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Abstract. Memory models for shared-memory concurrent programming
languages typically guarantee sequential consistency (SC) semantics for
datarace-free (DRF) programs, while providing very weak or no guaran-
tees for non-DRF programs. In effect programmers are expected to write
only DRF programs, which are then executed with SC semantics. With
this in mind, we propose a novel scalable solution for dataflow analysis
of concurrent programs, which is proved to be sound for DRF programs
with SC semantics. We use the synchronization structure of the program
to propagate dataflow information among threads without requiring to
consider all interleavings explicitly. Given a dataflow analysis that is
sound for sequential programs and meets certain criteria, our technique
automatically converts it to an analysis for concurrent programs.
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1 Introduction

In recent years several new semantics based on relaxed memory models have been
proposed for concurrent programs, most notably the Java Memory Model [21],
and the C++ Memory Model [3]. While the aim of the relaxed semantics is to
facilitate aggressive compiler optimizations and efficient execution on hardware,
the semantics they provide can be quite different from the standard “Sequentially
Consistent” (SC) semantics. A common guarantee that they typically provide
however is that programs without dataraces will run with SC semantics. For pro-
grams with dataraces there are very weak guarantees: the Java Memory Model
[21] essentially ensures that there will be no “out-of-thin-air” values read, while
the C++4 memory model specifies no semantics [3] for such programs.

The prevalence of this so-called “SC-for-DRF” semantics makes the class of
datarace-free programs with sequentially consistent semantics, an important one
from a static analysis point of view. An analysis technique that is sound for this
class of programs can in principle be used by a compiler-writer for the general
class of programs, as long as the ensuing transformation preserves the weak
guarantees described above. From a verification point of view as well, the class
of racy programs is unlikely to require sophisticated analysis due to the loose
semantics for this class of programs, while a sound analysis for datarace-free
programs can be used to prove non-trivial properties for the class of datarace-
free programs.
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With this in mind in this paper we propose a novel and scalable dataflow
analysis technique for concurrent programs that is sound for datarace-free pro-
grams under the SC semantics. Given a sequential dataflow analysis that meets
certain criteria, our technique automatically produces an efficient and fairly pre-
cise analysis for concurrent programs. The criteria that the underlying analysis
must meet is that each dataflow fact should be dependent on the contents of
some associated lvalues (an [value is an expression that refers to some memory
locations at runtime). Several sequential dataflow analyses such as null-pointer
analysis, interval analysis, and constant propagation satisfy this criteria. Our
technique gives useful information (in terms of precision of the inferred data-
flow facts) at points where the corresponding lvalue is read. For example, in the
case of null-pointer analysis, the dataflow fact “NonNull(p)” is dependent on the
contents of the lvalue “p” and is relevant before a statement that dereferences
(reads) “p”. Similarly, the fact that an lvalue has a constant value at a program
point is dependent on the contents of the lvalue and is relevant at statements
that read that lvalue.

The main challenge in lifting an analysis for sequential programs to con-
current programs is that multiple threads can simultaneously modify a shared
memory location. Traditionally the analysis techniques for concurrent programs
address this problem in one of the following ways: they either invalidate the
analyzed fact if there is any possible interference from any other thread [4, 16],
making the analysis very imprecise, or they exhaustively explore all possible in-
terleavings [28], leading to poor scalability. In contrast, our analysis technique
uses the synchronization structure of the program to propagate dataflow facts
between threads. The main insight we use is that it is sufficient to propagate
dataflow facts between threads only at corresponding synchronization points
(like from an “unlock(1)” statement to a “lock(1) statement”). We also show
how our framework can be integrated with a context-sensitive analysis.

We have implemented our technique in a framework for automatically con-
verting dataflow analyses for sequential Java programs to sound analyses for
concurrent programs and instantiated it for a null-reference analysis. Our initial
experience with the tool shows that the analysis runs in a few seconds on real
benchmark programs, and is able to prove a high percentage of dereferences to
be safe. We have also developed a prototype implementation for concurrent C
programs which use the pthreads library [12]. This allows us to compare our
technique empirically with the state-of-the-art Radar tool [4], and show that our
tool is more precise on a few medium-sized benchmarks.

2 Overview of Our Approach

In this section we informally illustrate our technique with the help of a few
examples. We consider the null-pointer analysis where the goal is to compute a
set of dataflow facts for each edge of the program which tell us which lvalues
are non-null along all executions reaching that edge. Examples of such dataflow
facts can be NonNull(p->data) for the program in Figure 1.
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Note that value of the dataflow fact NonNull(p->data) at runtime depends
on the contents of the memory location corresponding to the lvalue p->data.
Hence, at runtime, the value of this fact can only be modified by writing to the
memory locations corresponding to p->data or p, possibly through some alias.
Moreover, the value of the fact NonNull(p->data) is relevant only before the
statements where p->data is dereferenced or p—>data is assigned to some other
pointer or p->data is compared to NULL. For example, in Figure 1, this fact
is relevant before the statements M3, P3, P7 and C3, but not before P6 or M2.
Note that at all edges where this fact is relevant, the successor statements read
p->data. Our analysis guarantees that for a given datarace-free program, if a
fact is computed to be true at a program edge where the fact is relevant, then
it is indeed true at that program edge in all executions of the program.

buf* p;
lock 1;
main () {
Ml: p = new(...);

Plim2: p->data = new(...);
p,p~>data|ys. «p->data = DEFAULTVAL;
p,p->data |y : spawn (“prod”) ;
p,p->data M5 spawn (“cons!") ;

s

A

prod () { cons () {

P1: while(1) { Cl: while(1) { p,p->data
p,p->data P2: lock(l); . 'CZ: lock (1) ; p,p->data
p,p->data P3: oldv = *p—>.a~é\"t’a~;_._ A1 C3: v = *p->data; p,p->data

Plpg. p->data = NULL; % “C4: unlock(l); p,p->data
p P5: newv = nextv(o}ﬁv); .
Plpg: p->data = new(...); }
prp=>data| o, *p->data = dewv; }
prp=>datalpg. unlock(1);”
}

Fig. 1. Program 1

Figure 1 shows a simple concurrent producer-consumer program, where data
is shared through a shared location, pointed to by p. The call to new returns
newly allocated memory. Note that, the main thread sets the pointers p and
p—>data to non-null values. The prod thread sets p->data to null after locking
1, but restores its non-nullity before unlocking 1. As a result, the cons thread
can dereference p and p->data without checking for non-nullity after locking
1. This code has no null-pointer dereferences in any of its executions. Clearly,
the threads in this code depend on each other to make the pointers non-null
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before any other thread can access them. We also note the the program has no
data-races.

Let us again consider the dataflow fact NonNull(p->data) in the program
of Figure 1. As the program is datarace-free, if a thread writes to p->data or p
and some other thread reads p->data later in the execution, then these accesses
must be synchronized, i.e. there must be a release action (e.g. unlock or spawn)
by the first thread, followed by an acquire action (e.g. lock or first action of a
thread) by the second thread, between the write and the read. In other words,
in any execution of the program, the action that modifies the dataflow fact and
the action before which it is relevant either belong to the same thread or are
synchronized.

As the first step of our analysis, we introduce new edges between nodes
of the control-flow graphs (CFGs) representing different threads. These edges
correspond to possible “release-acquire” pairs at runtime. We refer to this unified
set of CFGs with added edges as the sync-CFG. Figure 1 shows the edges we
add for this program as dashed arrows — from spawn to the first instruction of
the child thread and from the unlock to lock statements if they access same
lock variable and if they can possibly run in parallel.

In the next step of our analysis, we perform a sequential dataflow analysis
on this sync-CFG to compute a set of dataflow facts at each program edge
that conservatively approximates the join-over-all-paths (JOP) solution over the
sync-CFG.

In Figure 1, we show the lvalues discovered to be non-null by our analysis
at different program points in italics. As p->data is non-null at point M5 in the
main thread before spawning the cons thread, this fact gets propagated to the
first instruction C1 of the cons thread though one of the added edges, and from
there to the lock instruction at C2. Similarly, although p->data is set to null in
the prod thread at P4, it is set back to non-null at P6 before the unlock. This
facts also gets propagated to the lock statement of the cons thread through
the edge P8 to C2. As p—>data is non-null in both the paths joining at the C2
of the cons thread, we can determine p->data to be non-null before the lock
statement in all executions. This makes the fact NonNull(p->data) to be true
before the deference of p->data at C3.

The reason why our analysis works is that if, in an execution, an action
modifies the dataflow fact NonNull(p->data) and it is relevant at some later
action, then there exists a static path from the statement of the first action to
the statement of the second action in the sync-CFG and the static dataflow
function corresponding to this path will conservatively approximate the effect
of the execution path segment from the first action to the second action on the
dataflow fact. As an example, consider the interleaved execution path fragment
[P6, C1, P7, P8, C2, C3] where P6 modifies NonNull(p->data) and it is relevant
at C3. There is a static path in the sync-CFG [P6, P7, P8, C2, C3] which has the
same effect on this dataflow fact as the execution path segment.

We note that at points where a fact is not relevant our analysis may compute
incorrect values. For example our analysis computes NonNull(p->data) to be
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true at C1 although the interleaved execution path segment [P4,C1] can make it
false. However, the fact NonNull(p->data) is not relevant at C1.

prod() { cons () {
prp=>data gy, ynite(1) ¢ Cl: while(l) { p,p->data
P2: lock(l); . lock (1) ; p
P3: oldv = *p-datay., val = *p->data;|P
P4: p->data = NU_LL"E 1C4:  unlock (1) ; P

P5: unlock(l);~" . v
P6: newv = n%‘mf’(‘—é]’, V) ; }
P7: lock(l); }
P8: p->data = ney();
prp=>datalpg,  «p->data = dewv;
p,p=>data|pa.  ynlock(l) ;7

's'c's T T T T

Fig. 2. Program 2

Let us now consider a buggy version of the program, presented in Figure 2.
The main thread is the same as Figure 1. This program is also DRF, but the prod
thread releases the lock after setting p->data to null at P4, and acquires the lock
again before setting it to non-null. If the cons thread dereferences p->data in
between these two actions, it will dereference a null-pointer. For example, the
execution path segment [P4, P5, C2, C3] will result in null-pointer dereference.
Note that there is a static path [P4, P5, C2, C3] in the sync-CFG that also sets
the fact NonNull(p->data) to false before C3. Hence our analysis will detect
that p—>data can be null before the dereference at C3. Note that here also we
incorrectly compute NonNull(p->data) to be true at C1 as the modification of
this fact at P4 is not propagated to C1. Nevertheless, as the program is datarace-
free, before the cons thread reads p->data, it must synchronize with the prod
thread and the modified value for the fact NonNull(p->data) is propagated to
the cons thread through the corresponding static edge ([P5, C2] in this case).

3 Related Work

There are quite a few works on dataflow analysis of concurrent programs in the
literature and they differ considerably in terms of technique, precision and appli-
cability. Some works [17, 11, 6] create parallel flow graphs similar to our technique
and perform a modified version of sequential analysis on them, but unlike us,
their techniques are applicable to very specific analyses, such as bit-vector anal-
ysis or gen-kill analysis. In particular, they do not handle the analyses where the
value of a dataflow fact can depend on some other dataflow fact. For example,
in null-pointer analysis, p is non-null after a statement p = q only if q is non-
null before the statement. Unlike our technique, they also do not consider many
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features of modern concurrent programs such as unbounded threads, synchro-
nization using locks/volatiles etc. For example, the pointer-analysis algorithm
presented in [24] considers only structured par-begin/par-end like synchroniza-
tion constructs.

On the other hand, there are a few works such as [16] that kill the dataflow
facts whenever there is a possible interference. Similarly, Radar [4] uses a datarace
detection engine to conservatively kill a dataflow fact whenever there is a possi-
ble race on the lvalues corresponding to the fact. Our technique is more precise
than theirs as we propagate the dataflow facts precisely. For example, in Fig-
ure 1, Radar cannot detect the dereference of p->data in the cons thread to be
safe. Recently Farzan et al [7] presented a compositional technique for dataflow
analysis, but it is applicable to only bit-vector analyses.

Model checkers such as [28] provide an alternative technique to find if a prop-
erty holds at a particular program point. They typically exhaustively enumerate
all interleavings of a program, resulting in poor scalability. CHESS [22] prunes
the number of interleavings by context switching only at the synchronization
points, assuming the program is datarace-free, but scalability still remains an
issue. In contrast ours is a static analysis which does not explore interleavings
explicitly. Moreover, due to infinite state-spaces, model checking of real program-
ming languages cannot cover all program behaviors. Thread modular analyses
[8-10] can analyze each thread separately, but either require user-defined annota-
tions denoting some invariants or try to infer them automatically, limiting their
scalability and precision. Recently, Malkis et al. [20] proposed a thread-modular
abstraction refinement technique where the set of reachable “global states” is
computed as the cartesian abstraction of sets of reachable “local” states. If a
global state is infeasible, an abstraction refinement step excludes it from the
cartesian abstraction. This technique assumes the number of dynamic threads
to be statically bound. It is not implemented for real programs and the analysis-
refinement cycle limits its scalability.

4 Preliminaries

4.1 Program Structure

In this section we formalize the structure of the subject programs for our analysis.
For ease of presentation, we use a simple core language that has the representa-
tive features of real programming languages with shared-memory concurrency.
The program is composed of a finite number of named thread codes', one
of which is designated as the main thread. The program is denoted as P =
(To, ..., Ty), where each T; is name of a static thread. Each thread T; is repre-
sented as a control flow graph (CFG) C; where each node represents a statement
in the program. We do not consider procedures at this point (context-sensitive
inter-procedural analysis is described in Section 8). In the rest of the paper,

1 We refer the code of a thread as a static thread and the runtime instance of a thread
as a dynamic thread.
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we use the terms nodes and statements interchangeably to refer to the static
statements in the program.

Decl := VarType <var> | Lock <lockvar> | ThreadId <tid>
VarType ::= BasicType | VarType*
Stmt u= AsgnStmt | BranchStmt | SyncStmt | skip
AsgnStmt ::= Lval := Expr
Lval n= <var> | *Lval
SyncStmt ::= lock <lockvar> | unlock <lockvar>

| <tid> := spawn <T> | join <tid> | start | end

Fig. 3. Partial syntax of the language

Figure 3 defines the syntax of the language partially. Variables are declared
globally. The non-terminal Decl in Figure 3 describes a variable declaration. A
regular (non-synchronization) variable can be of some basic type or structure
type or pointer type. A synchronization variable is either a lock or a thread
identifier.

Statements (Stmt in Figure 3) are of following types: assignment, branch,
synchronization and skip. Assignment statements (AsgnStmt in Figure 3) assigns
the value of an expression to an lvalue, which is either a declared variable or
dereference of an lvalue. Expressions are arithmetic or logical expressions over
constants and Ivalues or “address of” expressions. Branch conditions can be any
Boolean expression.

For an lvalue [, we define deref (1) to be the set of lvalues that are dereferenced
in the expression of [. Formally,

_ J{V}YUderef(I') if I is of the form *I’
deref (1) = {@ otherwise

For example, if p is a variable and **p is an lvalue, then deref(x xp) =
{p.*p}.

We call an lvalue [ relevant at a program edge E and the node in nsucc(E) if
[ is syntactically part of the expression read at the node nsucc(FE). Note that, if
1 is relevant at a program edge/node, all lvalues in deref (1) are also relevant at
that program edge. In the program of Figure 1, at C3, the relevant lvalues are p,
p->data and *p->data. We consider only well-typed programs without pointer
arithmetic.

Synchronization statements (SyncStmt in Figure 3) are of special interest
to us. Each thread has a start node and an end node, containing special start
and end statements, respectively. Threads are spawned by spawn statements that
take static thread names as parameters and return thread ids of the child threads.
A parent thread waits for a child thread to finish using a join statement. The
lock and unlock statements have the standard semantics for reentrant locks.
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Only synchronization statements can access synchronization variables. Although
we consider only these synchronization statements in this paper, our technique
can be applied to programming languages with other synchronization statements
that have acquire/release semantics (described in Section 4.2), such as read /write
of volatiles in the Java programming language [13].

For a CFG C = (Nodes, Edges, Ey, Ey), Nodes denotes the set of nodes,
Edges C Nodes x Nodes denotes the set of edges, Ey ¢ Fdges denotes a special
start edge with no predecessor node and FEy ¢ FEdges denotes a special end
edge with no successor node in C. For a node N, epred(N) = {FE € Edges |
IN’ € Nodes : E = (N',N)} denotes the set of predecessor edges of N and
npred(N) = {N’ € Nodes | (N',N) € Edges} denotes the set of predecessor
nodes of N. For an edge E = (N, N’), { N} is the singleton set of predecessor node
of E, denoted by npred(F) and the set epred(npred(E)) is the set of predecessor
edges of E, denoted by epred(F). Similarly, esucc and nsuce denote the sets of
successor edges and successor nodes for an edge or a node, respectively. Although
we overload these notations, the meaning should be clear from the context. Each
CFG has a start node Ny which is the successor node of Ey and an end node
Ny which is the predecessor node of Ey. Let NJ' and E} denote the start node
and the start edge of the main thread and NﬁM and Eéw denote the end node
and the end edge of the main thread, respectively.

A path IT in a CFG C is defined as a sequence of nodes (N{,..., N}) of C,
such that there is an edge in C' between N/ and Ny, for every i, 0 <i <n. A
path IT is called an initial path in C if the first node of the path is the node Np,
the start node in C.

4.2 Execution

Let P be a program written in the language described in Section 4.1. An action
is a dynamic instance of a statement in an execution. For an action a, stmt(a)
denotes the corresponding static statement or node and thread_id(a) denotes the
dynamic thread id of the thread performing the action.

An interleaving of P is a sequence of actions (ao, . .., a,), stmt(ag) = N,
possibly from different dynamic threads, such that the projection of the sequence
to any thread id is consistent with the sequential semantics of that thread, given
the values of reads of shared variables. If I is an interleaving of P, I[i] denotes
the ith action in the interleaving. Let a be an action in an interleaving I. By
eprev(a) and enext(a) we denote the program point (CFG edge) reached in the
thread executing a just before and after executing a, respectively. Similarly, by
next(a) we mean the next action in I that belongs to the same dynamic thread as
a. Thus, next(a) = I[j] if a = I[i] and thread_id(a;) = thread_id(a;), i < j and
there is no k, i < k < j such that thread_id(a;) = thread_id(ay). If o’ = next(a),
then we say a = prev(a’).

Synchronization actions are of two types: spawn, end and unlock actions
are the release actions, where as join, start and lock actions are the acquire
actions.

An interleaving I of program P is synchronization-valid if
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— Each unlock action is preceded by a matching lock action. For every prefix
of I, number of unlock actions on a lock variable by a dynamic thread must
be less than or equal to the number of lock actions performed by the same
dynamic thread on the same lock.

— Locks maintain mutual exclusion property. If a is a lock action performed
by a dynamic thread ¢ on a lock 1, then for any thread t' # ¢, the number
of unlock actions performed on 1 by ¢’ before a in I must be exactly equal
to the number of lock actions on 1 by ¢’ before a in I.

— The start action of any thread (except the main thread) is preceded by a
corresponding spawn action that returns a thread id which is the same as
the started thread.

— Each join action is preceded by the end action of the thread it waits for.

An interleaving is sequentially consistent (SC) if every read of a memory
location reads the value written by the last preceding write to the same memory
location in the interleaving. We assume that there is an initial write to every
memory location whenever the memory is allocated in an execution.

An sc-execution is simply a synchronization-valid and sequentially consistent
interleaving.

4.3 Datarace-free Programs

Two non-synchronization actions in an sc-execution are conflicting if they both
access a common memory location and at least one of them writes to that mem-
ory location.

Given an sc-execution &£ of a program P, we say a release action synchronizes-
with subsequent acquire actions corresponding to it. More specifically, an unlock
action synchronizes with any subsequent lock action on the same lock variable, a
spawn action synchronizes with the start action of the thread it spawns and an
end action synchronizes with the join action that waits for the thread to finish.
If in &, an action a synchronizes with an action b, it is denoted by a <£,, b.

Similarly, if in an sc-execution &, a = £[i] and b = £[j] are two actions such
that thread_id(a) = thread_id(b), ¢ < j and there is no k, i < k < j, such that
thread_id(E[k]) = thread_id(£]i]), then there is a program-order relation between
a and b, denoted by a <§O b. Note that if a <§O b, then there is an edge from
stmit(a) to stmt(b) in the CFG of the corresponding static thread.

The happens-before order induced by an sc-execution &, is a partial-order on
the actions of £, denoted by §;‘;b, and is defined as the reflexive transitive closure
of <€, and <§O relations.

An sc-execution & is datarace-free if every pair of conflicting actions are re-
lated by the happens-before order. A program is datarace-free if all sc-executions
of the program are datarace-free. This definition of datarace-freedom is equiva-
lent to the more intuitive definition [25] — in any sc-execution of a datarace-free
program, two conflicting actions from different dynamic threads cannot happen
immediately after one another.
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Many programming languages such as Java [21] and C++ [3] guarantee that
any execution of a datarace-free program in these languages is equivalent to some
sc-execution. We assume that the memory model of our language guarantees
sequentially consistent semantics for datarace-free programs and we are only
interested in datarace-free programs in this paper. Henceforth we refer to an
sc-execution simply as an execution.

5 Analysis for Sequential Programs

In this section, we characterize the class of the analyses for sequential programs
that can be converted to analyses for concurrent programs using our technique.
This class essentially consists of the “value set analysis” (Section 5.1) and any
consistent abstraction (Section 5.2) of it.

We assume the sequential program to consist of a single main thread. It may
not have any synchronization statement except for the start and end statements
of the main thread. Let us denote the sequential program by P and its CFG by
C = (Nodes, Edges, Ey, Ey).

5.1 Value Set Analysis

Intuitively, the value set semantics of a program is an abstract semantics where
the state at each program edge is a map from the Ivalues read or written in the
program to a set of values. The analysis characterizes a conservative approxima-
tion of such a state for each program edge F, i.e. the set of values corresponding
to an lvalue [ in the solution should include every value contained in the memory
location corresponding to [ at F in any execution of the program P reaching FE.

Formally, the value set analysis VS for a program P is a tuple (Lys, Fys)
where Ly s is the lattice of abstract states and Fys is the set of static flow func-
tions. An abstract state in this semantics is denoted by the map VS : LVals —
2Values “where LVals is the set of lvalues read/written in program P and Values
is the set of values that can be contained in any memory location. The domain
of the states is thus LVals — 2V denoted as ValueSets. Hence the lattice
Lys is a join-lattice (ValueSets, <, T, L, 1), where for vs,vs’ € ValueSets and
S C ValueSets

— vs < ws' iff VI € LVals : vs(l) C ws'(1)

— T = Xl. Values

— 1 =Xl0

-yUs=x.. U ws()
vsES

We allow the analysis to be flow-sensitive and (partially) path-sensitive.
Hence, the static flow function for any node N is of the form Fy : ValueSets x
Edges — ValueSets, allowing it to propagate different abstract states along dif-
ferent successor edges. The flow functions for different types of statements are
defined below. Given an expression e, the denotation [e] : ValueSets — 2Values jg



Dataflow Analysis for Datarace-Free Programs 11

a function that returns a set of values obtained from evaluating e on all possible
concrete states corresponding to a given value set. For an lvalue [, AliasSet(l)
denotes the set of lvalues that may represent the same memory location as I.
Note that for sequential programs, the AliasSet can be computed from the value
sets itself or from some sound pointer analysis such as [2].

If N € AsgnStmt and is of the form 1 := e, Fy(vs,_) = vs’, where

[e](vs) ifl'=1
i [e](vs) Uws(l") if I! € AliasSet(1)
vs'(l') = Values if 1 € AliasSet(deref (I'))
vs(l") otherwise.

Intuitively, we destructively update the value set of the Ivalue at the LHS, but
conservatively update the value set of an lvalue that may be alias of the LHS.
If an lvalue is dependent on some alias of the LHS, the memory location corre-
sponding to that lvalue might change. Hence its value set is set to T.

If N € BranchStmt and the branch condition is e, then Fy (vs, true_branch) =
vs" and Fy(vs, false_branch) = vs”, where

Vi,v:v € vs'(l) iff vewvs(l)ATs: ds(l) = {v} A true € [e] (vs)
Vi,v:v € vs”(l) iff v e ws(l) ATFds: vs(l) = {v} A false € [e](vs).

Intuitively, a value v is included in the value set of an lvalue [ along the true
branch if e can evaluate to true with v contained in [. The false branch is similar.
Branch statements do not generate any value that was not there in the input
value set. Flow functions for other statements are identity functions.

A concrete state of a program P is a map cs : LVals — Values. Given an
action a from an execution & of the program P, pre(a) and post(a) denote the
concrete states immediately before and after a is executed, respectively. If ay
is the last action of &, post(£) = post(ay). Given a program edge E, let =Z(E)
denote the set of executions of the program up to E, ie, Z(E) = {€ | £ =
(ap, ..., ay) and B = enext(a})}. Then for an edge £ the collecting value set at
FE is defined to be

CVSIE] =Xl | post(€)(). (1)
£cE(E)
Let £ = {(ay,...,al,) be an execution of the sequential program P. ITg =

(N§,...,N!) is the path corresponding to & where for all i, 0 < i < n, N} =

stmt(a}). Note that for a sequential program, there is an edge in the CFG be-
tween N; and N, for all 4, 0 < i < n. For any analysis A = (£, F), the flow
function for the path II¢ with the initial state d € £ along the edge E is de-
fined by Fp,(vs, E) = Fny (Fn:_ (- (Fny(vs, Ep) ...), E;,_1), E), where each
E; = (N/,N/,1), E € esucc(N;) and each Fy; € F. Let Y(E) be the set of
initial paths up to E. Then the ideal join-over-all-paths (JOP) solution of the

analysis A on P, denoted by J4, is given by
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VE € Edges : JAlE) = | | Fu(T,E) (2)
Hex(E)

For value set analysis, the static flow functions over-approximate the runtime
behavior, i.e. VI € LVals: v = post(a,)(l) = v € Fr, (T, enext(ay,)). We assume
the flow function of an empty path to be identity. Hence for a sequential program,
cVS = Jys.

Any dataflow analysis (say A) characterizes a further conservative approxi-
mation of the JOP by the least solution S 4 for the following set of equations:

X[Eo] =T
VE € (Edges — {Eo}) : X[E] = e le(E) Fuprea)(X[E'],E)  (3)

As described in standard literature e.g. [14], if flow functions are monotonic,
J4 = S4. In particular, CVS < Jys < Sys. Note that the least solution always
exists, but may not be computable for value set analysis. If the underlying lattice
has bounded height, the least solution for A can be computed using an algorithm
like Kildall’s [15].

5.2 Abstractions of Value Set Semantics

In this section, we define consistent abstractions [5] of the value set semantics.
An analysis A = (£, F), where £ = (D, <), is a consistent abstraction of VS if
there are a monotonic abstraction function a: ValueSets — D and a monotonic
concretization function v: D — ValueSets, such that

— Ve eD:z=aly(z)).
— Yus € ValueSets : vs = y(a(vs)).
— VE € Edges : Sys[E] 2 y(SalE]) and a(Sys[E]) X SalE].

Cousot and Cousot [5] provide a sufficient “local” condition to check that one
abstraction is a consistent abstraction of another.

5.3 Null-Pointer Analysis

In this section, we describe a simple null-pointer analysis NPA as an example of
a consistent abstraction of the value set analysis. This analysis can be used to
prove a pointer to be non-null when it is dereferenced. Given a program P, an
abstract state is a map of the form LVals — {NonNull, MayNull}, where LVals
is the set of lvalues in P. The domain of the analysis Dypa is a set of all such
maps. The concretization function v : Dyps — ValueSets is defined below for
d € Dypa:
Values if d(I) = MayNull
Y d)(D) = { Values — {NULL} if d(I) = NonNull.
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Similarly, if a value set contains NULL, the abstraction function maps it to
MayNull, otherwise to NonNull.
For dy,ds € Dypa and I € LVals, the join operation is defined below:

_ [ NonNull if dq(I) = d2(l) = NonNull
dy U da(l) = {MayNull otherwise.

The flow functions for a node N, edge E and state d are given below. By
d[l < a] we denote a map same as d except that d(l) = a.
If N is of the form if (1 !'= NULL):

_ [ d[l < NonNull] if E is the true edge
F(d, B) = {d otherwise.

If N is of the form 1 := e:

NonNull if I’ =1, e is an lvalue, and d(e) = NonNull

d(l") if I ¢ AliasSet(1) and 1 ¢ AliasSet(deref (I'))
d(l’) if I’ € AliasSet(1), e is an lvalue, and d(e) = NonNull
MayNull otherwise.

Fn(d, E)(I') =

The flow functions for all other statements are identity functions. It is easy
to see that this is an abstraction of the value set analysis.

6 Analysis for Concurrent Programs

Given a concurrent program P and a dataflow analysis A for sequential pro-
grams, our technique converts A to an analysis for P that is sound if P is
datarace-free and A falls into the class of analyses described in Section 5. We
assume availability of a sound may-alias analysis. For example, flow-insensitive
may-alias analyses such as [2] are sound for concurrent programs.

1. Construction of the sync-CFG: We first construct an extended CFG C
for P, called sync-CFG, as follows. We begin by taking the disjoint union
of the CFGs of threads of P. We then add the may-synchronize-with (msw)
edges between nodes of these CFGs as described below. These edges are
added between nodes that might participate in a synchronizes-with relation
at runtime. More specifically, we add the the following types of edges:

1. From a spawn node to the start node of the child thread.
2. From an end node of a thread to the corresponding join node of the
parent thread.
3. From an unlock node to a lock node, if they access the same lock and
if the corresponding threads may run in parallel.
In case the exact set of edges are difficult be compute, we can use any
over-approximation of it. For example, if locks can be aliased (not possible
in the language described in Section 4.1), we use the may-alias analysis to
find out whether a lock/unlock pair may access the same lock variable at
run-time. Similarly, simple control flow based techniques can be applied to
conservatively detect whether two threads can run in parallel. Figure 1 shows
the msw edges added for the shown program fragment.
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2. Constructing Flow functions: Flow functions of the synchronization state-
ments are simply identity functions. Flow functions of other nodes are same
as that of A.

3. Constructing and Solving Flow Equations: The sync-CFG C corresponds
to a (non-deterministic) sequential program. We construct the flow equations
for our analysis A over C as given in Equation 3. Finally, we compute the
least solution of these set of equations over the sync-CFG C.

Interpreting the Result: As we show in Section 7, the solution given by our
technique conservatively approximates the value sets of relevant lvalues at a
program edge, while it may not be sound for non-relevant lvalues. Hence the
client of the analysis must use the result to reason about only relevant lvalues.
For example, in the program of Figure 1, our analysis wrongly concludes that
p—>data must be non-null at C1, but p->data is not relevant at C1. On the other
hand, it finds p->data to be non-null at C3 where it is relevant and this fact is
sound.

Alternatively, to present a solution that is sound for all lvalues, we define
a program dependent operation havoc on value set states as follows. For vs €
ValueSets, E € Edges and | € LVals,

Values if [ is not relevant at E
havoe(vs, E)(1) = { vs(l)  otherwise

Then for an abstract analysis A, a(havoc(y(S4)[E], E)) (or any conservative
approximation of it) is the final solution at edge E. This step essentially sets
the abstract values of non-relevant lvalues at every program point to the most
conservative value. Hence, this method produces useful results only for relevant
lvalues at each program edge, but is sound for all lvalues.

Note that each component analysis can be computed in time polynomial in
size of the program. Hence, the entire algorithm takes time polynomial in size
of the program.

7 Proof of Soundness

7.1 For Value Set Analysis

In this section we prove that given a datarace-free concurrent program P, the
solution characterized by the technique described in Section 6 is a conservative
approximation of the collecting semantics defined by Equation 1 for value set
analysis with respect to the relevant lvalues at each program edge. Note that the
least solution to the equation system 3 is a conservative approximation of the
JOP solution over the sync-CFG C' of P. Thus it is sufficient for our purpose to
argue that if there is an execution of P in which an lvalue [ has a value v at a
program edge F where [ is relevant, then there is an initial path in the sync-CFG
to E along which the value v is included in the value set of [ at F. This is shown
in Lemma 2 below.
We begin with a lemma that will be useful in proving Lemma 2.
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Lemma 1. Let £ = (ao,...,a;) be an execution of the program P. Let [ be a
relevant lvalue at stmt(aj) and v = pre(a;)(l). Let M be the set of memory
locations corresponding to the lvalues {l} U deref(l) at a;. Let a;, i < j be the
last action before a; that writes to a memory location in M. Then there exists
a static path II in the sync-CFG C from stmt(next(a;)) to stmt(prev(a;)) such
that Yus € ValueSets: v € vs(l) = v € Frg(vs, E)(l), where E = eprev(a;).

Proof. As [ is relevant at stmt(a;), a; reads all the memory locations of M. As
a; is the last action before a; that writes to one of these memory locations, a;
and a; are conflicting. As the program is datarace-free, we must have a; S‘Zb
aj. Recall that the happens-before relation is the reflexive transitive closure
of program-order and synchronizes-with relations. It is easy to see that if for
two actions b and b’ from &, b <fm v oor b <€, ¥, then there is an edge in
C from stmt(b) to stmt(b'). Hence, a path II' from stmt(a;) to stmt(a;) in C
can be constructed by joining the edges of C corresponding to these po and sw
relations. As neither a; nor a; can be synchronization actions (they read/write
to lvalues), hence, in II’, stmt(a;) is succeeded by stmt(next(a;)) and stmt(a;)
is preceded by stmt(prev(a;)). Clearly, this path is a subsequence of the list of
nodes corresponding to a;, ..., a;. We further obtain IT from II’ by excluding
stmt(a;) and stmt(a;) from I1".

By contradiction, let vs be a value set state such that v € ws(l) and v ¢
Fr(vs, E). Then there must be a node N and an edge F in II such that
E € esucc(N) and there is a value set state vs’ such that v € ws’(l) and
v ¢ Fn(vs', E)(l). From the definition of flow functions from Section 5.1, this
can be possible only in the following two cases:

— N is an assignment to [. As a; was the last assignment to any memory
location in M, the memory location corresponding to [ does not change after
a; till a;. If LHS of N was [, then the corresponding action in a;y1,...,a5-1
must have written to a memory location in M, which is not possible because
of the choice of a;.

— N is a branch statement and E is the true successor edge and the condition
e is such that it does not evaluate to true when [ has a value v. This is not
possible as the execution took the true branch E with the value v in [. The
argument is similar for the false branch.

Hence, there can be no such vs and the lemma is proved. a

Lemma 2. Let £ = (ap,...,a;) be an execution of P. Let | be an lvalue relevant
at stmt(a;) and v = pre(a;)(l). Let N = stmt(a;) and E € epred(N) in C.
Then there exists an initial static path © in C from N} up to E, such that
(IS F@(T,E)(l).

Proof. We prove the lemma by induction on the length k£ = j+1 of the execution
E.
Base case: It k =0, © = € (empty path) and Fo(T,E) = T. Clearly, v € T(1).
Induction step: Let us assume the result for kK < n and consider the case for
k=n.
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Let a; be the last action in £ before a; which writes to a memory location
corresponding to the lvalues in {{} U deref (1) at a;. Then we have v = post(a;)(l)
as the value contained in I cannot change after a; in £. As N = stmt(a;) is an
assignment statement, let us denote the singleton edge in esucc(N ) by E. Then
either of the following is true:

1. N writes to a memory location corresponding to an lvalue in deref(l) at
a;. In this case, any path © from N} to N (both inclusive) in C' will have
veE Fg(T, E)(1), as the flow function of N sets the value set of I to Values.
It is easy to see that if a node gets executed, then there is a path from NM
to that node in C.

2. N writes to the memory location corresponding to I. Let the RHS be the
expression e. As the length of (ag,...,a;) is less than k, by the induction
hypothesis, there is a path ©” from N} up to but not including N, such
that for all lvalue I’ read in e, v = pre(a;)(I') = v' € Fou (T, epred(a;))(l').
Let © = ©”.N. From the definition of static flow function, this implies
v € Fo(T,E)).

Now let IT be the path from stmt(next(a;)) to stmt(prev(a;)), excluding both,
as given by Lemma 1. Clearly, E = eprev(a;). Let © = ©-I1. Asv € F@(T,E)(l)
and v = post(a;)(l), using Lemma 1, we have v € Fo(T, E)(I). O

We finally prove the following soundness theorem:

Theorem 1. Let P be a datarace-free concurrent program. Let Sys be the so-
lution returned by our technique and let CVS be the collecting value set of P. If
I is an lvalue relevant at an edge E, then CVS[E](l) C Sys[E]().

Proof. As already observed in the beginning of this section, since our analysis
finds a conservative approximation of the join-over-all-paths solution over the
paths of sync-CFG C of P, it is sufficient to show that if there is an execution
of P which has a value v in an lvalue [ at a program edge E where [ is relevant,
then there is an initial path in C to E along which the value v is included in the
value set of [ at E. This is a direct consequence of Lemma 2. Hence the theorem
is proved. a

The following corollary is immediate from Theorem 1 and definition of havoc.
Corollary 1. For a datarace-free program P and for all edges E, CVS[E] <
havoc(Sys|E], E).

7.2 For Abstractions of Value Set Semantics

We now show that the havoced solution characterized by our technique for any
consistent abstraction of value set semantics conservatively approximates the
collecting semantics for value set analysis for a datarace-free program.
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Theorem 2. Let A be a consistent abstraction of the value set semantics and S 4
be the solution returned by our analysis for a datarace-free concurrent program
P. Then for all edges E, CVS[E] =< havoc(y(Sa)[E], E).

Proof. From definition of consistent abstraction, Sys = v(S4). As havoc is
monotonic, havoc(Sys[E], E) < havoc(v(S4)[E], E). From Corollary 1, we have
CVS[E] = havoc(Sys[E], E). Thus, CVS[E] < havoc(y(S4)[E], E). O

8 Context-Sensitive Analysis

In this section, we describe how a context-sensitive technique, namely the call-
string approach [26], can be integrated into our framework. Due to lack of space,
we only give an informal description here - for details see the full version [1].

We first add procedures to our language described in Section 4.1. A thread
now consists of a number of procedures, each with their own rooted CFGs. Each
thread has a entry procedure. Execution of a thread starts with the execution of
the start node of the entry procedure. We define two new types of statements :
CallStmt of the form <procname> (), where <procname> is name of some proce-
dure and ReturnStmt of the form return. The control flow structure of a thread
is represented by a Interprocedural Control Flow Graph (ICFG), which is ob-
tained by taking disjoint union of all the CFGs of all the procedures that can be
called during execution of the thread and adding call edges (from call statements
to the root nodes of the called procedures’” CFGs) and return edges (from return
statements to the statements immediately following the call statements calling
the procedures containing the return statements). Note that in any CFG, there
are no edges from call statements to the next statements in the same procedures.

A call-string is a (possibly empty) sequence of call statements. The domain
of the call-string analysis consists of abstract dataflow states tagged with call-
strings. Intuitively, these tags represent the call stack when an execution reaches
a program point with that abstract value. Clearly, same abstract value can reach
a program point with different tags. For sequential programs, the join operation
joins only those abstract values whose tags match. Flow functions of nodes other
than call and return do not modify the tags, but modify the abstract values like
their context-insensitive counterparts. Flow functions for call statements do not
modify the abstract value, but modify the call-string tags by pushing the call
statement. Flow functions of return statements propagate only those abstract
values along a return edge whose tags have the corresponding call statement as
the last element of the string. They also pop the last element from such call-string
tags. For details of call-string approach for sequential programs, see [26].

In case of datarace-free concurrent programs, any abstract state that is reach-
able at a release node tagged with any call-string should be joined with all ab-
stract states at the corresponding acquire node, as the release and the acquire
nodes may belong to different dynamic threads at runtime and there is no relation
among the call-strings of different threads. If the abstract state corresponding
to some call-string is L at the acquire node, it implies that the call-string is not
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reachable at that program node. Hence we join the propagated value only with
the call-strings that are mapped to non-bottom values. Details of our context-
sensitive technique can be found at [1].

9 Implementation

We have implemented our technique into a framework named STAND (for STatic
ANanlysis for Datarace-free programs) that automatically converts dataflow
analyses for sequential Java programs to analyses for concurrent program. We
use Soot [27] as the frontend and SPARK [18] for the alias analysis. We in-
stantiated STAND for null-dereference analysis and used it to prove safety of
dereferences in three large Java programs, jdbm (a transactional persistence en-
gine), jdbf (an object-relational mapping system) and jtds (a JDBC driver).
Developers of these programs fixed the dataraces detected by Chord [23] and
hence, they are likely to be datarace-free. Experiments are carried out on an
2.27 GHz Intel Xeon machine with 2 GB RAM.

We report the percentage of dereferences proven to be safe for our benchmark
programs in column % safe of Table 1. We observe that on an average, STAND is
able to prove over 80% of the dereferences safe. We compare our precision with
an unsound sequential analysis that is obtained by removing the msw edges
(except for edges from spawn to start) from a sync-CFG and running the same
underlying sequential analysis on the modified graph. Note that this analysis
is unsound as it does not account for the interference from other threads. The
column % seq-safe denotes the percentage of dereferences shown to be safe by
this unsound, sequential analysis. We observe that the difference between % safe
and % seq-safe is small. Hence it can be concluded that the loss of precision in
STAND can largely be attributed to the underlying sequential analysis. Finally,
we report the total analysis time in two parts: SPARK time denotes the time
taken by the SPARK alias analysis and STAND time denotes the time taken
by our analysis excluding alias analysis. Note that the analysis time of STAND
after alias analysis is fairly small for these benchmark programs.

Table 1. Results using STAND

Benchmark|LOC (w/o lib)|% safe|% seg-safe|STAND time(s)[SPARK time(s)
jdbm 19077 79.5 81.0 2.518 35
jdbf 15923 81.9 82.8 2.883 120
jtds 66318 80.3 84.3 1.709 51

We also compare STAND with Radar [4] by implementing null-pointer anal-
ysis for concurrent C programs using LLVM [19] frontend. We executed Radar
and STAND on the five concurrent programs (average size > 1 KLOC) imple-
menting some classic concurrent algorithms and data-structures. The precision
results given in Figure 4 shows that STAND is consistently more precise than
Radar. We manually confirmed the reason behind this precision difference is that
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Fig. 4. Precision comparison between Radar and Stand

Radar kills a dataflow fact whenever some other thread possibly affects that fact
whereas STAND propagates the exact facts from one thread to another. The
analysis time of STAND for these programs is only 0.8 seconds on average.

Acknowledgments. We thank Ankur Sinha for helping with the experiments.
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