
Conflict-Tolerant Specifications in Temporal Logic

Sumesh Divakaran
Indian Institute of Science

Bangalore 560012
India.

sumeshd@csa.iisc.ernet.in

Deepak D’Souza
Indian Institute of Science

Bangalore 560012
India.

deepakd@csa.iisc.ernet.in

Raj Mohan M
Indian Institute of Science

Bangalore 560012
India.

raj@csa.iisc.ernet.in

ABSTRACT
A framework based on the notion of conflict-tolerance was
proposed in [1] as a methodology for developing and reason-
ing about systems that are composed of multiple indepen-
dent features. In [1] the authors use annotated transition
systems to specify conflict-tolerant features. In this paper
we propose a way of specifying conflict-tolerant features in
Temporal Logic, which is a specification language widely
used in practice. We call our logic Conflict-Tolerant LTL or
CT-LTL. We provide an algorithm for verifying whether a
given feature implementation meets a specification given in
our logic. The paper concludes by providing a constructive
procedure for synthesising a finite-state feature implemen-
tation from a given CT-LTL specification.

Categories and Subject Descriptors
F.4.1 [Theory of Computation]: Mathematical Logic—
Temporal Logic

Keywords
Conflict-tolerance, Temporal Logic, CT-LTL

1. INTRODUCTION
A framework based on the notion of “conflict-tolerance”

was proposed in [1] as a way of developing and reasoning
about systems that are composed of a base system along
with multiple independent controllers that each implement
a certain feature for the system. Such systems appear com-
monly in software intensive domains, examples of which in-
clude an automobile with several features like cruise con-
trol and stability control; or a telecom switch which pro-
vides different features to subscribers, like call forwarding
and call screening. Typically the controller for each feature
is developed independently, and the controllers are all in-
tegrated together using a supervisory controller or feature
manager. Unfortunately in certain configurations of the sys-
tem – as the reader may well imagine for the example fea-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISEC ’10, Feb 25-27, 2010, Mysuru, Karnataka, India.
Copyright 2010 ACM 978-1-60558-922-0/10/02 ...$5.00.

tures mentioned above – the individual controllers may pre-
fer conflicting advises on how the system should proceed
next. These conflicts are typically resolved by suspending
the lower-priority controller(s) and then waiting for a “re-
set” state of the system before restarting the controller. As
a result the suspended feature’s utility is lost out on during
this period.

The framework in [1] proposes a way of designing each
controller so that, given a priority ordering among the fea-
tures, it is easy to compose them in a way in which each
controller is utilised “maximally.” Thus each controller’s ad-
vice is taken at all times except when each of its advised
actions is in conflict with a higher priority controller.

The key idea in this framework is to specify a “conflict-
tolerant”behaviour for each feature, and to build controllers
for each feature that meet its conflict-tolerant specification.
Unlike a classical safety specification, which can be viewed
as a prefix-closed language of behaviours, a conflict-tolerant
specification is an advice function which specifies a safety
language for each possible finite behaviour of the system.
This is depicted in Fig. 1: If one considers the set of all pos-
sible behaviours of the system as a tree growing downwards,
then part (a) shows the shaded “cone” denoting a classical
safety language, and part (b) depicts what a tolerant speci-
fication may look like, with safety cones prescribed for each
possible behaviour of the system. A controller for such a
specification must itself be “tolerant” in that it not only ad-
vises the system on what actions to take next (like a classical
controller), but also keeps track of possible deviations from
its advice, and goes on to advise next events so as to control
the subsequent behaviour of the system. A conflict-tolerant
controller satisfies a tolerant specification given as an advice
function f if after every system behaviour w, the subsequent
controlled behaviour of the system stays within the safety
language f(w).

In this paper our aim is to propose a way of specify-
ing conflict-tolerant specifications in Linear-Time Temporal
Logic (LTL) [2]. LTL is a popular specification language
in both academia and industry, and is considered to be a
language that is easy to use by the specifier. Hence we be-
lieve that a mechanism for specifying conflict-tolerant spec-
ifications in LTL would be a useful addition to the conflict-
tolerant framework.

The logic we propose, called CT-LTL for“Conflict-Tolerant
LTL,” is a syntactic fragment of LTL. A CT-LTL specifica-
tion is a conjunction of formulas of the form (ϕ =⇒ ψ),
where ϕ is a past LTL formula, and ψ is a disjunction of for-
mulas of the form a (“next a”), where a is system action.

(a) (b)

w

Figure 1: (a): A classical safety specification and (b) a conflict-tolerant specification.

A CT-LTL formula defines an advice function in a natural
way: for any behaviour w, we check whether the past for-
mula ϕ is true, and if so, advise a set of next actions that
satisfy ψ.

The associated verification problem for CT-LTL is to check,
given a base system B and a conflict-tolerant controller C
(both modelled as a finite-state transition systems), and a
conflict-tolerant specification in the form of a CT-LTL for-
mula θ, whether C satisfies the advice function induced by
θ, with respect to the given base system B (as described
above). We note that an advice function is in general a
richer object than a classical safety specification, and thus
the verification problem for CT-LTL is more general differ-
ent than the classical verification problem for LTL. Thus, a
controller C may satisfy θ as a classical LTL specification,
but not as a conflict-tolerant specification.

Nonetheless, we show that the verification problem, as
well as the associated feasibility and synthesis problems, for
CT-LTL can be solved algorithmically, using essentially the
same technique as for classical LTL. The main step is to
build for a given past LTL formula ϕ a deterministic transi-
tion system that “monitors” the truth of ϕ along every word
it reads. This is similar to the “formula automaton” for clas-
sical LTL [3, 4].

The rest of the paper is organized as follows. In Sections 2
and 3 we introduce conflict-tolerant systems and associated
notions along with some examples. In Section 4 we introduce
LTL and our logic CT-LTL for specifying conflict-tolerant
specifications. In Section 5 we give a procedure for gen-
erating the monitoring automaton for a past-LTL formula.
Sections 6 and 7 address the verification and synthesis prob-
lems respectively.

2. PRELIMINARIES
Let Σ be a finite alphabet of events and let Σ∗ be the set

of all finite words over Σ. A language over Σ is a subset of
Σ∗. We denote the empty word by ǫ and the concatenation
of the words u and v by u · v (or simply uv). We say u is a
prefix of v, and write u � v, if there exists w in Σ∗ such that
uw = v. We say a language L is prefix-closed if whenever
v ∈ L and u � v, we have u ∈ L.

For any language L and a word u over Σ the set of all
extensions of u in L, denoted extu(L), is {v ∈ Σ∗ | uv ∈ L}
and the set of all immediate extensions of u in L, denoted
iextu(L), is {a ∈ Σ | av ∈ extu(L)}.

A transition system T over Σ is a tuple (Q, s,→) where
Q is a finite set of states, s ∈ Q is the start state and →⊆
Q × Σ ×Q is a Σ-labelled transition relation. A run of the
transition system T on a word w = a1 . . . an starting from
a state q0 is a sequence q0, . . . , qn of states in Q such that
for all i ∈ {1, . . . , n}, (qi−1, ai, qi) ∈→. Let Lq(T) denote
the set of all words on which T has a run starting from

the state q. Then we define the language generated by T ,
denoted L(T), to be Ls(T). We say the transition system T
is deterministic if for every p ∈ Q and a ∈ Σ there exists at
most one q ∈ Q such that (p, a, q) ∈→. For a deterministic
transition system T and a word w on which T has a run let
q be the unique state reached by T on w. Then we define
Lw(T) = Lq(T).

Next we define the standard “synchronized product” of
two transition systems.

Definition 1. Let T1 = (Q1, s1,→1) and T2 = (Q2, s2,→2

) be two transition systems over Σ. Then the synchronized
product of T1 and T2, denoted by T1 ‖ T2, is defined to be
the transition system (Q1 × Q2, (s1, s2),→) over Σ, where
((p1, p2), a, (q1, q2)) ∈→ iff (p1, a, q1) ∈→1 and (p2, a, q2) ∈→2.

3. CONFLICT-TOLERANT CONTROLLERS
In this section we recall some of the key notions in the

conflict-tolerant framework from [1]. To begin with, follow-
ing a line of work suggested earlier in the literature [5, 6],
feature implementations are viewed as controllers of a base
system.

A base system is modelled as a finite-state transition sys-
tem in which “system” events are performed in response to
“environment” events. In this regard we define a partitioned
alphabet to be one of the form (Σs,Σe) where Σs is a finite
set of controllable or system events, and Σe is a finite set
of uncontrollable or environment events. We will use the
convention that Σs ∪ Σe = Σ.

Definition 2. A base system or plant over a partitioned
alphabet (Σs,Σe) is a deterministic finite state transition
system B over Σ satisfying the following conditions:

• L(B) is alternating, i.e. L(B) ⊆ (Σe ·Σs)
∗∪((Σe ·Σs)

∗ ·
Σe)

• B is non-blocking, i.e. w ∈ L(B) =⇒ ∃a ∈ Σ s.t.
wa ∈ L(B).

As a running example we consider the base system shown
in Fig. 2(a). The base system models a system that can
perform the system events noRel, rel and relDouble for
releasing zero, one, or two units of oxygen respectively, in
response to the environment event timer.

In the classical framework, a (safety) specification for a
feature is given by a prefix-closed language. A controller im-
plementing the feature meets this specification with respect
to a given base system if all behaviours of the controlled
base system lie within the specified language. For exam-
ple, the transition system shown in Fig. 2(b) is a classical
controller for the given base system that ensures that every
timer event is followed by a rel event.

P Q

timer

rel, relDouble, noRel

Q’P’

rel

timer

(b)(a)

Figure 2: (a) Example base system and (b) a classical controller.

A conflict-tolerant specification on the other hand is a col-
lection of safety languages, one for each possible behaviour
of the base system. This is formalised as an“advice function”
below, which advises a safety language of future extensions
for each possible behaviour.

Definition 3. An advice function over an alphabet Σ is
a map f : Σ∗ → 2Σ∗

which satisfies the following conditions:

• for every word w ∈ Σ∗, f(w) is a prefix-closed lan-
guage.

• f is consistent in the sense that for all u ∈ Σ∗ if v ∈
f(u) then f(uv) = extv(f(u)).

Another way of describing an advice function is as an im-
mediate advice function:

Definition 4. An immediate advice function over an al-
phabet Σ is a map g : Σ∗ → 2Σ.

An immediate advice function g over Σ induces an advice
function fg over Σ in the following way. We say a word
w in Σ∗ is according to the immediate advice function g
at a non-empty prefix ua of w, if a ∈ g(u). We say w is
always according to g if w is according to g at all non-empty
prefixes of w. The advice function fg induced by g can now
be defined for each u ∈ Σ∗ as

fg(u) = {v ∈ Σ∗ | ∀wa � v, uv is according to g at uwa}.

One can verify that the two conditions for an advice function
in Def. 3 are satisfied by fg and hence that it is a valid advice
function.

A conflict-tolerant controller (or feature implementation)
is similar to a classical controller which synchronizes with
the base system and controls the choice of possible next sys-
tem events available to the base system. The key difference
is that a conflict-tolerant controller also keeps track of the
system events that are against its advice, and goes on to
control the subsequent behaviour of the system. A conflict-
tolerant controller is modelled as an annotated transition
system described below.

A conflict-tolerant transition system (CTTS for short) over
an alphabet Σ is a tuple T ′ = (T , N) where T is a deter-
ministic transition system over Σ and N ⊆→ is a subset of
transitions designated as not-advised.

A CTTS T ′ (as above) generates two type of languages:
an “unconstrained” language, and a “constrained” language.
Let T ′′ be the transition system obtained from T ′ by delet-
ing all the not-advised transitions (i.e. transitions in N)
from T ′. Then starting from a configuration q in T ′ the
unconstrained language generated by T ′, denoted Lq(T

′),
is defined to be Lq(T) and the constrained language gener-
ated by T ′, denoted Lcq(T

′), is defined to be Lq(T
′′). For

any word w ∈ L(T) we use Lcw(T ′) to denote the language
Lcq(T

′) where q is the unique configuration reached by T on
w. The CTTS T ′ is said to be complete with respect to a
language L if L ⊆ L(T).

We can now define a “conflict-tolerant” controller.

Definition 5. A conflict-tolerant controller C for a base
system B over a partitioned alphabet (Σs,Σe) is a conflict-
tolerant transition system over Σ that is complete with re-
spect to L(B).

The controller C is said to be valid with respect to B if the
following conditions hold:

• C is non-restricting: If w · e ∈ L(B) for some envi-
ronment event e ∈ Σe, then e ∈ Lcw(C). Thus the
controller must not restrict any environment event e
enabled in the base system after any system behaviour
w.

• C is non-blocking: If w ∈ L(B), then Lcw(C)∩Lw(B) 6=
{ǫ}. Thus the controller must not block the system
after any system behaviour w.

Let C be a conflict-tolerant controller for a base system B
as above. Then we can view the product transition system
B ‖ C as a CTTS over Σ where the non-advised transitions
are inherited from C. Thus, a joint transition ((p, q), a, (p′, q′))
is not-advised iff the transition (q, a, q′) is not-advised in C.

Let f be an advice function over Σ. A conflict-tolerant
controller C for B satisfies the conflict-tolerant specification
f if for each w ∈ L(B), Lcw(B ‖ C) ⊆ f(w). In other words,
after any system behaviour w, if the base system follows the
advice of C, the resulting behaviours must all conform to the
safety language f(w).

Figure 3 shows two valid conflict-tolerant controllers for
the example base system of Fig 2(a). The not-advised tran-
sitions are shown with dotted arrows. The first controller’s
advice is always to wait for a timer event and advise a rel
event in response, no matter what behaviour has ensued
in the past. The second controller on the other hand tries
to maintain a “unit average” with respect to the last sys-
tem action. We note that while both these controllers have
rather different behaviours as conflict tolerant controllers,
as classical controllers they are the same as the controller of
Fig. 2(b).

We will return to these examples after seeing how to spec-
ify advice functions in temporal logic.

4. CONFLICT-TOLERANT SPECIFICATIONS
IN CT-LTL

Linear-time Temporal Logic (LTL) [2] is a formalism for
specifying systems whose behaviours are viewed as a linear
sequence of events.

The syntax of an LTL formula over an alphabet Σ is given
by:

ϕ ::= ⊤ | ⊥ | a | ¬ϕ | ϕ∨ϕ | ϕ∧ϕ | ϕ | ϕUϕ | ϕ | ϕSϕ

where a ∈ Σ.
Let w be a word over Σ and let |w| denote the length of

w. Let i ∈ {0, . . . , |w|} be a position in w corresponding to a
prefix of w. Then the semantics of LTL is defined inductively
via the relation w, i |= ϕ (“w satisfies ϕ at position i”) as
follows.

For all i ∈ {0, . . . , |w|}, (w, i) |= ⊤ and (w, i) 6|= ⊥.
(w, i) |= a ⇐⇒ i > 0 and w(i) = a.

(w, i) |= ¬ϕ ⇐⇒ (w, i) 6|= ϕ.
(w, i) |= ϕ ∨ ψ ⇐⇒ (w, i) |= ϕ or (w, i) |= ψ.
(w, i) |= ϕ ∧ ψ ⇐⇒ (w, i) |= ϕ and (w, i) |= ψ.

(w, i) |= ϕ ⇐⇒ i < |w| and (w, i+ 1) |= ϕ.
(w, i) |= ϕ ⇐⇒ i > 0 and (w, i− 1) |= ϕ.

(w, i) |= ϕUψ ⇐⇒ ∃j : i ≤ j < |w|, (w, j) |= ψ and
∀k : i ≤ k < j =⇒ (w, k) |= ϕ.

(w, i) |= ϕSψ ⇐⇒ ∃j, 0 ≤ j ≤ i, (w, j) |= ψ and
∀k : j < k ≤ i =⇒ (w, k) |= ϕ.

We will make use of the derived operators ϕ = ⊤Uϕ,
ϕ = ⊤Sϕ,ϕ = ¬¬ϕ, andϕ = ¬¬ϕ. We also make
use of the“weaker”version of defined as ⊙ϕ = ϕ∨¬⊤.
Thus ⊙ϕ says that either we are at the end of the word or
there is a next position in the word and ϕ is satisfied there.
Finally, we will make use of the abbreviation init which is
defined to be ¬⊤, which is true precisely at position 0 in
any given word.

For an LTL formula ϕ and a word w ∈ Σ∗, we say w |= ϕ
iff w, 0 |= ϕ. We set L(ϕ) = {w ∈ Σ∗ | w |= ϕ}. As
an example, the LTL formula (a =⇒ b), specifies all
words over {a, b} in which every a is immediately followed
by a b.

We will make use of the past fragment of LTL, obtained by
disallowing the operators U and , and denote it by LTLp.
Thus the syntax of LTLp formulas over the alphabet Σ is
given by:

ϕ ::= ⊤ | ⊥ | a | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ | ϕSϕ

where a ∈ Σ. For an LTLp formula ϕ and a word w in
Σ∗, we write w |= ϕ to denote the fact that (w, |w|) |= ϕ.
Correspondingly, we denote the language associated with ϕ
by L(ϕ) = {w ∈ Σ∗ | w |= ϕ}.

Let us now discuss our way of specifying conflict-tolerant
specifications in LTL. Our logic, denoted CT-LTL, is syntac-
tically a fragment of LTL, as described below. Each formula
in this logic will describe an immediate advice function.

Definition 6. A formula of CT-LTL over an alphabet Σ
is an LTL formula over Σ of the form

(
^

i∈{1,...,k}

(ϕi =⇒ ψi))

where k ≥ 0, ϕi is an LTLp formula, and each ψi is of the
form

W

a∈Xi
⊙ a, where Xi ⊆ Σ.

The formula θ = (
V

i∈{1,...,k}(ϕi =⇒ ψi)) above defines
an immediate advice function gθ given by

gθ(w) =
\

i∈{1,...,k}, w|=ϕi

Xi.

We adopt the convention that the intersection of an empty
set is the full set of events Σ. We denote by fθ the advice
function fgθ

induced by θ.
Let us now illustrate our logic with a couple of examples,

with respect to the example base system B of Fig. 2(a).

Example 1. The CT-LTL formula

(timer =⇒ ⊙ rel)

specifies the immediate advice function which advises a rel
event whenever the last event is a timer event and Σ other-
wise.

The conflict-tolerant controller of Fig. 3(a) can be seen
to satisfy the conflict-tolerant spec given by the CT-LTL
formula above, with respect to the example base system.

Example 2. The CT-LTL formula below specifies an im-
mediate advice that tries to maintain a unit average with
respect to the last system event.

(((timer ∧ (init ∨rel)) =⇒ ⊙ rel) ∧
((timer ∧noRel) =⇒ ⊙ relDouble) ∧
((timer ∧relDouble) =⇒ ⊙noRel)).

The conflict-tolerant controller of Fig. 3(b) can be seen
to satisfy the conflict-tolerant spec given by the CT-LTL
formula above, with respect to the example base system.

We now consider the verification and synthesis problems
induced by the logic CT-LTL.

Definition 7. (Verification Problem for CT-LTL) Given
a base system B over Σ, a conflict-tolerant controller C for
B, and a CT-LTL formula θ, check whether C is a valid
conflict-tolerant controller for B which satisfies the advice
function fθ with respect to B.

Definition 8. (Synthesis Problem for CT-LTL) Given
a base system B over Σ, and a CT-LTL formula θ, check
whether there exists a valid conflict-tolerant controller for B
which satisfies the advice function fθ with respect to B; and
if so, construct one.

We would like to emphasize that these problems for the
logic CT-LTL are different from the corresponding prob-
lems for classical LTL. Consider the verification problem
for a CT-LTL formula θ. Viewed as an LTL formula, θ
defines a safety language L(θ). However as a CT-LTL for-
mula, θ defines an advice function, which is in general a
richer object than a safety language. In fact, it is easy to
see that the safety language L(θ) corresponds to the initial
safety cone of the advice function fθ induced by θ: in other
words, L(θ) = fθ(ǫ). Thus it is not sufficient to simply
check whether B ‖ C satisfies θ as an LTL formula to be
able to conclude that C satisfies fθ with respect to B. Nev-
ertheless, in the subsequent sections we show that we solve
these more general problems for CT-LTL using essentially
the same techniques as for classical LTL.

5. FROM AN LTLp FORMULA TO A DFA
The main step in solving the verification and synthesis

problems for a CT-LTL specification is the construction of
the “formula automaton” for the LTLp sub formulas of the

timer timer timer
relDouble noRel

Double
rel

rel
no
Rel

noRel

relDoublerel

rel

S T

timer

rel
relDouble, noRel

(a) (b)

T2T1 T3 T4
T5 T6

Figure 3: Two conflict-tolerant controllers for the example base system of Fig. 2(a).

specification. A formula automaton Aθ of θ is a transition
system whose state space is the set of all “consistent” set
over θ. And the transition relation of Aθ is defined in a
“consistent way” the details of which are given in Def. 11.

Let us now define some notions which we require subse-
quently. Let ϕ be an LTLp formula over the alphabet Σ and
let psf (ϕ) be the set of positive sub formulas of ϕ, i.e. sub
formulas of ϕ which are not of the form ¬ψ. Without loss
of generality we assume that ψ does not contain any double
negation formulas, i.e formulas of the form ¬¬ψ. Then the
closure of the formula ϕ is defined as follows:

Definition 9. The closure of an LTLp formula ϕ, de-
noted cl(ϕ), is defined as

cl(ϕ) = X ∪ {¬β | β ∈ X}

where X = psf (ϕ) ∪ {(ψSµ), ψSµ ∈ psf (ϕ)} ∪ Σ ∪ {⊤}.

Now given the set cl(ϕ) we define an atom of the formula
ϕ as follows:

Definition 10. An atom of an LTLp formula ϕ is a sub-
set A of cl(ϕ) satisfying the following conditions.

0. ⊤ ∈ A

1. ∀¬ψ ∈ cl(ϕ), ψ ∈ A⇐⇒ ¬ψ /∈ A

2. ∀(ψ ∨ µ) ∈ cl(ϕ), (ψ ∨ µ) ∈ A⇐⇒ ψ ∈ A or µ ∈ A

3. ∀(ψ ∧ µ) ∈ cl(ϕ), (ψ ∨ µ) ∈ A⇐⇒ ψ ∈ A and µ ∈ A

4. ∀(ψ Sµ) ∈ cl(ϕ), (ψ Sµ) ∈ A⇐⇒ µ ∈ A, or, ψ ∈ A

and (ψ Sµ) ∈ A

5. |Σ ∩A| ≤ 1

We denote the set of all atoms over ϕ by atoms(ϕ).
As simple exercises we construct the sets cl(ϕ) and atoms(ϕ)

of the LTLp formula ϕ = bSa over Σ = {a, b} in Example 3
and Example 4.

Example 3. (Closure) The closure of the formula ϕ is
as given below.

psf (ϕ) ={a, b, bSa}

X ={⊤, a, b, bSa,(bSa)}

cl(ϕ) ={⊤,⊥, a, b, bSa,(bSa),¬a,¬b,¬(bSa),¬(bSa)}

Example 4. (atom) The atoms of over ϕ are as given
below.

A ={⊤,¬b,¬a,¬(bSa),¬(bSa)}

B ={⊤, b,¬a, bSa,(bSa)}

C ={⊤, b,¬a,¬(bSa),¬(bSa)}

D ={⊤,¬b, a, bSa,(bSa)}

E ={⊤,¬b, a, bSa,¬(bSa)}

F ={⊤,¬b,¬a, (¬b)Sa,(bSa)}

atoms(ϕ) ={A,B,C,D,E, F}

For any LTLp formula ϕ once we have cl(ϕ) and atoms(ϕ)
in place we define the formula automaton for ϕ as follows:

Definition 11. The formula automaton Aϕ = 〈Q,Σ, s, F,→
〉 for a given LTLp formula ϕ is given by:

Q =atoms(ϕ)

s ={ψ ∈ cl(ϕ) | ǫ |= ψ}

F ={A ∈ atoms(ϕ) | ϕ ∈ A}

→⊆ Q× Σ ×Q given by :

(A, a,A′) ∈→ iff a ∈ A′ and ∀ψ ∈ cl(ϕ), ψ ∈ A⇔ ψ ∈ A′

As a transition system the finite state automaton Aθ differs
slightly from the definition of transition system given in sec-
tion 2 as we designate a subset of the set of all states of Aθ

as the set of final states. The language generated by Aθ,
denoted by L(Aθ), is the set of all words w on which Aθ has
a run starting at the initial state and ending in a final state.

Example 5. (construction) Consider the LTLp formula
ϕ = bSa over Σ = {a, b}. Then cl(ϕ) is as given in Exam-
ple 3 and atoms(ϕ) is as given in Example 4. The formula
automaton Aϕ is shown in Figure 4.

Lemma 1. Let w be a word in Σ∗. Then there exists a
run for w in Aϕ.

Proof. Let w = a1 · · · an. For each i ∈ {0, . . . , n} let Ai
be the set {ψ ∈ cl(ϕ) | (w, i) |= ψ}. It is clear from the
definition of atoms that each Ai is an atom. Also we can
easily verify that each 1 ≤ i ≤ n, (Ai−1, a, Ai) ∈→. Further
A0 = s. Therefore A0, A1, . . . , An is a run of w in Aϕ.

Lemma 2. Let w = a1 · · · an be a word in Σ∗ and A0, . . . , An
be a run on w in Aϕ. Then for all ψ ∈ cl(ϕ) and for all
i ∈ {0, . . . , n}, (w, i) |= ψ ⇐⇒ ψ ∈ Ai.

b b

a

b a b

ba a

a

A

C

D

E

B

Figure 4: Formula automaton for bSa. The state F
is unreachable and is not shown.

Proof. Proof is by induction on the structure of ψ.
0. ψ = ⊤.

For all i ∈ {0, . . . , n}, (w, i) |= ⊤ by semantics of LTLp
formula and ⊤ ∈ Ai by definition of an atom.
1. ψ = a, a ∈ Σ
(w, i) |= ψ ⇐⇒ i > 0 and w(i) = a

⇐⇒ a ∈ Ai (since (Ai−1, ai, Ai) ∈→)

2. ψ = ¬µ
(w, i) |= ψ ⇐⇒ (w, i) 6|= µ

⇐⇒ µ /∈ Ai (induction hypothesis)
⇐⇒ ¬µ ∈ Ai (definition of atom)

3. ψ = µ ∨ ν
(w, i) |= ψ ⇐⇒ (w, i) |= µ or (w, i) |= ν

⇐⇒ µ ∈ Ai or ν ∈ Ai (induction hypothesis)
⇐⇒ µ ∨ ν ∈ Ai (definition of atom)

4. ψ = µ
(w, i) |= ψ ⇐⇒ i > 0 and (w, i− 1) |= µ

⇐⇒ µ ∈ Ai−1 (induction hypothesis)
⇐⇒ µ ∈ Ai (since (Ai−1, ai, Ai) ∈→)

5. ψ = µSν
Suppose (w, i) |= ψ. We need to show that ψ ∈ Ai. As

(w, i) |= ψ there exists a k : 0 ≤ k ≤ i such that (w, k) |= ν
and for all j, k < j ≤ i, (w, j) |= µ. By a second induction
on (i− k), we prove that ψ ∈ Ai.
Base case: i − k = 0. Then k = i and (w, i) |= ν. Then by
the main induction hypothesis ν ∈ Ai and therefore ψ ∈ Ai
by the definition of atom.
Induction step: i− k = l > 0. Without loss of generality we
assume that (w, i) 6|= ν. Then we have:

⇒ (w, i− 1) |= µSν and (w, i) |= µ (1)

⇒ µSν ∈ Ai−1(by second. IH) and µ ∈ Ai (by main IH)
(2)

⇒ (µSν) ∈ Ai (as (Ai−1, ai, Ai) ∈→) (3)

⇒ µSν ∈ Ai (from the (2),(3) and the definition of atom)

Conversely suppose ψ ∈ Ai. We need to show that (w, i) |=
ψ. Since A0, . . . , Ai is a run in Aψ starting from the initial
state there must exist a k ≤ i such that ν ∈ Ak. Choose the
greatest such k. Now by a second induction on (i − k) we
prove that (w, i) |= ψ.
Base case: i − k = 0. Then k = i and hence ν ∈ Ai.
Then by main induction hypothesis (w, i) |= ν and therefore
(w, i) |= µSν as well.

Induction step: i − k = l > 0. Once again without loss of
generality we assume that (w, i) 6|= ν. Then we have

(µSν) ∈ Ai and ν /∈ Ai (4)

⇒ i > 0, µ ∈ Ai and (µSν) ∈ Ai (by def. of atom) (5)

⇒ (w, i) |= µ (by main IH) (6)

⇒ µSν ∈ Ai−1 (by (5) and (Ai−1, ai, Ai) ∈→) (7)

⇒ (w, i− 1) |= µSν (by second IH) (8)

⇒ (w, i) |= µSν (from (6),(8) and def. of modality S)

The following theorem proves the language equivalence
between the one generated by the formula ψ and the one
accepted by Aψ.

Theorem 1. Let ψ be an LTLp formula and let Aψ be
the its formula automaton. Then L(Aψ) = L(ψ).

Proof. (⇒) Let w ∈ Aψ. Then there exists a accepting
run of Aψ on w. So let A0, . . . , A|w| be the accepting run of
Aψ on w. As A|w| is a final state ψ ∈ A|w| and therefore by
lemma 2 we have that w |= ψ.

(⇐) Suppose w |= ψ. Now we need to show that w ∈
L(Aψ). From lemma 1 it follows that there exists a run
A0, . . . , A|w| of Aψ on w. Now by lemma 2 we have that ψ ∈
A|w|. Thus the run A0, . . . , A|w| of the formula automaton
Aψ on w is accepting and therefore ψ ∈ L(Aψ).

Theorem 2. Let ψ be an LTLp formula and let Aψ be
the its formula automaton. Then Aψ is both deterministic
and complete with respect to Σ.

Proof. Proof of Aψ is complete with respect to Σ fol-
lows from lemma 1. Now suppose that Aψ is not deter-
ministic. Then there exists two different runs A0, . . . ,An

and A′
0, . . . , A

′
n on some word w ∈ Σ∗. Now by lemma 2,

Ai = A′
i for every 0 ≤ i ≤ n, which is a contradiction.

6. VERIFICATION
In this section we address verification problem for CT-LTL.

Theorem 3. Given a base system B over Σ, a conflict-
tolerant specification θ in CT-LTL and a conflict-tolerant
controller C over Σ for B, one can check if C is a valid con-
troller for B satisfying θ.

Proof. Let θ the specification given by (
V

(ϕi ⇒ ψi)).
We construct the automaton A(

V

ϕi) for the LTLp formula
V

ϕi and show that C is a valid controller for B satisfying θ iff
there does not exist a state (p, q, r) reachable from the initial
state in the synchronized product A′ = B ‖ C ‖ A(

V

ϕi)

satisfying one of the following conditions.

• C is restricting: There exists an event e ∈ Σe enabled
at p in B, but is not advised at q in C.

• C is blocking: There is no event c ∈ Σ which is both
enabled at p in B and advised at q in C.

• C does not satisfy θ: There exists an event c ∈ Σ
enabled at p in B and advised at q in C, but c 6|=
V

ϕi∈r
ψi.

If no state (p, q, r) exists in A′ such that the conditions
1 or 2 hold, then clearly C is a valid CT-controller for B.
Conversely if C is a valid CT-controller for B, then it is easy
to see there does not exist a state in A′ where the conditions
1 or 2 hold. If no state (p, q, r) exists in A′ such that the
condition 3 holds, then all advises in C are according to
the specification θ and hence C satisfies θ. Conversely if C
satisfies θ, then no such state exists in A′ where condition 3
holds. Now checking for such a state in A′ which is reachable
from start state can easily be done by doing a reachability
analysis on A′.

Let us now illustrate the verification problem with an ex-
ample.

Example 6. Consider the base system B shown in Fig-
ure 2(a), the feature specification θ given in Example 1 and
a conflict-tolerant controller C for B shown in Figure 3(a).
Atoms and other details of the construction are given be-
low. The deterministic finite-state transition system AV

ϕi

is shown in Figure 5 and the synchronized product B ‖ C ‖
AV

ϕi
is shown in Figure 6. Now we can see that no state

(p, q, r) as mentioned in theorem 3 is reachable in B ‖ C ‖
AV

ϕi
and hence C is a valid CTC for B satisfying θ.

^

ϕi = {timer}.

psf (
^

ϕi) = {timer}.

cl(
^

ϕi) = {⊤,⊥, rel, relDouble,noRel, timer,

¬rel,¬relDouble,¬noRel,¬timer}.

The set of atoms is given below (A is the initial state).

A = {⊤,¬rel,¬relDouble,¬noRel,¬timer}.

B = {⊤, rel,¬relDouble,¬noRel,¬timer}.

C = {⊤,¬rel, relDouble,¬noRel,¬timer}.

D = {⊤,¬rel,¬relDouble,noRel,¬timer}.

E = {⊤,¬rel,¬relDouble,¬noRel, timer}.

7. FEASIBILITY AND SYNTHESIS
Now that we have addressed the verification problem let us

now turn our attention to feasibility and synthesis problems
in our setting. Informally the controller feasibility problem
is that given a base system and a CT-LTL specification does
there exist a valid conflict-tolerant controller for the base
system which meets the specification. And the synthesis
problem is that if there exists a valid conflict-tolerant con-
troller for given a base system and a CT-LTL specification
is it possible the synthesise one. We answer the feasibility
question affirmatively and also give a procedure for synthe-
sising a conflict-tolerant controller for a given base system
from a CT-LTL specification.

Let B be a base system and let θ be the specification given
by (

Vi=n
i=1 (ϕi ⇒ ψi)). Let Ai = 〈Q, s, F,→〉 be the formula

automaton of ϕi (see section 5). Then we construct the
conflict tolerant transition system Ci = (Ai, Ni) as follows:
let A,A′ be atoms in Ai and let a ∈ Σ. Then (A, a,A′) ∈ Ni
iff ϕi ∈ A and a 6|= ψi. Let C = C1|| . . . ||Cn. Then we can

noRel

re
lD

ou
ble

noRel

rel
timer

tim
erre

lD
ou

bl
e

no
R

el
no

R
el

timer

A

B
C

D

Etimer

rel

rel

relDouble

relDouble

re
l

rel

tim
er

noRelrel
Double

Figure 5: Deterministic finite-state transition sys-
tem AV

ϕi
for specification given in Example 1.

{P,S,A} {Q,T,E}

{P,S,B}

{P,S,C}

{P,S,D}

re
l tim

er

ti
m

er

noR
el

timer

timer

relDouble

Figure 6: The synchronized product of the base sys-
tem B (Figure 2(a)), controller C of Figure 3(a) and
the formula automaton AV

ϕi
of Figure 5.

easily prove that C is a valid controller for B iff for every
state (p, q) in B||C the following conditions hold:

• C is non restricting: There does not exist an event
e ∈ Σe such that e is enabled at p in B but (e, 0) 6|=
V

ϕi∈q
ψi.

• C is non blocking: There is an event c ∈ Σ which is
enabled at p in B and (c, 0) |=

V

ϕi∈q
ψi.

One can also argue that a valid conflict-tolerant controller
for B meeting the specification θ exists iff C is a valid con-
troller for B. As checking whether C is a valid controller for
B is a simple reachability analysis we have that:

Theorem 4. Given a base system B and a conflict-tolerant
specification θ over Σ the controller feasibility problem for B
meeting the specification θ is decidable.

Theorem 5. Given a base system B and a conflict-tolerant
specification θ over Σ one can synthesise a valid conflict-
tolerant controller for B meeting the specification θ provided
such a controller is feasible.

We illustrate the construction of the formula automaton
with the following example.

Example 7. Consider the base system B shown in Fig-
ure 2(a) and the CT-LTL specification given in Example 1.
Atoms and other details of the construction are given in Ex-
ample 6. Then the valid CTTS meeting the specification ob-
tained with our construction with state E as the final state
is shown in Figure 7.

noRel

re
lD

ou
ble

rel

noRel

rel
timer

tim
erre

lD
ou

bl
e

re
l

no
R

el

rel

timer

A

B
C

D

E

relDouble

rel noRelrel
Double

tim
er

no
R

el

timer

relDouble

Figure 7: Synthesized conflict-tolerant controller for
the specification (timer =⇒ ⊙ rel).

8. CONCLUSION
In this work we have proposed a way of specifying conflict-

tolerant specifications in temporal logic, and given algorith-
mic solutions to the associated verification and synthesis
problems. Our formalism and proposed methodology are
therefore a useful addition to the conflict-tolerant framework
proposed in [1].

A natural question that may arise in the reader’s mind is
whether it is necessary to address the verification problem
at all, given that we have a way of synthesizing a conflict-
tolerant controller (that is correct-by-construction) for a given
CT-LTL specification. A synthesized controller may not al-
ways be the desired controller, as one often abstracts away
many details in the CT-LTL specification, and an actual
controller may need to address these additional constraints.
Given that controllers may need to be hand-coded, a method-
ology to check that they conform to their specifications is
useful.

As future work we would like to integrate the CT-LTL
specification language, in particular the solution to the ver-
ification problem, into standard model checkers like SPIN
and SMV. We would also like to explore how to extend our
framework to a real-time setting, and its integration into a
timed-automata based tool like UPPAAL.

9. REFERENCES
[1] Deepak D’Souza and Madhu Gopinathan.

Conflict-tolerant features. In Aarti Gupta and Sharad
Malik, editors, CAV, volume 5123 of Lecture Notes in
Computer Science, pages 227–239. Springer, 2008.

[2] Amir Pnueli. The temporal logic of programs. In
FOCS, pages 46–57. IEEE, 1977.

[3] Moshe Y. Vardi and Pierre Wolper. An
automata-theoretic approach to automatic program
verification (preliminary report). In LICS, pages
332–344. IEEE Computer Society, 1986.

[4] Orna Lichtenstein, Amir Pnueli, and Lenore D. Zuck.
The glory of the past. In Proceedings of the Conference
on Logic of Programs, pages 196–218, London, UK,
1985. Springer-Verlag.

[5] K. C. Wong, J. G. Thistle, R. P. Malhamé, and H. H.
Hoang. Supervisory control of distributed systems:
Conflict resolution. Discrete Event Dynamic Systems,
10(1-2):131–186, 2000.

[6] Y. L. Chen, S. Lafortune, and F. Lin. Modular
Supervisory Control with Priorities for Discrete Event
Systems. In In IEEE Conference on Decision and
Control, pages 409–415, 1995.

