x> 1rel. (x)
x < 1,rel, {x}
1<x<2rel.(x
(@) (b) (c) (d)

Figure 2: (a) A base system, (b) a classical controller, andd) two conflict-tolerant
controllers.

Fig. 2 (a) shows a simple base system model which has onlyysitens eventrel”
(say for “releasing” a unit of lubricant), and no environrhewvents.

In the classical framework, a real-time safety specificatar a controller is given
by a prefix-closed timed language. A controller for a giveeebaystem satisfies this
specification if all behaviours of the controlled base systee contained in the speci-
fied safety language. For example, the TTS shown in Fig. (h)dlassical controller
for the example base system that ensures avent after every 1 time unit.

A conflict-tolerant specificatioon the other hand is a collection of safety lan-
guages, one foeachpossible behaviour of the base system. This is formalisexthas
“advice function” below, which advises a timed languageutiife extensions for each
possible behaviour.

Definition 2. A (real-time)advice functiorover an alphabeX is a mapping f: TZ* —
2™ which satisfies the following conditions:

— for every timed word- overX, f(o) is a prefix-closed language.

— f is consistent, i.e. for all timed words r overZ, if r € f(o) then flor) =
ext(f(0)).

An alternate way of describing an advice function isSramediateadvice function:

Definition 3. Animmediate advice functioaverX is a mapping g TZ* — 2*V19),

Given a timed wordr overX, and a timepoint € [0, dur(c-)], we sayo is according
to the immediate advicg at timet if o(t) € g(o[0, t)). The immediate advice function
g above, induces an advice functify: T=* — 2™ given by:

fy(o) = { 7 € TZ" | oris according tay in (dur(c), dur(o7)]}

where (" = T if o(t) = 6 and ‘(' otherwise. It is easy to verify that the two conditgon
in Def. 2 are satisfied by, and hence that it is a valid advice function.

A conflict-tolerant controller is similar to a classical ¢miler which synchronizes
with the base system and controls the choice of possiblesysx¢m events available
to the base system. The mairffdrence however is that a conflict-tolerant controller
also keeps track of the system events thatag@nstits advice, and goes on to con-
trol the subsequentehaviour of the system. A real-time conflict-tolerant colir is
modelled as an annotated TTS described below.

A conflict-tolerantimed transition system (CTTS) ovBis atuple7” = (7, N, tcp)
where7 = (Q,C, s, —, tcp) is a deterministic TTS oveX, N C— is a subset of tran-
sitions designated awt-advisedandtcp’ is the advised time-can-progress condition
for states of/”. Let (g, V) be a configuration of the TT&. Then theunconstrained
language generated By’ starting from @,v), denotedL) (7), is defined to be
L(qv)(‘T) The constrainedlanguage generated By’ starting from €, v) is denoted

(‘T') and defined to bé, v)(‘i') where7 is the transition system obtained from
‘T by deleting all not-advised transitions (i.e. transitiam&) and replacing the time-
can-progress conditiottp by tcp’. Let o be a timed word irL(7"). Let (g, V) be the
unique configuration reached By on o~. Then, the constrained extensionsogfde-
notedLS(77), is LC (‘T') Thus a CTTS can be viewed as working in two “modes”:
tracking (correspondlng to the unconstrained behaviour) asdsing(corresponding
to constrained behaviour). Finally, we s@y is completew.r.t. a timed language
LCc T if L C L(7).

Definition 4. A conflict-tolerant controlle€ for 8 is a conflict-tolerant TTS ovet
that is complete with respect tq®).
The controllerC is valid wrt B if

— Cisnon-restricting If oe € L(8B) for some environment eventes,, thenoe e
LE(C). Thus the controller must not restrict any environment éeegnabled in
the base system aftanybase system behaviowtt

— Cis non-blocking If o € L(8B), then LS(BIC) # {&}. Thus the controller must
not block the base system aftarybase system behavioot

We now describe when a conflict-tolerant controller satsigiven conflict-tolerant
specification with respect to a given base sysf&m

Definition 5. Let f be a conflict-tolerant specification in the form of an i@dvunc-
tion overX. A conflict-tolerant controllelC for 8 satisfiesf if for eacho € L(8),
LE(BlIC) c f(o). Thus afteranybase system behaviouwr, if the base system follows
the advice o, then the resulting behaviour conforms to the safety lagguféor).

Fig. 2(c) and (d) show two conflict-tolerant controllers floe example base system
in Fig. 2(a). In the figure we use the convention that the ‘abtised” transitions are
shown with dotted arrows, and the advigeg conditions are shown in the state (the
trackingtcp conditions are all true). The first tolerant controller'sibeiour is to advise
arel event 1 time unit after the lagtl event, no matter when it took place. On the other
hand, the second tolerant controller in part (d) also adwasel event after 1 time unit
if the last tworel events werexactlyl time unit apart or “punctual”; but if the last two
rel events werdessthan 1 time unit apart (“early”) it advisesral event after 2 time
units, and if the last twoel events werenorethan 1 time unit apart (“late”) it advises
arel event after 0.5 time units. The states of the controller aaeked “P”, “E”, and
“L” for “Punctual”, “Early”, and “Late” respectively, andéep track of this property
for the last tworel events.

We note that aslassicalcontrollers, both the controllers have the sartiect as the
classical controller in part (b): behaviours that are aalfed according to their advice
will always be (prefixes of) behaviours of the form «(lel)*. However agolerant
controllers their behaviours are quitéfdrent. We will return to these examples in the
next section when we illustrate our logic for specifyinget@int specifications.

4 Conflict-Tolerant Metric Interval Temporal Logic

In this section we present our logic for specifying realdioonflict-tolerant specifica-
tions, called CT-MITL. Our logic is based on the well-knowméd temporal logic
Metric Interval Temporal Logic (MITL) [2] which is a populdogic for specifying
real-time properties.

We begin by recalling the syntax and semantics of MITL. Thatay of an MITL
formula over an alphabé&tis given by:

:=T|L|lal-0]0VveO|6U0]06S06

wherea € X andl is a non-singular interval with end points@.o U {co}.

We interpret formulas of MITL in a “continuous” manner ovenéd words. Letr
be a timed wordt a timepoint in [Qdur(c)], andd an MITL formula. Then we define
the satisfaction relation, t = 6, as follows. We always hawe t = T ando, t £ L. In
addition we have:

o,tEa iff o)=a

o, tEOU6, iff " >t:t”"-telando,t” E 6 and
VWit<t <t ot E 6

o,tE0:S6, iff " <t:t-t"elando,t” E 6 and
Yt <t <t,ot E 64,

with the boolean operators interpreted in the standard Waynote that we have used
versions of the “Until” and “Since” operators that are “sttiin both the arguments, as
is often done when the underlying time domain is dense.

We will make use of the following derived operator§: = —\/ s @, ¢Sy =
dSp,.c)¥, INit = —(TST) (init thus characterizes the timepoint @6 = TU,6,
016 = =10, ©10 = TS0, and@, 6 = ~S 6.

For an MITL formulad and a timed wordr, we sayo E 6 iff 0,0 E 6. We set
L) = {oc € TZ" | o E 6).

The “past” fragment of MITL is obtained by disallowing theoperator. We will
make use of the “strict past” fragment, denoted MpTWwhich are past MITL formulas
which are not a boolean combination of formulas, one of wigcbf the forma for
somea € X. Thus an MITL formula cannot refer to the current time point. For an
MITL p formulagp, we will sayo E ¢ to mearo, dur(o) E ¢.

We can now introduce the logic CT-MITL.

Definition 6. A Conflict-Tolerant MITL(CT-MITL) formula over an alphabét is an
MITL formula# overX of the form

where n> 0, and for each ie {1, ..., n}, ¢; is anMITL p formula andy; is of the form
Vcex, € for some X< X U {6}.

The CT-MITL formulad given above induces the immediate advice functipn

T — 2299 given by:
Go(0) = ﬂ Xi.
i€{l,...k}, oEgi

We use the convention that the intersection of an empty cadle of sets is the univer-
sal set, in this casB U {6}. Thus, ifo- is such that none of thg's is true at the end of
o, then the immediate advice given gyon o is the se U {¢}. Finally, we will write
fy to denote the corresponding advice functign

We now give a few examples to illustrate the logic. Returrilmgur example base
system of Fig. 2(a), we give a couple of conflict-tolerantcsfi@ations in CT-MITL.
For convenience we use notation of the formZ1” to denote the interval [ko).

Example 1. TheCT-MITL formula6, below specifies an immediate advice function
“advise arel event if one or more time units have elapsed since therédstr init
event, and time elapse otherwise”

O(((—rel) Ss1 (rel vinit)) = rel) A (&< (rel vinit)) = 4)).

The tolerant controller of Fig. 2(c) can be seen to satisfg tonflict-tolerant specifi-
cation w.r.t. the base system of Fig. 2(a). O

Example 2. The CT-MITL formula 8, below advises ael event after 1 time unit
(respectively 2 time units and 0.5 time units) depending bether the last twael
events were 1 time unit apart (“Punctual”), less than 1 timatwapart (“Early”), or
more than 1 time unit apart (“Late”).

O(C (((=rel)Ss1P) = rel) A (((-rel)S<1P) = 6) A
(((—rel)Ss2E) = rel) A (((=rel)S«2E) = 6) A
(((—rel)SspsL) = rel) A (((-rel)S<osL) = 9)),

10

lock-req, unlockreq, lock-req, unlockreq,
crash ok crash ok

SN
% /\@

~_ -

unlock

Figure 3: The door motor base system.

where
P = initv (rel A ((-rel)S-yrel))
L rel A ((—=rel)Ss1rel))
E = relA(Sarel)).

The tolerant controller of Fig. 2(d) can be seen to satisg/tthlerant specification given
by this formula. O

It is interesting to note that viewed as classical MITL sfieations, bothp; and
6, describeexactlythe same timed languagé(6;) = L(62) = (1-rel)*<. However,
as illustrated by the examples, the tolerant specificaiiwhsced byd, andd, are very
different. The controllers in Fig. 2 each satisfies its respespecification, but not the
other’s. Further, for an CT-MITL formuld, we always hav&.(6) = fy(¢). Thus the
timed language denoted Iycorresponds to the initial safety cone of the tolerant spec
denoted by.

As a final example we look at a couple of features for a car domonmsystem,
adapted from [4]. The base system here (shown in Fig. 3) reaehr door motor,
which has environment everits = {lock-req, unlockreq, crash ok} and system events
¥ = {lock, unlock}. The “Overheat Protection” feature aims to protect the mivton
overheating due to the excessive locking and unlocking ofslwithin a short period
of time. It recommends that if twlnck events occur within 30 sec the system events
lock andunlock be disabled for 180 sec.

Example 3. A possible tolerant specification for this feature is:
O((© <1so(lock A & <zolock)) = 6 v eny.
Here env stands for the formuldes, €. Fig: 4 shows a possible tolerant controller

that satisfies this specification. O

Example 4. The “Crash Safety” feature for the door motor requires thiaicrash
occurs, then unless an ok event occurs the door must be @dadkhin 15 seconds,
and kept unlocked till an ok event occurs. A possible tolespecification for this
feature is:

O(((=(okv unlock) Sciscrash = (6 v unlock v eny) A
((=(ok Vv unlock) Ssiscras = (unlock v eny))).

Fig: 5 shows a tolerant controller satisfying the crash safgpecification above. O

11

—lock —lock y < 18Q unlock
/Q lock /Q x < 30, lock, {x, y} U(x < 30) A (y < 180) lock, (X, y}
N \Cj ~ -7 (x> 30) A (y < 180) lock, {x}
(x < 30) A (y > 180} lock, {x, y}
x> 30, lock, {x} (x> 30) A (y > 180) lock, {x}

env

Figure 4: A controller for overheat protection.

lock-req
lock-re
unIock-rgq unlock-req
0 ok crash

lock crash {2}

z< 15

U crash

Figure 5: A controller for crash safety protection.

We can now define the natural verification and synthesis problfor the logic
CT-MITL.

Definition 7. (Verification Problem for CIMITL) Given a base systef overX, a
conflict-tolerant controlleiC for 8, and aCT-MITL formula#g, check whethe€ is a
valid conflict-tolerant controller fo3 which satisfies the advice function f

Definition 8. (Synthesis Problem for GMITL) Given a base systefoverX, and a
CT-MITL formula#, check whether there exists a valid conflict-tolerant colfgr for
B which satisfies the advice function ff so, construct one.

5 Monitoring Timed Transition System for MITL p

The main step in solving the verification and synthesis noisl for CT-MITL is the
construction of a “monitoring” TTS for a given CT-MITL spdiciation. Without loss
of generality we assume that the specification uses only tigalities untimeds and
&. The modalityS, can be expressed in terms®fand@ as follows:

S12 A By (@1 A (1Se2)) if 1 =[l,r),I >0
©1S192 =1 S192 Ao (1 A (p1Se2)) if | =(,r),1>0
Q192 A 1S9z if I =(0,r)

12

We also assume the standard notion of subformulas: thusutifersnulas of the for-
mulay = aS(Sz(bV & 0)0)) arep, a Sz (dV S 0w)C), bV ©(0.w)C by S 0.00)C
andc. Thepositive subformulasf a formulap are all its subformulas which are not of
the form—y and we denote the set of all positive subformulag bf psf(y).

A monitoring guard gover a set of state® and clock<C is a boolean combination
of configurations constraints and constraints of the foahfér a € £. A monitoring
guardg is evaluated over a triple(q, v), wherec € £ U {6}, g € Q, andv is a valuation
overC, as follows: €,q,v) E giff g is a configuration constraint and,¢) E g; and
(c,q,v) Eaiffc=a.

Let ¢ be a MITLp formula. AmonitoringTTS (MTTS) for ¢ is a pair (", ,)
where7,, is a TTS with configuration constraints aggis monitoring guard wri,
such thatto € TX", 0 = ¢ < (last(o), config-(0)) E 9.

Lemma 1. Given anMITL p formulae we can gectively construct an MTT@, 9,,)
for ¢.

Proof. We prove this lemma by induction on the structurepofThe only interesting
cases ar@ 1Sy, andS . Letg = y1Sy,. By induction hypothesis there exists an
MTTS 7, and7,, with g,, andg,, are the monitoring guards. L&, s, be the
OpenTTS as shown in Fig: 6. Then the TTg sy, || 74,117y, is @ monitoring TTS for

Y1Sy2 With gy,sy, = (L A (X > 0)) V (G2 A (x = 0)).
[(=0y; A —0y,), (X}

[(9y; A —0y,), {X}m/\m
@ [9y,.{x} @\/ Z

2
o o1 I8y (X)

Figure 6: OpenTTI,sy,.

As an exercise let us construct an MTTS for the formulay = & r)a before
dealing with the general formulg,y. Our construction fop is based on the inductive
construction givenin [2] and [7]. For easy understandindegin with a brief descrip-
tion of 7,. 7, reset clocksx andy whena occurs for the first time. Whea becomes
true next time ify < r — | then we resey again as we can safely ignore the fact that the
formulaa has been false since the previous reset ahd ify > r — | we reset a fresh
pair of clocks (see [2] for details and Fig: 7 for an illusioaf). Once the value of the
clocky goes beyond, the values of the clocksandy are of no use and can therefore
be reused. Thug, needs to reset at most a pair of clocks in any interval of isizé
and therefore we conclude that the maximum no. of clocksiredy 7, is at most
2+[r/(r—1)1. And the monitoring guard of, is given byg, = \/;Z} ((x >) A(yi <))
wheren = 2x[r/(r —1)1. As an example MTTS3, , ,a along with the monitoring guard
9, = VIZ2 (% > 1) A (i < 2)) shown in the Fig: 8.

Let us now construct a monitoring OpenTTS for the form@lany 1. As a first
step, for a monitor guargllet us introduce the notation for theft-closureof g, denoted

IMTTS for other cases can be constructed similarly.

[g.

13

a ba a
o1 I B S N S
0 1 200 3 2> s
SO@za: I T T T T T T T
0 1 2 3 4 5 6 7

Figure 7: Truth value fo> »a overo.

-a -a a
m m y1 218 {X,Ya}
O A
N & {X1,Y1, X2, Y2} U U
Y2 2 1,8 {xg,y1}
y1<1a{y} Y2 < 1,a,{yz}

Figure 8:7¢ ,,a-

[lu = vuueQUZ,
[(x<c) = x>cxe€({>2>}
[(x=<cC) = Xxxc,xe({<,<},

[(Q1VvVe) = [01VIg,
[(Q1AQ) = [91AIlG,

wherec is a rational constant. Symmetrically we can define the rostag]]. For a
monitoringg, we define[g] = ([g) Vv (o).

Coming back to the construction, by induction hypothesisglexists an MTTS,

fory. Letn=[r/(r —)] and for each € {1,...,n} let fi = =gy, {yi} andg; = ([9y) A
(yi <r—=1),{y;}, and foreach € {1,....n—1} leth; = ([gy) A (y = 1 =), {Xi11, Yi+1}.
Let U, be the OpenTTS shown in Fig: 9. The®{||7,[7y,.9,) is an MTTS fory
with g, = V=% > 1) A (3 < 1)

(9, Y =1 =1 {X1,y1}

Figure 9: OpenTTS for the formul& ryy.

14

5.1 Our Construction

In this section we propose an alternate constructiojowheny = & . We call

our constructiorelay-then-extendr DTE for short. Our construction uses an optimal

number of clocks and in general it uses one clock less thacdhstructions in [2, 7].
So let us begin with a brief discussion ©f which monitors the formuled na.

T, reset clock, called aleading clock andy, called thetrailing clock of x whena

occurs for the first time. Whea becomes true next time if clock valye< r — | then

T, resetsy again. Thus when a clocK(# y) is reset next time the clock value pis

at leastr — | and as we shall see, this fact is crucially used in our coastn. When

the clock value ofy becomes, 7, resets a clock, which remains active until it turns

r — 1. This enables the TTS to reuse the clogkandy as soon as value gfbecomes

| and the clockz when its value becomeas- I. As the trailing clock ofx’ becomesg

the clock value ot will be at leastr — | because wher' was reset the value gfwas

at leastr — | so the clockz can be reused. Fig: 10 illustrates our idea for the formula

¢ = ©a2a TogmaWith g, = ViZT (% > D) A (ViZi(pi A (2< 1)) andE’ = £ - {a)

is shown in Fig: 11.

QA [e

a, {X1, Y1, X2, Y2}

OBk

y1 < 1,-a)
y1 <1 a{yi}

Figure 11: Monitoring TTS ¢,

Thus, as7, needs to reset at most a pair of clocks in an interval of size, we

15

conclude that the maximum no. of clocks required/yyis at most 2« [1/(r —)]+ 1.
Itis easy to extend the above construction to any given MIfiitmula which is of the
form & yw. Thus we conclude that:

Theorem 1. For anyMITL p formula$ 1y there exists a monitoring TS for it which
uses at mo=2 « [1/(r —1)] + 1 clocks.

Let us now compare the monitoring TS for formulay given by AFH construc-
tion with the monitoring TTS/p given by our construction. Iffa, ¢ is true at any
point if the guard X > I) A (y < r) is satisfied at that point. In our construction as we
reset a clock when the clock value of becomed the formulay is true at any point
if the guard (kK >) A (y < 1)) v (qA (z < r —1)), whereq any state inTp except
possibly the initial state, evaluates to true at that pdmfp, we use 2:[l/(r - 1)1+ 1
(= 2n + 1) clocks whileT 4 uses 2 + 2 clocks. Thus the region automatonyf has
lesser no. of states than the region automatonfThus from the verification point
of view DTE is more éicient than AFH. Let us now superficially compute the size of
the region automaton yield B§p and7a. In 7p all but one clocks are compared with
only I and one clock is compared with- |. Thus the no. of regions induced by the
clocks in7p is at mostcy = 2nl-2"- (21 +2)?". In T4 (n+ 1) clocks are compared with
and the rest of the clocks, i.en € 1) clocks, are compared withand therefore the no.
of regions induced by the clocks i is at most, = (2n+2)-2™1. (21 +2)"- (2r + 2)".
Thus the space complexity @1 is O(c1) while that of74 is O(cy).

5.2 Optimality of DTE construction

In this section we prove that our construction is optimakinrts of no. of clocks used,
i.e. there exists a formula of the foré ¢ such that any monitoring TTS for it will
have at least 2 [I/(r — 1)] + 1 clocks. We do this by showing that there exists timed
word o such that in order to monitar for the formula&na for somea € X any
monitoring TTS requires at leastZ1/(r —1)] + 1 clocks.

Let us fix somea € X and letp = & na. For the purpose of contradiction lets us
assume that there exists an MTT&,(g,) for ¢ which uses 2Tl/(r — 1)1 (= 2n) clocks
Viz, X1,¥1, -+ , Xn, Yn- LetC be the setxy, Y1, -, Xn, Yo} @and letQ be the set of states
of 7. Without loss of generality let us assume thate N and7, uses only integer
constants. Now let- be a timed ovefa} satisfying the following conditions:

— do = 0, |or|(no.of action points irr)=2n + 2 anddur(c) = Zi=3"1d;.
— foreach € {0,...,n}, ty,1—ty = eand foreach € {1,...,n},ty—tyi1 = r—l+e.

wheret; = £I=2"1d; and 0< € < (r — I)/(2n + 2).
Letp to be the unique run of, ono an letv(x) be the valuation of clock at time
t along this run.

Definition 9. Forany t u € [0, dur(c)], IDiffi(u) = {xe C | (u—1t) — vy(X) € Z — {0}

Lemma 2. For any two time pointgit, € [0,. .., dur(o)] ifforallt € (t, t2) IDiffi(t) =
0 then for all monitoring guards g over C and @,t |= g for some & (t1,t2) iff o, t = 0
forallt € (t, t2).

16

As T, is deterministic lemma 2 implies that for everyg {0, - - - , 2n—-1}, IDiff; (t; +1) #
0 and for every pointif 7, does are-transition at on o thenIDiff;(t) # 0. Then from
the above facts and from the definitionlBfiff one can deduce that:

Lemma 3. For any two distinct pointsitty € {to, . . ., tons1}, IDiff, (U) N IDiff,(U) = 0
for all u € Ryo.

Lemma 4. Let u = ti + | for some0 < i < 2n+ 1 and let x € IDiff;(u). Then
x € IDiff; (t +t) for all't € (U — vu(x), u].

Proof. Letw = u — v,(X) be the last point befora where the clockx is reset. As
x € IDiff; (u), w — t € N* and for anyt € (u— vu(X), u], t(x) = t —w. This implies
xe IDiffy(t)as (—ti)) — (t—-w) =w—-t € Z-{0}. O

Corollary 1. IDiff;(ti +t) # 0 for all t e (&, u].

Proof. As the clockx is reset atv, due to the properties of, w is point ofe-transition

in the runp of 7, on o. Then as mentioned earlier there exists a clock such that
y € IDiff; (w) and therefore by lemma 4 for dlle (w — v (y), W], y € IDiff; (t). Note
thatvy(y) > 0. Letw’ be the last point before where the clocl is reset. Again due

to o, W' is point of e-transition in the rup. Thus we have thdDiff; (ti + t) # 0 for all

t e (t, u]. O

Lett be a point such thd,,; <t < n=(r —1). Then by lemma 3 and corollary 1
we have that for everiye {1, - -, 2n+ 1}, IDiff; (t) # 0. As T, uses at mostr2clocks it
follows that there exist distingt j € {1,...,ton,1} thatIDiff; (t) N IDiff; (t) # 0, which
is a contradiction by lemma 3. Thus we have:

Theorem 2. DTE is optimal in terms of no. clocks.

5.3 An Example MTTS Construction

Example 5. Let us construct an MTTS for the formua= & <1gp(lock A & <30l0CK).
Recall thaty is the premise of the specification for the feature overhesgption given
in section 4. As a first step let us first compute the sgigsf

psf(e) = {S<1go(lock A & <3pl0ck), lock A & <3plock, & <30l0Ck, lock]}.

Now it is not dificult to see that th&8 TS shown in Fig: 12 is an MTTS fo€ <3glock
With g _slock = T aglock-(P1 A (X < 30)). Let 9= g _ygl0ck @and let?d, be theOpenTTS
shown in Fig: 13. Thef/,||T o ok 9y IS @n MTTS forp with g, = U,.(p1 A (X <
180)).]

6 Verification

We can now solve the verification problem for CT-MITL using tbonstruction of a
monitoring TTS in the previous sections.

17

—lock -lock g_,‘glgck, ¢ :Igoc;k,
mlock,{x} Q m g, lock, {x}

@ lock, {x} @ Q g lock, {x}
Figure 12:7°¢ _jjock- Figure 13: OpenTT3,.

Theorem 3. The verification problem fo€T-MITL can be solved in EXPSPACE.

Proof. Let 8 a base system over an alphabge€ a conflict tolerant controller angla
CT-MITL specification. It is easy to see that a necessary afittient condition foilC

to be a valid controller fo8 and satisfying, is to check that in the synchronized prod-
uct B||C||7», there doesot exist a configuration [p, g), v) which is reachable from
the initial configuration &z, . Sr,). 6), and satisfies one of the following conditions:

1. Cis restricting: there exists € X, such that @ transition is enabled ab(Vv) in
B but is not allowed by at (p, V)

2. Cis blocking: there is no discrete or delay transition thariabled at (g, p), v).
Recall our assumption th&is non-blocking.

3. C does not satisfy: There exist € X U {§} which is enabled at £ p), V) in
Bl Cbutc ¢ Micu....n. @kg, Xi-

All the conditions above can be checked in EXPSPACE usingetjien graph[1]
of the synchronized produ@|C|| 7. O

7 Synthesis

In this section we synthesise a conflict-tolerant contr@led prove that the controller
meets the specification given by the user. So let first defireg wk mean by the com-
position of conflict-tolerant controller. L&t; = (71, Ng, tcp;) andC» = (72, N, tcp,)
be two conflict-tolerant controllers. Then the synchrodigeoduciC; || C» is given by
(711l 71, Ny X Np, tep; A tep,).

Let us now give a brief account of how we synthesise a cortiiietrant controller
for a given CT-MITL specificatiod = O(A{Zj(¢i = i)). First we construct
a monitoring TTST, for every formulayg; occurring in the specificatiof. Let U,
be the conflict-tolerant OpenTTS shown in Fig: 14 witp conditionh = T if § € X;
and—-g,, otherwise. Letq,,, g,,) be the conflict-tolerant TTS given by the composition
U, || T4 Itis not difficult to argue that the resultant controkgy is indeed a conflict-
tolerant controller which advises whenevery; is true andx otherwise. Finally we
argue that the controll&?, given by the composition of the controllegs,, ..., C,, is
a conflict-tolerant controller satisfyiry

Theorem 4. Given a base systeff and aCT-MITL specificatiory overX, we can
check if it isfeasibleto construct a valid conflict-tolerant controller f@® that satisfies
0.

18

—\gw,z

ﬁ@? 0o - Xi
)

9> Xi — {0}

Figure 14: OpenTT34,,.

Proof. We claim that there exists a valid controller fBisatisfyingg iff in the synchro-
nized productB||Cy, there does not exist a configuratiob,(d), v) which is reachable
from the initial configuration &, <,), 0), and satisfies one of the following conditions:

1. Cyisrestricting: there exists € X such that a transition is enabled ab(Vv) in
B but is not advised bgy at (p, v)

2. Cis blocking: there is no discrete or delay transition thatriabled at {, p), v).
Recall our assumption th& is non-blocking.

If such a configuration [g), v) exists, then clearly a controller cannot be valid for
and satisfyCy at the same time. Conversely, if no such,), v) exists, therC, itself
is a valid controller foB that satisfies .

The condition above can be checked using the region graphfdi 8||7,. We can
check whether a bad configuration satisfying one of the ¢mmdi above is reachable
in R in time linear in the size oR. The size of the region graph is exponential in the
number of clocks and the maximal constants in the guards|of.

m]

Let us now return to the example given in section 5.3 to itatstour construction.
Consider the conflict-tolerant OpenT &g shown in Fig: 15.

=0, 2

-

b
o5
Figure 15: OpenTTS;.
Since the guard, is the monitoring guard fap in the OpenTT ¢, _,jiock it IS straight-

forward to see that the CTTS given I84||U, || Ue_,lock Meets the specification
¢ = 0.

19

8 Signal Controller Synthesis

In this section we discuss the synthesis of conflict-tolecantrollers using the widely
used signal porcessing circuits. The advantage of this adetiver the automata-
theoretic approach is that the controller implementatsomore user friendly as it can
be made with &-the-shelf electrical circuits. As a result the conflictetant controller
synthesis is much more simpler anti@ent. We will not discuss the implementation
details of the circuits as it outside the scope of this work.

A binary signals can be viewed as a map from a closed intervat]@ the set
{0,1}. We callr theduration of sand we denote it bgur(s). We define the boolean
combinations of two signals with same durations in the etqibway. Letl, k € Qso.
Then we define thedelay signalof s to be the signali® given by vt € [0,1), ui(t) =
O,Vt > I, ud(t) = st - 1) anddur(u?) = dur(s) and thek-extension signadf s to be
the signalvg given byvt : 0 <t < dur(s), Vi(t) =1 & It <k st-t)=1
anddur(v;) = dur(s). Let¢ be an MITL, formula ando, a timed word over an
alphabet. Then bysg we denote the binary signalsuch thadur(s) = dur(c) and
Yte[O,...,dur(o)],otE ¢ — 9t) = 1.

A k-arity signal circuitis a circuit which takeg binary signals with equal durations
as inputs and produces a binary signal as the output whos#i@uis same as that of
its input signals. Letb be ak-arity signal circuit and lets, ..., s be thek input
signals of® with durationsr. Then we denote the output signal ®fat timet by
®(sy.. ... S)() and byd(s;, ..., s) we mean the signa such thatdur(s) = r and
Vte[0,...,r],S(t) = (st . .., s)(t). Letact = \/i=] a. Then amonitoring circuitof
an MITLp formulag is a 1-arity signal circuifl, such that for alb- € TZ*, I4(S5) =
s;- And anopen montioring circuifor ¢, denotedd,, is inductively defined as follows:

D, 1 Vo eTZ, Dy(0) = 55, wherea e X,
Dy 1 Vo eTE 0 u(s) = &7,
(le\/wz . Yoe TZ*,(Dw1V¢2(S(LZ—1, 53;2) = 53;1 \% 53;2,
chPlSl//z D YoeTx, (leiSlbz(gL;l? gl;z) = SLIZSI,DZ’
(D@H/, . Yoe TZ*,(D@H/,(S(J;) = %H//'
Lemma 5. For anyMITL p formula¢g we can construct a monitoring circul, for it.

Proof. We prove the lemma by structural induction ¢n The circuits for the base
cases and the boolean combinations are trivial. The ondgyesting cases ag Sy,
and$y. So lets start witly = 1 Siy». By induction hypothesis there exist monitoring
circuits I, andIl,, which output signalsj andsj, respectively. Then the figure
shown in Fig: 16 is an open monitoring circuit forwhich when fed with signalsy,
andsj, outputs the signa]. Now one can easily construct a combinatorial monitoring
circuit IT, for ¢ usingIly,,,IT,, and®,. We skip the implementation details of the
circuit.

Lety be an MITLp formula and letp = & . Inductively, we assume that the
circuit I1, is already constructed and its output siggalis available to us. Then we
construct an open monitoring circul, for ¢ using two important elements:delay
element andr(- I)-extension element. Given an input sigrsathe I-delay element

20

CuU

Sis| [
gt;l jj i&,’/z

Figure 16: An open monitoring circui, for y1Sy..

outputs the signal® and thek-extension element outputs the sigmal The schematic
diagrams for thé-delay element and (- |) extension element are given in Fig: 17 and
Fig: 18 respectively.

- . "
— — T
(-1

Figure 17:I-delay element. Figure 18: (— I)-extension element.

Then the circuit shown in Fig: 19 is an open monitoring citéoil ¢ which if given
the input signals generates; as the output signal. It is notfticult to see that the
circuit @, is essentially derived from the DTE constuction we mentibimesection
5.1. Once again we can construct a combinatorial monitariregit I, for ¢ usingIl,

andd,.
up cu
A
[(r-1

Figure 19: An open monitoring circui, for ¢.

SG

2

As a simple exercise, a sample input signal to the open mamgtaircuit o, ,
and its output is shown in Fig: 20. The intermediate sigljais also shown in the
figure.

]

A n-signal demultiplexeor n-demux is a demultiplexer circuit with one input line
andn output lines. For eache {1,...,n} we denote each line of the n-demux by
LetS = {a.....a)) and letd = O(AZ)(¢i = 1)) be a CT-MITL specification
overX. Then aconflict-tolerant signal demultiplexer CT-demux for short, fof is an
(n+1)-signal demux such that when given the input sigglactivates the output line

21

=10 — — 10—
S [T T T T
< \\\\ i
v . .
7777777777777777777777 — T
ulAO' I !
\ o \ \ \ \

0 0.5 12 15 22 25 3.0 35

Figure 20: A sample input signal tb, , ,, and its output signal.

li iff & € Mo Xi @NdIny1 iff 6 € Ny, Xi forall t € [0, ..., dur(s])]. A schematic
diagram for a conflict-tolerant signal controller #is given in Fig: 21.

Ins1

=N

Figure 21: A schematic diagram for a conflict-tolerant coltér for 6.

Thus we have that:

Theorem 5. Let n> 1 and letX be an alphabet. Let be aCT-MITL specification.
Then we can construct a conflict-tolerant signal controlidrich meets the specifica-
tion 6.

9 Discussion

We have proposed a way of specifying conflict-tolerant teaé specifications in

MITL. We believe this is a useful addition to the conflictécdnt framework of [3, 4],

as it is more natural for a user to specify properties in teraldogic. We use a clock-
optimal construction for building a monitoring TTS for ti§g, , & inductive step, based
on a “delay-then-extend” idea. We also use this idea to desigple controllers using
standard “delay” and “extension” components.

References

[1] Rajeev Alur and David L. Dill. A theory of timed automat@heor. Comput. Sgi.
126(2):183-235,1994.

22

[2] Rajeev Alur, Tomas Feder, and Thomas A. Henzinger. Téwekits of relaxing
punctuality.J. ACM 43(1):116-146, 1996.

[3] Deepak D’'Souza and Madhu Gopinathan. Conflict-tolefaatures. In Aarti
Gupta and Sharad Malik, editor6AV, volume 5123 of_ecture Notes in Com-
puter Sciencgpages 227-239. Springer, 2008.

[4] Deepak D'Souza, Madhu Gopinathan, S. Ramesh, and Pialdeadan Sampath.
Conflict-tolerant real-time features. REST pages 274—-283. IEEE Computer
Society, 2008.

[5] Madhu GopinathanConflict Tolerant FeaturesPhD thesis, CSA Department,
Indian Institute of Science, 2009.

[6] Ron Koymans. Specifying real-time properties with netemporal logic.Real-
Time Systemg(4):255-299, 1990.

[7] Oded Maler, Dejan Nickovic, and Amir Pnueli. Real timengoral logic: Past,
present, future. In Paul Pettersson and Wang Vi, ediEE@BRMATSvolume 3829
of Lecture Notes in Computer Scienpages 2—16. Springer, 2005.

[8] Oded Maler, Dejan Nickovic, and Amir Pnueli. From mitlticmed automata. In
Eugene Asarin and Patricia Bouyer, editéf®RMATS volume 4202 ot.ecture
Notes in Computer Sciengeages 274—-289. Springer, 2006.

[9] Joseph Sifakis and Sergio Yovine. Compositional speatifon of timed systems
(an extended abstract). 8ymp. on Theoretical Aspects of Comp. Scigpages
347-359, 1996.

[10] Raj Mohan M. Sumesh Divakaran, Deepak D'Souza. Conrflaerant Real-
Time Specifications in Metric Temporal Logic. Technical RepllSc-CSA-
TR-2009-9, CSA Department, Indian Institute of ScienceQ20 URL:
http://archive.csa.iisc.ernet.in/TR/2009/9/.

[11] Raj Mohan M. Sumesh Divakaran, Deepak D’'Souza. Conflaerant
Specifications in Temporal Logic. Technical Report [ISCACER-
2009-8, CSA Department, Indian Institute of Science, 2009.URL:
http://archive.csa.iisc.ernet.in/TR/2009/8/.

