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Abstract

A framework based on the notion of “conflict-tolerance” was proposed in [3, 4]
as a compositional methodology for developing and reasoning about systems that
are composed of multiple independent controllers. A central notion in this frame-
work is that of a “conflict-tolerant” specification for a controller. In this work
we propose a way of specifying conflict-tolerant real-time controllers in Met-
ric Interval Temporal Logic (MITL). We call our logic CT-MITL for Conflict-
Tolerant MITL. We consider the associated verification and synthesis problems for
CT-MITL and give decision procedures to solve them.

1 Introduction

A framework based on the notion of “conflict-tolerance” was proposed in [3, 4] as a
way of developing and reasoning about systems that are composed of a base system
along with multiple independent controllers that each implement a certain feature for
the system. Such systems appear commonly in software intensive domains, examples
of which include a telecom switch which provides different features to subscribers, like
call forwarding and call screening; or an automobile with several time-dependent fea-
tures like cruise control and stability control. Typicallythe controller for each feature
is developed independently, and the controllers are all integrated together using a hand-
coded supervisory controller. Unfortunately in certain configurations of the system –
as the reader may well imagine for the example features mentioned above – the indi-
vidual controllers may profer conflicting advises on how thesystem should proceed
next. These conflicts are typically resolved by suspending the lower-priority controller
and then waiting for a “reset” state of the system before restarting the controller. As a
result the system loses out on the suspended feature’s utility during this period.

The framework in [3, 4] proposes a way of designing each controller so that, based
on a priority ordering among the features, it is easy to compose them in a way in
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which each controller is utilised “maximally.” Thus each controller’s advice is taken
at all times except wheneachof its advised actions is in conflict with a higher priority
controller. The key idea in this framework is to specify a “conflict-tolerant” behaviour
for each feature, and then to build a controller for each feature that meets its conflict-
tolerant specification. Unlike a classical safety specification, which can be viewed as
a prefix-closed language of behaviours, a conflict-tolerantspecification is anadvice
functionwhich specifies a safety language foreachpossible finite behaviour of the
system. This is depicted in Fig. 1: If one considers the set ofall possible behaviours
of the system as a tree growing downwards, then part (a) showsthe shaded “cone”
denoting a classical safety language, and part (b) depicts what a tolerant specification
may look like, with safety cones prescribed for each possible behaviour of the system.
A controller for such a specification must itself be “tolerant” in that it not only advises
the system on what actions to take next (like a classical controller), but also keeps
track of possible deviations from its advice, and goes on to advise next events so as to
control thesubsequentbehaviour of the system. A conflict-tolerant controller satisfies
a tolerant specification given as an advice functionf if after everysystem behaviour
σ, the subsequent controlled behaviour of the system stays within the safety language
f (σ).

(b)(a)

σ

Figure 1: (a): A classical safety specification and (b) a conflict-tolerant specification.

An important component missing in the framework of [3, 4] is the ability to specify
conflict-tolerant specifications in a popular specificationlanguage like temporal logic.
In this paper our aim is to fill this gap in the domain of real-time systems, by proposing
a way of specifying conflict-tolerant specifications in Metric Interval Temporal Logic
(MITL) [6, 2].

The logic we propose, called CT-MITL for “Conflict-TolerantMITL,” is a syntactic
fragment of MITL. A CT-MITL specification is a conjunction offormulas of the form
(ϕ =⇒ ψ), whereϕ is a past-MITL formula, andψ is a disjunction of formulas of
the formc, wherec is a system action or the symbolic eventδ which stands for “time
elapse”. A CT-MITL formula defines an “immediate” advice function in a natural way:
at the end of any behaviourσ, we check whether the past formulaϕ is true, and if so,
advise a set of next actions that satisfyψ.

The associated verification problem for CT-MITL is to check,given a base sys-
temB and a conflict-tolerant controllerC (both modelled as Alur-Dill timed transition
systems), and a conflict-tolerant specification in the form of a CT-MITL formula θ,
whetherC satisfies theadvice functioninduced byθ, with respect to the given base sys-
temB (as described above). We note that an advice function is in general a richer object
than a classical safety specification, and thus the verification problem for CT-MITL is
more general different than the classical verification problem for MITL. In general, a
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controllerC may satisfyθ as a classical MITL specification, butmay notsatisfy it as a
conflict-tolerant specification.

Nevertheless, we show that the verification problem, as wellas the associated fea-
sibility and synthesis problems, for CT-MITL can be solved algorithmically, using
essentially the same technique as for classical MITL [2, 7, 8]. The main step is to build
for a given past-MITL formulaϕ a deterministic transition system that “monitors” the
truth ofϕ along every timed word it reads. The construction we give is inspired by the
simplecompositionalconstruction of a deterministic timed automaton for a past-MITL
formula given in [8]. However our technique is more general as it handles the full
fragment of past-MITL and not just closed intervals as done in [8]. Further our con-
struction for the main inductive step ofIϕ, which we term “delay-then-extend,” is
provably clock-optimal. In fact, we show that this step can be implemented very sim-
ply using just two off-the-shelf “delay” and “extend” components, available in tools
like Simulink.

A more detailed technical report is available in [10]. Our logic and techniques can
also be specialized easily to the discrete (untimed) setting as detailed in [11].

2 Preliminaries

For an alphabet of symbolsA we denote the set of words overA by A∗, and byǫ
the empty word. LetR≥0 andQ≥0 denote the set of non-negative reals and rationals
respectively. We will use the standard notation to describeintervals of reals. So for
example the interval (1, 2] denotes the set{t ∈ R≥0 | 1 < t ≤ 2}. An interval isnon-
singular if the set it denotes is not a singleton set. Whenever convenient we use ‘〈’
(resp. ‘〉’) to denote a left-open or left-closed (resp. right-open orright-closed) interval
bracket.

A timed wordσ overΣ is a string in (Σ ∪ R≥0)∗ of the formd0a1d1a2d2 · · ·andn,
wheren ≥ 0, d0, dn ∈ R≥0, di ∈ R>0 for 0 < i < n, anda j ∈ Σ for 1 ≤ j ≤ n. We use the
notationdur(σ) to denote the duration ofσ, in this case

∑n
i=0 di . We use the symbolε

to denote the empty timed word whose representation is 0.
Let σ = d0a1d1 · · ·amdm, andτ = e0b1e1 · · ·bnen, be timed words such that it is

not the case that:n,m > 0 anddm = en = 0. Then we define theconcatenationof σ
andτ, denotedσ · τ (or simplyστ when clear from the context), to be the timed word
d0a1d1 · · ·am(dm + e0)b1e1 · · ·bnen. We say a timed wordσ is aprefixof a timed word
τ, writtenσ � τ, if there exists a timed wordσ′ such thatσ · σ′ = τ. We denote the
set of all timed words overΣ by TΣ∗. We note that our timed words are essentially
Alur-Dill timed words except that we use a delay-based representation and allow timed
words to end with delays.

It will often be convenient to view a timed wordσ overΣ as a map from [0, dur(σ)]
to Σ ∪ {δ}, which tells us whether the event at timet in [0, dur(σ)] is an action point
a ∈ Σ, or the symbolic event “δ” which denotes a non-action point or “time elapse.”
Thus ifσ = d0a1d1 · · ·andn, for eacht ∈ [0, dur(σ)] we can define

σ(t) =

{
ak if n > 0 and∃k ∈ {1, . . . , n} : t = Σk−1

i=0 di

δ otherwise.
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By last(σ) we will mean the valueσ(dur(σ)) in Σ ∪ {δ}. For t ∈ [0, dur(σ)] we use the
notationσ[0, t) to denote the prefix ofσ of durationt which does not end in an action
point. Thusσ[0, t) = τ whereτ � σ, dur(τ) = t, andlast(τ) = δ.

A timed languageoverΣ is simply a set of timed words overΣ. A timed language
L is calledprefix-closedif wheneverσ ∈ L andτ � σ, we haveτ ∈ L. We denote byL�
the prefix-closure ofL. For a timed languageL ⊆ TΣ∗ and a timed wordσ, we denote
by extσ(L), theset of extensionsof σ that are inL. Thusextσ(L) = {τ ∈ TΣ∗ | σ ·τ ∈ L}.

We use a variant of Alur-Dill timed transition systems [1] which have “time can
progress” conditions [9] as state invariants, to model the systems we consider. To
begin with letC be a finite set of clocks. Avaluation for the clocks inC is a map
v : C → R≥0. We denote by~0 the valuation which maps all clocks inC to 0. For a
valuationv andt ∈ R≥0, byv+ t we mean the valuation that maps eachx ∈ C to v(x)+ t,
and byv[0/X], for a subset of clocksX of C, the valuation which maps eachx in X to
0, and eachx in C − X to v(x). A clock constraint goverC is a boolean combination
of atomic constraints of the formx ∼ c, wherex is a clock inC, ∼∈ {<,≤,=, >,≥}
andc is a rational constant. We writev |= g to say that the valuationv satisfies the
clock constraintg, with the expected meaning. ByΦ(C) we denote the set of clock
constraints overC.

A timed transition system(TTS) over an alphabetΣ is a structure of the formT =
(Q,C, s,→, tcp), whereQ is a finite set of states,C is a finite set of clocks,s ∈ Q is
the initial state,→⊆ Q × Σ ∪ {ǫ} × Φ(C) × 2C × Q is a finite set of transitions, and
tcp : Q→ Φ(C) specifies the condition under whichtime can progressin a given state.
A configurationof T is a pair (q, v) whereq ∈ Q andv is a valuation for the clocks in
C. From a given configuration (q, v) of T , there are two kinds of transitions:

discrete: (q, v)
c
→ (q′, v′) wherec ∈ Σ ∪ {ǫ}, if (q, c, g,X, q′) ∈→ , v |= g, andv′ = v[0/X].

delay: (q, v)
d
→ (q, v+ d) whered ∈ R≥0, if for all 0 ≤ d′ < d, (v+ d′) |= tcp(q).

A run of T on a timed wordσ is a sequence of time points

0 = t0 ≤ t1 < t2 < · · · < tn ≤ tn+1 = dur(σ),

with n ≥ 0, along with a sequence of configurations ofT , (q0, v0), (q1, v1), . . . , (q2n+1, v2n+1),
satisfying

– (q0, v0) = (q, v)

– for eachi ∈ {1, . . . , n+ 1}, (q2i−2, v2i−2)
ti−ti−1
→ (q2i−1, v2i−1)

– for eachi ∈ {1, . . . , n}, (q2i−1, v2i−1)
ci
→ (q2i , v2i) whereci = σ(ti) if σ(ti) ∈ Σ, else

ǫ.

The timed language ofT , denotedL(T ), is the set of all timed words on whichT
has a run starting from the initial configuration (s, ~0). Similarly, we denote byL(q,v)(T )
the language of timed words on whichT has a run starting from the configuration
(q, v).

We say a TTST is deterministicif there is at most one run ofT on any timed
wordσ ∈ TΣ∗. A sufficient condition forT to be deterministic is that for every pair of
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transitions (q, c, g1,X1, q′) and (q, c, g2,X2, q′′), the constraintg1 ∧ g2 is not satisfiable.
Similarly, for every stateq ∈ Q, and every transition (q, ǫ, g,X, q′), g ∧ tcp(q) should
not be satisfiable. A TTST is completeif there is at least one run ofT on any timed
word in TΣ∗. For a deterministic and complete TTST , there is a unique run ofT on a
given timed wordσ. Let (q, v) be the unique configuration reached byT onσ and let
us denote it byconfigT (σ). Then we defineLσ(T ) = LconfigT (σ)(T ).

It will be convenient to sometimes use constraints over boththe states and clocks
in a TTS. Aconfiguration constraint gover a set of statesQ and a set of clocksC is
a boolean combination of atomic constraints of the formq (for q ∈ Q) andx ∼ c (as
for clock constraints). Once again, the notion of when a configuration (q, v) satisfies
a configuration constraintg is defined in the expected way. A TTS with configuration
constraints is a TTS which uses configuration constraints instead of clock constraints,
and the notions of runs, etc, are defined in a similar manner asfor TTS’s.

Let T1 = (Q1,C1, s1,→1, tcp1) andT2 = (Q2,C2, s2,→2, tcp2) be two timed tran-
sition systems, possibly with configuration constraints, over the same alphabetΣ. We
assume that the set of clocksC1 andC2, and statesQ1 and Q2 are disjoint. Then
the synchronized productof T1 andT2, denoted byT1 ‖ T2, is given by the TTS
(Q1 × Q2,C1 ∪C2, (s1, s2),→, tcp) where→ andtcpare defined as follows.

– ((p, q), g, c,X, (p′, q′)) ∈→ if either there exist transitions (p, g1, c,X1, p′) ∈→1

and (q, g2, c,X2, q′) ∈→2, andg = g1 ∧ g2, andX = X1 ∪ X2; or c = ǫ and there
exists a transition (p, g, ǫ,X, p′) ∈→1, andq = q′ (or vice-versa).

– tcp((p, q)) = tcp1(p) ∧ tcp2(q).

We note that the synchronized products as defined above generates the intersection of
the timed languagesL(T1) andL(T2).

Finally, we define the notion of an “open” TTS which we will make use of in our
inductive construction of monitoring TTS’s. AnopenTTS (overΣ) with respect to
the pairwise-disjoint set of states and clocksQ1,C1, . . . ,Qn,Cn, is a structureU =
(Q,C, s,→, tcp), similar to a TTS overΣ, that uses “open” configuration constraints
over Q1,C1, . . .Qn,Cn. Openconfiguration constraints are boolean combinations of
configuration constraints overQ,C, and atomic constraints of the formTi .q (whereq ∈
Qi), andTi .x ∼ c (wherex ∈ Ci). Given TTS’sTi = (Qi ,Ci , si ,→i , tcpi), we can define
the composition ofU andT1, . . . ,Tn, denotedU ‖ T1 ‖ · · · ‖ Tn, to be the TTS with
configuration constraints obtained by taking the parallel composition ofU,T1, . . . ,Tn

as defined above, but where the constraintsTi .q andTi .y ∼ c are interpreted as the
configuration constraints

∨
u∈Q×Q1×···×Qn, u(i)=q u andy ∼ c respectively.

3 Conflict-tolerant Controllers

In this section we recall some of the key notions in the real-time conflict-tolerant frame-
work from [4]. We begin with the notion of a base system. Some of the example
systems we use here are adapted from [4, 5].

A base system is modelled as a TTS over an alphabet comprising“system” or “con-
trollable” events and “environment” or uncontrollable events. We call such an alphabet
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a partitionedalphabet, and it is of the form (Σe,Σs). We will use the convention that
Σ = Σe ∪ Σs. Let us fix a partitioned alphabet (Σe,Σs) for the rest of this section.

Definition 1. A base system(or plant) over(Σe,Σs) is a deterministic timed transition
systemB overΣ, which we assume to benon-blockingin that wheneverσ ∈ L(B), then
extσ(L(B)) , {ε}.

LPE

(d)(c)(b)(a)

x < 1

x ≥ 1, rel, {x}

x < 1, rel, {x}

rel

x < 1

x = 1, rel, {x}

x < 1/2x < 1x < 2

x < 1, rel, {x}

x = 1, rel, {x}

x = 1, rel, {x} x = 1, rel, {x}

x > 1, rel, {x}x < 1, rel, {x} x > 1, rel, {x}x < 1, rel, {x}

x ≥ 2, rel, {x}

1 < x < 2, rel, {x}

Figure 2: (a) A base system, (b) a classical controller, and (c), (d) two conflict-tolerant
controllers.

Fig. 2 (a) shows a simple base system model which has only one system event “rel”
(say for “releasing” a unit of lubricant), and no environment events.

In the classical framework, a real-time safety specification for a controller is given
by a prefix-closed timed language. A controller for a given base system satisfies this
specification if all behaviours of the controlled base system are contained in the speci-
fied safety language. For example, the TTS shown in Fig. 2(b) is a classical controller
for the example base system that ensures arel event after every 1 time unit.

A conflict-tolerant specificationon the other hand is a collection of safety lan-
guages, one foreachpossible behaviour of the base system. This is formalised asan
“advice function” below, which advises a timed language of future extensions for each
possible behaviour.

Definition 2. A (real-time)advice functionover an alphabetΣ is a mapping f: TΣ∗ →
2TΣ∗ which satisfies the following conditions:

– for every timed wordσ overΣ, f (σ) is a prefix-closed language.

– f is consistent, i.e. for all timed wordsσ, τ overΣ, if τ ∈ f (σ) then f(στ) =
extτ( f (σ)).

An alternate way of describing an advice function is animmediateadvice function:

Definition 3. An immediate advice functionoverΣ is a mapping g: TΣ∗ → 2Σ∪{δ}.
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Given a timed wordσ overΣ, and a timepointt ∈ [0, dur(σ)], we sayσ is according
to the immediate adviceg at timet if σ(t) ∈ g(σ[0, t)). The immediate advice function
g above, induces an advice functionfg : TΣ∗ → 2TΣ∗ given by:

fg(σ) = { τ ∈ TΣ∗ | στ is according tog in 〈dur(σ), dur(στ)]}

where ‘〈’ = ‘[’ if σ(t) = δ and ‘(’ otherwise. It is easy to verify that the two conditions
in Def. 2 are satisfied byfg, and hence that it is a valid advice function.

A conflict-tolerant controller is similar to a classical controller which synchronizes
with the base system and controls the choice of possible nextsystem events available
to the base system. The main difference however is that a conflict-tolerant controller
also keeps track of the system events that areagainstits advice, and goes on to con-
trol thesubsequentbehaviour of the system. A real-time conflict-tolerant controller is
modelled as an annotated TTS described below.

A conflict-toleranttimed transition system (CTTS) overΣ is a tupleT ′ = (T ,N, tcp′)
whereT = (Q,C, s,→, tcp) is a deterministic TTS overΣ, N ⊆→ is a subset of tran-
sitions designated asnot-advised, andtcp′ is the advised time-can-progress condition
for states ofT . Let (q, v) be a configuration of the TTST . Then theunconstrained
language generated byT ′ starting from (q, v), denotedL(q,v)(T ′), is defined to be
L(q,v)(T ). The constrainedlanguage generated byT ′ starting from (q, v) is denoted
Lc

(q,v)(T
′), and defined to beL(q,v)(T̃ ), whereT̃ is the transition system obtained from

T by deleting all not-advised transitions (i.e. transitionsin N) and replacing the time-
can-progress conditiontcp by tcp′. Let σ be a timed word inL(T ). Let (q, v) be the
unique configuration reached byT onσ. Then, the constrained extensions ofσ, de-
notedLc

σ(T ′), is Lc
(q,v)(T

′). Thus a CTTS can be viewed as working in two “modes”:
tracking (corresponding to the unconstrained behaviour) andadvising(corresponding
to constrained behaviour). Finally, we sayT ′ is completew.r.t. a timed language
L ⊆ TΣ∗ if L ⊆ L(T ).

Definition 4. A conflict-tolerant controllerC for B is a conflict-tolerant TTS overΣ
that is complete with respect to L(B).

The controllerC is valid wrt B if

– C is non-restricting: If σe ∈ L(B) for some environment event e∈ Σe, thenσe ∈
Lc
σ(C). Thus the controller must not restrict any environment event e enabled in

the base system afteranybase system behaviourσ.

– C is non-blocking: If σ ∈ L(B), then Lcσ(B‖C) , {ε}. Thus the controller must
not block the base system afteranybase system behaviourσ.

We now describe when a conflict-tolerant controller satisfies a given conflict-tolerant
specification with respect to a given base systemB.

Definition 5. Let f be a conflict-tolerant specification in the form of an advice func-
tion overΣ. A conflict-tolerant controllerC for B satisfiesf if for eachσ ∈ L(B),
Lc
σ(B‖C) ⊆ f (σ). Thus afteranybase system behaviourσ, if the base system follows

the advice ofC, then the resulting behaviour conforms to the safety language f(σ).
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Fig. 2(c) and (d) show two conflict-tolerant controllers forthe example base system
in Fig. 2(a). In the figure we use the convention that the “not-advised” transitions are
shown with dotted arrows, and the advisedtcp′ conditions are shown in the state (the
trackingtcpconditions are all true). The first tolerant controller’s behaviour is to advise
arel event 1 time unit after the lastrel event, no matter when it took place. On the other
hand, the second tolerant controller in part (d) also advises arel event after 1 time unit
if the last tworel events wereexactly1 time unit apart or “punctual”; but if the last two
rel events werelessthan 1 time unit apart (“early”) it advises arel event after 2 time
units, and if the last tworel events weremorethan 1 time unit apart (“late”) it advises
a rel event after 0.5 time units. The states of the controller are marked “P”, “E”, and
“L” for “Punctual”, “Early”, and “Late” respectively, and keep track of this property
for the last tworel events.

We note that asclassicalcontrollers, both the controllers have the same effect as the
classical controller in part (b): behaviours that are controlled according to their advice
will always be (prefixes of) behaviours of the form (1· rel)∗. However astolerant
controllers their behaviours are quite different. We will return to these examples in the
next section when we illustrate our logic for specifying tolerant specifications.

4 Conflict-Tolerant Metric Interval Temporal Logic

In this section we present our logic for specifying real-time conflict-tolerant specifica-
tions, called CT-MITL. Our logic is based on the well-known timed temporal logic
Metric Interval Temporal Logic (MITL) [2] which is a popularlogic for specifying
real-time properties.

We begin by recalling the syntax and semantics of MITL. The syntax of an MITL
formula over an alphabetΣ is given by:

θ ::= ⊤ | ⊥ | a | ¬θ | θ ∨ θ | θUIθ | θSI θ

wherea ∈ Σ andI is a non-singular interval with end points inQ≥0 ∪ {∞}.
We interpret formulas of MITL in a “continuous” manner over timed words. Letσ

be a timed word,t a timepoint in [0, dur(σ)], andθ an MITL formula. Then we define
the satisfaction relationσ, t |= θ, as follows. We always haveσ, t |= ⊤ andσ, t 6|= ⊥. In
addition we have:

σ, t |= a iff σ(t) = a
σ, t |= θ1UIθ2 iff ∃t′′ > t : t′′ − t ∈ I andσ, t′′ |= θ2 and

∀t′ : t < t′ < t′′, σ, t′ |= θ1

σ, t |= θ1SIθ2 iff ∃t′′ < t : t − t′′ ∈ I andσ, t′′ |= θ2 and
∀t′ : t′′ < t′ < t, σ, t′ |= θ1,

with the boolean operators interpreted in the standard way.We note that we have used
versions of the “Until” and “Since” operators that are “strict” in both the arguments, as
is often done when the underlying time domain is dense.

We will make use of the following derived operators:δ = ¬
∨

a∈Σ a, φSψ =
φS[0,∞)ψ, init = ¬(⊤S⊤) (init thus characterizes the timepoint 0),Iθ ≡ ⊤UIθ,
Iθ ≡ ¬I¬θ,Iθ ≡ ⊤SIθ, andIθ ≡ ¬I¬θ.
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For an MITL formulaθ and a timed wordσ, we sayσ |= θ iff σ, 0 |= θ. We set
L(θ) = {σ ∈ TΣ∗ | σ |= θ}.

The “past” fragment of MITL is obtained by disallowing theU operator. We will
make use of the “strict past” fragment, denoted MITLP, which are past MITL formulas
which are not a boolean combination of formulas, one of whichis of the forma for
somea ∈ Σ. Thus an MITLP formula cannot refer to the current time point. For an
MITL P formulaϕ, we will sayσ |= ϕ to meanσ, dur(σ) |= ϕ.

We can now introduce the logic CT-MITL.

Definition 6. A Conflict-Tolerant MITL(CT-MITL ) formula over an alphabetΣ is an
MITL formulaθ overΣ of the form


∧

i∈{1,...,n}

(ϕi =⇒ ψi)

where n≥ 0, and for each i∈ {1, . . . , n}, ϕi is anMITL P formula andψi is of the form∨
c∈Xi

c for some Xi ⊆ Σ ∪ {δ}.

The CT-MITL formulaθ given above induces the immediate advice functiongθ :
TΣ∗ → 2Σ∪{δ} given by:

gθ(σ) =
⋂

i∈{1,...,k}, σ|=ϕi

Xi .

We use the convention that the intersection of an empty collection of sets is the univer-
sal set, in this caseΣ ∪ {δ}. Thus, ifσ is such that none of theϕi ’s is true at the end of
σ, then the immediate advice given bygθ onσ is the setΣ ∪ {δ}. Finally, we will write
fθ to denote the corresponding advice functionfgθ .

We now give a few examples to illustrate the logic. Returningto our example base
system of Fig. 2(a), we give a couple of conflict-tolerant specifications in CT-MITL.
For convenience we use notation of the form “≥ 1” to denote the interval [1,∞).

Example 1. TheCT-MITL formulaθ1 below specifies an immediate advice function
“advise a rel event if one or more time units have elapsed since the lastrel or init
event, and time elapse otherwise.”

(((¬rel) S≥1 (rel ∨ init)) =⇒ rel) ∧ ((<1 (rel ∨ init)) =⇒ δ)).

The tolerant controller of Fig. 2(c) can be seen to satisfy this conflict-tolerant specifi-
cation w.r.t. the base system of Fig. 2(a). �

Example 2. The CT-MITL formula θ2 below advises arel event after 1 time unit
(respectively 2 time units and 0.5 time units) depending on whether the last tworel
events were 1 time unit apart (“Punctual”), less than 1 time unit apart (“Early”), or
more than 1 time unit apart (“Late”).

( (((¬rel)S≥1P) =⇒ rel) ∧ (((¬rel)S<1P) =⇒ δ) ∧
(((¬rel)S≥2E) =⇒ rel) ∧ (((¬rel)S<2E) =⇒ δ) ∧
(((¬rel)S≥0.5L) =⇒ rel) ∧ (((¬rel)S<0.5L) =⇒ δ)),
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U L

lock

unlock

lock-req, unlock-req,
crash, ok

lock-req, unlock-req,
crash, ok

Figure 3: The door motor base system.

where
P = init ∨ (rel ∧ ((¬rel)S=1rel))
L = rel ∧ ((¬rel)S>1rel))
E = rel ∧ (<1rel)).

The tolerant controller of Fig. 2(d) can be seen to satisfy the tolerant specification given
by this formula. �

It is interesting to note that viewed as classical MITL specifications, bothθ1 and
θ2 describeexactlythe same timed language:L(θ1) = L(θ2) = (1 · rel)∗�. However,
as illustrated by the examples, the tolerant specificationsinduced byθ1 andθ2 are very
different. The controllers in Fig. 2 each satisfies its respective specification, but not the
other’s. Further, for an CT-MITL formulaθ, we always haveL(θ) = fθ(ε). Thus the
timed language denoted byθ corresponds to the initial safety cone of the tolerant spec
denoted byθ.

As a final example we look at a couple of features for a car door motor system,
adapted from [4]. The base system here (shown in Fig. 3) models a car door motor,
which has environment eventsΣe = {lock-req, unlock-req, crash, ok} and system events
Σs = {lock, unlock}. The “Overheat Protection” feature aims to protect the motor from
overheating due to the excessive locking and unlocking of doors within a short period
of time. It recommends that if twolock events occur within 30 sec the system events
lock andunlock be disabled for 180 sec.

Example 3. A possible tolerant specification for this feature is:

((≤180(lock ∧≤30lock)) =⇒ δ ∨ env).

Here env stands for the formula
∨

e∈Σe
e. Fig: 4 shows a possible tolerant controller

that satisfies this specification. �

Example 4. The “Crash Safety” feature for the door motor requires that if a crash
occurs, then unless an ok event occurs the door must be unlocked within15 seconds,
and kept unlocked till an ok event occurs. A possible tolerant specification for this
feature is:

( ((¬(ok∨ unlock) S<15 crash) =⇒ (δ ∨ unlock ∨ env)) ∧
((¬(ok∨ unlock) S≥15crash) =⇒ (unlock ∨ env))).

Fig: 5 shows a tolerant controller satisfying the crash safety specification above. �
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lock

{x}

x ≤ 30, lock, {x, y} (x ≤ 30)∧ (y ≤ 180), lock, {x, y}
(x > 30)∧ (y ≤ 180), lock, {x}

x > 30, lock, {x}

¬lock ¬lock y ≤ 180, unlock

(x ≤ 30)∧ (y > 180), lock, {x, y}
(x > 30)∧ (y > 180), lock, {x}
env

Figure 4: A controller for overheat protection.

U L CL

CU

⊥

crash, {z}lock

okunlock

unlock
unlock

ok

crash

z< 15

crash

lock
crash

ok

unlock-req,unlock-req,
ok

lock-req,

ok

lock-req,

Figure 5: A controller for crash safety protection.

We can now define the natural verification and synthesis problems for the logic
CT-MITL.

Definition 7. (Verification Problem for CT-MITL ) Given a base systemB overΣ, a
conflict-tolerant controllerC for B, and aCT-MITL formulaθ, check whetherC is a
valid conflict-tolerant controller forB which satisfies the advice function fθ.

Definition 8. (Synthesis Problem for CT-MITL ) Given a base systemB overΣ, and a
CT-MITL formulaθ, check whether there exists a valid conflict-tolerant controller for
B which satisfies the advice function fθ. If so, construct one.

5 Monitoring Timed Transition System for MITL P

The main step in solving the verification and synthesis problems for CT-MITL is the
construction of a “monitoring” TTS for a given CT-MITL specification. Without loss
of generality we assume that the specification uses only the modalities untimedS and
. The modalitySI can be expressed in terms of and as follows:

ϕ1SIϕ2 ≡



Iϕ2 ∧[0,l)(ϕ1 ∧ (ϕ1Sϕ2)) if I = [l, r〉, l > 0
Iϕ2 ∧[0,l](ϕ1 ∧ (ϕ1Sϕ2)) if I = (l, r〉, l > 0
Iϕ2 ∧ ϕ1Sϕ2 if I = 〈0, r〉
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We also assume the standard notion of subformulas: thus the subformulas of the for-
mulaϕ = aS([1,2](b∨(0,∞)c)) areϕ, a,[1,2](b∨(0,∞)c), b∨(0,∞)c, b,(0,∞)c
andc. Thepositive subformulasof a formulaϕ are all its subformulas which are not of
the form¬ψ and we denote the set of all positive subformulas ofϕ by psf(ϕ).

A monitoring guard gover a set of statesQ and clocksC is a boolean combination
of configurations constraints and constraints of the form “a” for a ∈ Σ. A monitoring
guardg is evaluated over a triple (c, q, v), wherec ∈ Σ∪ {δ}, q ∈ Q, andv is a valuation
overC, as follows: (c, q, v) |= g iff g is a configuration constraint and (q, v) |= g; and
(c, q, v) |= a iff c = a.

Let ϕ be a MITLP formula. A monitoringTTS (MTTS) for ϕ is a pair (Tϕ, gϕ)
whereTϕ is a TTS with configuration constraints andgϕ is monitoring guard wrtTϕ,
such that∀σ ∈ TΣ∗, σ |= ϕ ⇐⇒ (last(σ), configT (σ)) |= g.

Lemma 1. Given anMITL P formulaϕ we can effectively construct an MTTS(Tϕ, gϕ)
for ϕ.

Proof. We prove this lemma by induction on the structure ofϕ. The only interesting
cases areψ1Sψ2 andIψ. Let ϕ = ψ1Sψ2. By induction hypothesis there exists an
MTTS Tψ1 andTψ2 with gψ1 andgψ2 are the monitoring guards. LetTψ1Sψ2 be the
OpenTTS as shown in Fig: 6. Then the TTSTψ1Sψ2 ‖ Tψ1 ||Tψ2 is a monitoring TTS for
ψ1Sψ2 with gψ1Sψ2 = (q1 ∧ (x > 0))∨ (q2 ∧ (x = 0)).

~gψ2 , {x}
¬gψ2

~gψ2 , {x}

~(¬gψ1 ∧ ¬gψ2), {x}

~gψ1 ~¬gψ2

~(gψ1 ∧ ¬gψ2), {x}

q0 q1 q2

Figure 6: OpenTTSTψ1Sψ2.

As an exercise let us construct an MTTSTϕ for the formulaϕ = (l,r)a before
dealing with the general formulaIψ. Our construction forϕ is based on the inductive
construction given in [2] and [7]. For easy understanding webegin with a brief descrip-
tion of Tϕ. Tϕ reset clocksx andy whena occurs for the first time. Whena becomes
true next time ify < r − l then we resety again as we can safely ignore the fact that the
formulaa has been false since the previous reset ofy and if y ≥ r − l we reset a fresh
pair of clocks (see [2] for details and Fig: 7 for an illustration). Once the value of the
clocky goes beyondr, the values of the clocksx andy are of no use and can therefore
be reused. ThusTϕ needs to reset at most a pair of clocks in any interval of sizer − l
and therefore we conclude that the maximum no. of clocks required byTϕ is at most
2∗⌈r/(r− l)⌉. And the monitoring guard ofTϕ is given bygϕ =

∨i=n
i=1 ((xi > l)∧(yi < r))

wheren = 2∗⌈r/(r− l)⌉. As an example MTTST(1,2)a along with the monitoring guard
gϕ =

∨i=2
i=1 ((xi > 1)∧ (yi < 2)) shown in the Fig: 8.

Let us now construct a monitoring OpenTTS for the formula(l,r)ψ
1. As a first

step, for a monitor guardg let us introduce the notation for theleft-closureof g, denoted

1MTTS for other cases can be constructed similarly.
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0 1 2 3 4 5

0 1 3 4 52 6 7

a ab
σ1 :

a

(1,2)a :

Figure 7: Truth value for(1,2)a overσ.

a, {x1, y1, x2, y2}

¬a¬a ¬a

y1 < 1, a, {y1}

y1 ≥ 1, a, {x2, y2}

y2 ≥ 1, a, {x1, y1}
y2 < 1,a, {y2}

Figure 8:T(1,2)a.

~g.
~u = u, u ∈ Q∪ Σ,

~(x⋊ c) = x ≥ c,⋊ ∈ {>,≥},
~(x⋉ c) = x⋉ c,⋉ ∈ {<,≤},
~(g1 ∨ g2) = ~g1 ∨ ~g2,

~(g1 ∧ g2) = ~g1 ∧ ~g2,

wherec is a rational constant. Symmetrically we can define the notation g�. For a
monitoringg, we define~g� = (~g) ∨ (g�).

Coming back to the construction, by induction hypothesis there exists an MTTSTψ
for ψ. Let n = ⌈r/(r − l)⌉ and for eachi ∈ {1, . . . , n} let fi = ¬gψ, {yi} andgi = (~gψ) ∧
(yi < r − l), {yi}, and for eachi ∈ {1, . . . , n− 1} let hi = (~gψ) ∧ (y ≥ r − l), {xi+1, yi+1}.
LetUϕ be the OpenTTS shown in Fig: 9. Then (Uϕ||Tψ1 ||Tψ2, gϕ) is an MTTS forϕ
with gϕ =

∨i=n
i=1((xi > l) ∧ (yi < r)).

¬gψ

~gψ�

¬gψ

~gψ� ~gψ�

¬gψ

~gψ�

¬gψ

f1 f2g1 g2 gn−1 fn−1 gn fn

hn−1h1

~gψ , yn ≥ r − l, {x1, y1}

~¬gψ
~gψ , {x1, y1, . . . , xn, yn}

Figure 9: OpenTTS for the formula(l,r)ψ.
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5.1 Our Construction

In this section we propose an alternate construction forTϕ whenϕ = 〈l,r〉ψ. We call
our constructiondelay-then-extendor DTE for short. Our construction uses an optimal
number of clocks and in general it uses one clock less than theconstructions in [2, 7].

So let us begin with a brief discussion ofTϕ which monitors the formula(l,r)a.
Tϕ reset clocksx, called aleading clock, andy, called thetrailing clock of x, whena
occurs for the first time. Whena becomes true next time if clock valuey < r − l then
Tϕ resetsy again. Thus when a clockx′(, y) is reset next time the clock value ofy is
at leastr − l and as we shall see, this fact is crucially used in our construction. When
the clock value ofy becomesl, Tϕ resets a clockz, which remains active until it turns
r − l. This enables the TTS to reuse the clocksx andy as soon as value ofy becomes
l and the clockz when its value becomesr − l. As the trailing clock ofx′ becomesl
the clock value ofz will be at leastr − l because whenx′ was reset the value ofy was
at leastr − l so the clockz can be reused. Fig: 10 illustrates our idea for the formula
ϕ = (1,2)a. T(1,2)a with gϕ =

∨i=2
i=1 ((xi > 1)∧ (

∨i=4
i=1(pi ∧ (z< 1)))) andΣ′ = Σ − {a}

is shown in Fig: 11.

2.50.5 1.5 3.5

(1,2)a:

a:

0

x = 1{y} y = 1, {z}

1.1 2.1

{x, y} z= 1

3.1

Figure 10: An illustration of our idea.

¬a

y1 = 1, a, {x2, y2 z}

y2 = 1,Σ′, {z}

y1 = 1,Σ′ , {z} y1 > 1,a, {x2, y2}

y2 > 1,a, {x1, y1}

y2 < 1,a, {y2}

y2 < 1,¬a,

p2

p4

y2 ≤ 1p0 y1 ≤ 1

y2 ≥ 1,a, {x1, y1, z} p4

Σ
′

p1

a, {x1, y1, x2, y2}

y1 < 1,¬a,
y1 < 1, a, {y1}

Σ
′

Figure 11: Monitoring TTST(1,2)a.

Thus, asTϕ needs to reset at most a pair of clocks in an interval of sizer − l, we
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conclude that the maximum no. of clocks required byTϕ is at most 2∗ ⌈l/(r − l)⌉ + 1.
It is easy to extend the above construction to any given MITLP formula which is of the
form〈l,r〉ψ. Thus we conclude that:

Theorem 1. For anyMITL P formula〈l,r〉ψ there exists a monitoringTTS for it which
uses at most2 ∗ ⌈l/(r − l)⌉ + 1 clocks.

Let us now compare the monitoring TTSTA for formulaϕ given by AFH construc-
tion with the monitoring TTSTD given by our construction. InTA, ϕ is true at any
point if the guard (x > l) ∧ (y < r) is satisfied at that point. In our construction as we
reset a clockz when the clock value ofy becomesl the formulaϕ is true at any point
if the guard ((x > l) ∧ (y < l)) ∨ (q ∧ (z < r − l)), whereq any state inTD except
possibly the initial state, evaluates to true at that point.In TD, we use 2∗ ⌈l/(r − l)⌉ + 1
(= 2n+ 1) clocks whileTA uses 2n+ 2 clocks. Thus the region automaton ofTD has
lesser no. of states than the region automaton ofTA. Thus from the verification point
of view DTE is more efficient than AFH. Let us now superficially compute the size of
the region automaton yield byTD andTA. In TD all but one clocks are compared with
only l and one clock is compared withr − l. Thus the no. of regions induced by the
clocks inTD is at mostc1 = 2nl ·2n · (2l+2)2n. InTA (n+1) clocks are compared withl
and the rest of the clocks, i.e. (n+ 1) clocks, are compared withr and therefore the no.
of regions induced by the clocks inTA is at mostc2 = (2n+2)·2n+1 · (2l+2)n · (2r +2)n.
Thus the space complexity ofTD is O(c1) while that ofTA is O(c2).

5.2 Optimality of DTE construction

In this section we prove that our construction is optimal in terms of no. of clocks used,
i.e. there exists a formula of the form〈l,r〉ψ such that any monitoring TTS for it will
have at least 2∗ ⌈l/(r − l)⌉ + 1 clocks. We do this by showing that there exists timed
word σ such that in order to monitorσ for the formula(l,r)a for somea ∈ Σ any
monitoring TTS requires at least 2∗ ⌈l/(r − l)⌉ + 1 clocks.

Let us fix somea ∈ Σ and letϕ = (l,r)a. For the purpose of contradiction lets us
assume that there exists an MTTS (Tϕ, gϕ) for ϕ which uses 2∗ ⌈l/(r − l)⌉ (= 2n) clocks
viz, x1, y1, · · · , xn, yn. Let C be the set{x1, y1, · · · , xn, yn} and letQ be the set of states
of Tϕ. Without loss of generality let us assume thatl, r ∈ N andTϕ uses only integer
constants. Now letσ be a timed over{a} satisfying the following conditions:

– d0 = 0, |σ|(no.of action points inσ)=2n+ 2 anddur(σ) = Σi=2n+1
i=0 di.

– for eachi ∈ {0, . . . , n}, t2i+1−t2i = ǫ and for eachj ∈ {1, . . . , n}, t2i−t2i−1 = r−l+ǫ.

whereti = Σi=2n+1
i=0 di and 0< ǫ < (r − l)/(2n+ 2).

Let ρ to be the unique run ofTϕ onσ an letvt(x) be the valuation of clockx at time
t along this run.

Definition 9. For any t, u ∈ [0, dur(σ)], IDifft(u) = {x ∈ C | (u− t) − vu(x) ∈ Z − {0}}.

Lemma 2. For any two time points t1, t2 ∈ [0, . . . , dur(σ)] if for all t ∈ (t1, t2) IDifft(t) =
∅ then for all monitoring guards g over C and Q,σ, t |= g for some t∈ (t1, t2) iff σ, t |= g
for all t ∈ (t1, t2).
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AsTϕ is deterministic lemma 2 implies that for everyi ∈ {0, · · · , 2n−1}, IDiffti (ti + l) ,
∅ and for every pointt if Tϕ does anǫ-transition att onσ thenIDifft(t) , ∅. Then from
the above facts and from the definition ofIDiff one can deduce that:

Lemma 3. For any two distinct points t1, t2 ∈ {t0, . . . , t2n+1}, IDifft1(u) ∩ IDifft2(u) = ∅
for all u ∈ R≥0.

Lemma 4. Let u = ti + l for some0 ≤ i ≤ 2n + 1 and let x ∈ IDiffti (u). Then
x ∈ IDiffti (ti + t) for all t ∈ (u− vu(x), u].

Proof. Let w = u − vu(x) be the last point beforeu where the clockx is reset. As
x ∈ IDiffti (u), w − ti ∈ N∗ and for anyt ∈ (u − vu(x), u], t(x) = t − w. This implies
x ∈ IDiffti (t) as (t − ti) − (t − w) = w− ti ∈ Z − {0}. �

Corollary 1. IDiffti (ti + t) , ∅ for all t ∈ (ti , u].

Proof. As the clockx is reset atw, due to the properties ofσ, w is point ofǫ-transition
in the runρ of Tϕ on σ. Then as mentioned earlier there exists a clock such that
y ∈ IDiffti (w) and therefore by lemma 4 for allt ∈ (w − vw(y),w], y ∈ IDiffti (t). Note
thatvw(y) > 0. Letw′ be the last point beforew where the clocky is reset. Again due
toσ, w′ is point ofǫ-transition in the runρ. Thus we have thatIDiffti (ti + t) , ∅ for all
t ∈ (ti , u]. �

Let t be a point such thatt2n+1 < t < n ∗ (r − l). Then by lemma 3 and corollary 1
we have that for everyi ∈ {1, · · · , 2n+1}, IDiffti (t) , ∅. AsTϕ uses at most 2n clocks it
follows that there exist distincti, j ∈ {1, . . . , t2n+1} that IDiffti (t) ∩ IDifftj (t) , ∅, which
is a contradiction by lemma 3. Thus we have:

Theorem 2. DTE is optimal in terms of no. clocks.

5.3 An Example MTTS Construction

Example 5. Let us construct an MTTS for the formulaϕ = ≤180(lock ∧≤30lock).
Recall thatϕ is the premise of the specification for the feature overheat protection given
in section 4. As a first step let us first compute the set psf(ϕ).

psf(ϕ) = {≤180(lock ∧≤30lock), lock ∧≤30lock,≤30lock, lock}.

Now it is not difficult to see that theTTS shown in Fig: 12 is an MTTS for≤30lock
with g≤30lock = T≤30lock.(p1∧ (x ≤ 30)). Let g= g≤30lock and letUϕ be theOpenTTS
shown in Fig: 13. ThenUϕ||T≤30lock, gϕ is an MTTS forϕ with gϕ = Uϕ.(p1 ∧ (x ≤
180)). �

6 Verification

We can now solve the verification problem for CT-MITL using the construction of a
monitoring TTS in the previous sections.
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¬lock

p0
lock, {x}

¬lock

p1 lock, {x}

Figure 12:T≤30lock.

¬g,Σ

p0
g, lock, {x}

¬g,Σ

p1

g,¬lock, g,¬lock,

g, lock, {x}

Figure 13: OpenTTSUϕ.

Theorem 3. The verification problem forCT-MITL can be solved in EXPSPACE.

Proof. LetB a base system over an alphabetΣ, C a conflict tolerant controller andθ a
CT-MITL specification. It is easy to see that a necessary and sufficient condition forC
to be a valid controller forB and satisfyingθ, is to check that in the synchronized prod-
uctB||C||Tθ, there doesnot exist a configuration ((b, p, q), v) which is reachable from
the initial configuration ((sB, sC, sTθ ), ~0), and satisfies one of the following conditions:

1. C is restricting: there existse ∈ Σe such that ae transition is enabled at (b, v) in
B but is not allowed byC at (p, v)

2. C is blocking: there is no discrete or delay transition that isenabled at ((b, p), v).
Recall our assumption thatB is non-blocking.

3. C does not satisfyθ: There existsc ∈ Σ ∪ {δ} which is enabled at ((b, p), v) in
B ‖ C butc <

⋂
i∈{1,...,n}, (q,v)|=gϕi

Xi .

All the conditions above can be checked in EXPSPACE using theregion graph[1]
of the synchronized productB||C||Tθ. �

7 Synthesis

In this section we synthesise a conflict-tolerant controller and prove that the controller
meets the specification given by the user. So let first define what we mean by the com-
position of conflict-tolerant controller. LetC1 = (T1,N1, tcp1) andC2 = (T2,N2, tcp2)
be two conflict-tolerant controllers. Then the synchronized productC1 ‖ C2 is given by
(T1 ‖ T1,N1 × N2, tcp1 ∧ tcp2).

Let us now give a brief account of how we synthesise a conflict-tolerant controller
for a given CT-MITL specificationθ = (

∧i=n
i=1(ϕi =⇒ ψi)). First we construct

a monitoring TTSTϕi for every formulaϕi occurring in the specificationθ. LetUϕi

be the conflict-tolerant OpenTTS shown in Fig: 14 withtcp conditionh = ⊤ if δ ∈ Xi

and¬gϕi otherwise. Let (Cϕi , gϕi ) be the conflict-tolerant TTS given by the composition
Uϕi ‖ Tϕi . It is not difficult to argue that the resultant controllerCϕi is indeed a conflict-
tolerant controller which advisesψi wheneverϕi is true andΣ otherwise. Finally we
argue that the controllerCθ given by the composition of the controllersCϕ1, . . . ,Cϕn is
a conflict-tolerant controller satisfyingθ.

Theorem 4. Given a base systemB and aCT-MITL specificationθ overΣ, we can
check if it isfeasibleto construct a valid conflict-tolerant controller forB that satisfies
θ.
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h

¬gϕ,Σ

gϕ, Xi − {δ}

gϕ,Σ − Xi

Figure 14: OpenTTSUϕi .

Proof. We claim that there exists a valid controller forB satisfyingθ iff in the synchro-
nized productB||Cθ, there does not exist a configuration ((b, q), v) which is reachable
from the initial configuration ((sB, sCθ ), ~0), and satisfies one of the following conditions:

1. Cθ is restricting: there existse ∈ Σe such that ae transition is enabled at (b, v) in
B but is not advised byCθ at (p, v)

2. C is blocking: there is no discrete or delay transition that isenabled at ((b, p), v).
Recall our assumption thatB is non-blocking.

If such a configuration ((b, q), v) exists, then clearly a controller cannot be valid forB
and satisfyCθ at the same time. Conversely, if no such ((b, q), v) exists, thenCθ itself
is a valid controller forB that satisfiesTθ.

The condition above can be checked using the region graph [1]R forB||Tθ. We can
check whether a bad configuration satisfying one of the conditions above is reachable
in R in time linear in the size ofR. The size of the region graph is exponential in the
number of clocks and the maximal constants in the guards ofB||Tθ.

�

Let us now return to the example given in section 5.3 to illustrate our construction.
Consider the conflict-tolerant OpenTTSE1 shown in Fig: 15.

⊤

gϕ ,Σ

¬gϕ ,Σ

Figure 15: OpenTTSE1.

Since the guardgϕ is the monitoring guard forϕ in the OpenTTSU≤30lock it is straight-
forward to see that the CTTS given byE1||Uϕ ‖ U≤30lock meets the specification
ϕ =⇒ δ.
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8 Signal Controller Synthesis

In this section we discuss the synthesis of conflict-tolerant controllers using the widely
used signal porcessing circuits. The advantage of this method over the automata-
theoretic approach is that the controller implementation is more user friendly as it can
be made with off-the-shelf electrical circuits. As a result the conflict-tolerant controller
synthesis is much more simpler and efficient. We will not discuss the implementation
details of the circuits as it outside the scope of this work.

A binary signals can be viewed as a map from a closed interval [0, r] to the set
{0, 1}. We call r theduration of sand we denote it bydur(s). We define the boolean
combinations of two signals with same durations in the expected way. Letl, k ∈ Q≥0.
Then we define thel-delay signalof s to be the signalus

l given by∀t ∈ [0, l), us
l (t) =

0,∀t ≥ l, us
l (t) = s(t − l) anddur(us

l ) = dur(s) and thek-extension signalof s to be
the signalvs

k given by∀t : 0 ≤ t ≤ dur(s), vs
k(t) = 1 ⇐⇒ ∃t′ ≤ k, s(t − t′) = 1

and dur(vs
k) = dur(s). Let φ be an MITLP formula andσ, a timed word over an

alphabetΣ. Then bysσφ we denote the binary signals such thatdur(s) = dur(σ) and
∀t ∈ [0, . . . , dur(σ)], σ, t |= φ ⇐⇒ s(t) = 1.

A k-arity signal circuitis a circuit which takesk binary signals with equal durations
as inputs and produces a binary signal as the output whose duration is same as that of
its input signals. LetΦ be ak-arity signal circuit and lets1, . . . , sk be thek input
signals ofΦ with durationsr. Then we denote the output signal ofΦ at time t by
Φ(s1, . . . , sk)(t) and byΦ(s1, . . . , sk) we mean the signals such thatdur(s) = r and
∀t ∈ [0, . . . , r], s(t) = Φ(s1, . . . , sk)(t). Let act =

∨i=n
i=1 ai . Then amonitoring circuitof

an MITLP formulaφ is a 1-arity signal circuitΠφ such that for allσ ∈ TΣ∗,Πφ(sσact) =
sσφ . And anopen montioring circuitfor φ, denotedΦφ, is inductively defined as follows:

Φa : ∀σ ∈ TΣ∗,Φa(σ) = sσa , wherea ∈ Σ,
Φ¬ψ : ∀σ ∈ TΣ∗,Φ¬ψ(sσψ) = sσ

¬ψ,

Φψ1∨ψ2 : ∀σ ∈ TΣ∗,Φψ1∨ψ2(s
σ
ψ1
, sσψ2

) = sσψ1
∨ sσψ2

,

Φψ1Sψ2 : ∀σ ∈ TΣ∗,Φψ1Sψ2(s
σ
ψ1
, sσψ2

) = sσψ1Sψ2
,

ΦIψ : ∀σ ∈ TΣ∗,ΦIψ(sσψ) = sσ
Iψ

.

Lemma 5. For anyMITL P formulaφ we can construct a monitoring circuitΦφ for it.

Proof. We prove the lemma by structural induction onφ. The circuits for the base
cases and the boolean combinations are trivial. The only interesting cases areψ1Sψ2

andIψ. So lets start withφ = ψ1Sψ2. By induction hypothesis there exist monitoring
circuitsΠψ1 andΠψ2 which output signalssσψ1

and sσψ2
respectively. Then the figure

shown in Fig: 16 is an open monitoring circuit forφ which when fed with signalssσψ1

andsσψ2
outputs the signalsσϕ . Now one can easily construct a combinatorial monitoring

circuit Πφ for φ usingΠψ1,Πψ2 andΦφ. We skip the implementation details of the
circuit.

Let ψ be an MITLP formula and letφ = 〈l,r〉ψ. Inductively, we assume that the
circuit Πψ is already constructed and its output signalsσψ is available to us. Then we
construct an open monitoring circuitΦφ for φ using two important elements:l-delay
element and (r − l)-extension element. Given an input signals the l-delay element
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CU

sσψ2

sσψ1
sσ
ψ1Sψ2

Figure 16: An open monitoring circuitΦφ for ψ1Sψ2.

outputs the signalus
l and thek-extension element outputs the signalvs

k. The schematic
diagrams for thel-delay element and (r − l) extension element are given in Fig: 17 and
Fig: 18 respectively.

s

l

us
l

Figure 17:l-delay element.

s

(r − l)

vs
k

Figure 18: (r − l)-extension element.

Then the circuit shown in Fig: 19 is an open monitoring circuit for φ which if given
the input signalsσψ generatessσφ as the output signal. It is not difficult to see that the
circuit Φφ is essentially derived from the DTE constuction we mentioned in section
5.1. Once again we can construct a combinatorial monitoringcircuitΠφ for φ usingΠψ
andΦφ.

CU

l

sσψ

(r − l)

sσϕ
us

l

Figure 19: An open monitoring circuitΦφ for φ.

As a simple exercise, a sample input signal to the open monitoring circuitΦ(1,2)ψ

and its output is shown in Fig: 20. The intermediate signalus
ψ is also shown in the

figure.
�

A n-signal demultiplexeror n-demux is a demultiplexer circuit with one input line
andn output lines. For eachi ∈ {1, . . . , n} we denote each line of the n-demux byl i .
Let Σ = {a1, . . . , an} and letθ = (

∧i=n
i=1(φi =⇒ ψi)) be a CT-MITL specification

overΣ. Then aconflict-tolerant signal demultiplexeror CT-demux for short, forθ is an
(n+1)-signal demux such that when given the input signalsσact activates the output line
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1.0

u
sσψ
1.0:

sσψ :

sσϕ :

2.50.5 1.5 3.50 3.01.2 2.2

1.0

Figure 20: A sample input signal toΦ(1,2)ψ and its output signal.

l i iff ai ∈
⋂
σ,t|=φi

Xi andln+1 iff δ ∈
⋂
σ,t|=φi

Xi for all t ∈ [0, . . . , dur(sσact)]. A schematic
diagram for a conflict-tolerant signal controller forθ is given in Fig: 21.

Φϕ1 Φϕn

l1

ln+1

sσact

Figure 21: A schematic diagram for a conflict-tolerant controller for θ.

Thus we have that:

Theorem 5. Let n ≥ 1 and letΣ be an alphabet. Letθ be aCT-MITL specification.
Then we can construct a conflict-tolerant signal controllerwhich meets the specifica-
tion θ.

9 Discussion

We have proposed a way of specifying conflict-tolerant real-time specifications in
MITL. We believe this is a useful addition to the conflict-tolerant framework of [3, 4],
as it is more natural for a user to specify properties in temporal logic. We use a clock-
optimal construction for building a monitoring TTS for the〈l,r〉ψ inductive step, based
on a “delay-then-extend” idea. We also use this idea to design simple controllers using
standard “delay” and “extension” components.
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