Analysing Message Sequence Graph Specifications*

Joy Chakraborty
Motorola India Private Limited
C. V. Raman Nagar
Bangalore 560093, India.
j.chakraborty@motorola.com

Deepak D’Souza
Computer Science and Automation
Indian Institute of Science
Bangalore 560012, India.
deepakd@csa.iisc.ernet.in

K. Narayan Kumar
Chennai Mathematical Institute
H1 SIPCOT IT Park
Siruseri 603103, India.
kumar@cmi.ac.in

March 31, 2009

Abstract

We give a detailed construction of a finite-state transition system for
a com-connected Message Sequence Graph. Though this result is fairly
well-known in the literature there has been no precise description of such
a transition system. Several analysis and verification problems concern-
ing MSG specifications can be solved using this transition system. The
transition system can be used to construct correct tools for problems like
model-checking and detecting implied scenarios in MSG specifications.
The transition system we give can also be used for a bounded analysis of
general (not necessarily com-connected) MSG specifications.

*Technical Report IISc-CSA-2009-1, Department of Computer Science and Automation,
Indian Institute of Science, Bangalore.

1 Introduction

Message Sequence Chart (MSC) based specifications are a popular model of
early system design, whose use is particularly widespread in the telecom and
software industry. A message sequence chart describes a finite sequence, or more
accurately a partially ordered sequence, of message exchanges between agents
in the system. These are typically “scenarios” that a system user and developer
alike can use to communicate and validate system requirements. Messages may
be exchanged “synchronously” as in a handshake protocol, or “asynchronously”
with separate send and receive events and a message channel to buffer unde-
livered messages. Message Sequence Graphs (MSG’s), also sometimes referred
to as “high-level” MSC’s, are an activity diagram-like notation that is often
used to describe infinite collections of system behaviour. They are finite graphs
whose vertices are labeled by MSC’s, each of which represents a single logical
unit of interaction. The behaviours specified by an MSG are obtained by taking
a path in the MSG beginning at the initial node, and collecting the behaviours
given by the “concatenation” of the MSC’s associated with the nodes along the
path.

Given that MSC-based specifications provide an early encapsulation of sys-
tem design, from an analysis and verification point of view there are some nat-
ural problems that one would like to address. Several of these have been con-
sidered in the literature, including detecting race conditions (differences in the
“visual” ordering and “execution” ordering), timing conflicts, and confluence or
“completability.” We would like to focus on the following two problems:

1. The model-checking problem [2]: Here we are given a system description
in terms of an MSG, and a property in the form of a finite-state automaton
describing say undesirable behaviours. We would like to check that the
system does not exhibit any of the undesirable behaviours.

2. Detecting implied scenarios [14, 1]: Given a description of system be-
haviour in terms of an MSG, there is a natural, distributed, system model
induced by the MSG. This system model is “minimal” in that any dis-
tributed implementation of the system that exhibits all the behaviours
specified by the given MSG, must necessarily exhibit all the behaviours
in the system model induced by the MSG. However, the minimal system
model may exhibit behaviours that are outside the ones specified by the
MSG: these behaviours are called implied scenarios. We are interested in
identifying such behaviours so that the system designer can be alerted (for
example to the fact that the exact behaviour specified by the MSG is not
realizable by a distributed implementation).

Message Sequence Chart based specifications have received a fair amount of
attention from the Computer Science theory community (see [4, 5] for surveys).
In particular the analysis problems mentioned above have been addressed in the
following works. Alur and Yannakakis [2] show that the model-checking problem
for asynchronous MSG’s is undecidable in general. They propose a condition
on the MSG, called “boundedness” or “com-connectedness” (essentially that all
processes that take part in any loop of the MSG must communicate directly or
indirectly with each other in the loop), which is sufficient to ensure that the
model-checking problem is decidable. The main task is to show that in such

a case the language of behaviours defined by the MSG is regular, i.e. accept-
able by a finite-state transition system. However the details of the construction
are not spelt out completely, and there is no proof of correctness given. Inde-
pendently in [8], Muscholl and Peled also give several undecidability results for
asynchronous MSG’s, including that checking for race conditions and confluence
in asynchronous MSG’s is undecidable. They also restrict the class of MSG’s
considered to com-connected ones (called “loop-connected” there), to obtain
decision procedures for the race condition and confluence problems. In this
connection they state the result that a com-connected MSG defines a regular
language. For a proof they point to an earlier line of work in trace theory which
give various sufficient conditions under which a regular language remains regu-
lar when closed under “partial commutations”. In particular they make use of
a result of Clerbout and Latteux [3] which gives such a condition, analogous to
com-connectedness. The construction and proof in [3] is in terms of grammars
and it is not easy to directly associate a transition system with a given MSG
using it.

The software engineering community parallely have developed several tools
and methodologies for analysing MSC-based specifications. However some of
these works are based on an incorrect understanding of some of the results
in the literature, in particular the result claiming regularity of com-connected
MSG’s. In Section 8 we point out some of these cases, without detracting from
the several other contributions made in these papers.

e In [14], Uchitel, Kramer, and Magee claim to solve the problem of detect-
ing implied scenarios for general (not necessarily com-connected) MSG’s
with synchronous messaging. This is done without explicitly building a
transition system for the given MSG. No complete proofs are given in the
paper or the cited technical report. This claim cannot be correct as it is
not difficult to show that the problem is in fact undecidable (i.e for general
synchronous MSG’s). We give a proof of this fact in Section 8.

e In [7] Muccini gives a technique for detecting implied scenarios based
on identifying “augmented” behaviours in the components of the system
model for a given general synchronous MSG. The technique is validated
on a few examples, but the paper gives no proofs and admits that the
“correctness and completeness are still under analysis.”

e The thesis of Uchitel [12] gives the construction of a finite-state transition
system, called there the “trace model”, for a given com-connected syn-
chronous MSG. This construction is implemented in a tool called LTSA-
MSC [11]. However, as we show in Section 7, the trace-model constructed
is incomplete: it does not accept all behaviours specified by the MSG. As
a result the tool also incorrectly flags certain behaviours of the induced
system model as implied scenarios.

Our aim in this paper is to give a precise and complete description of a
finite-state transition system accepting exactly the behaviours specified by a
given com-connected MSG G. We give a precise description of a “reduced”
transition system called 7/ in Section 5 which is guaranteed to be finite-state
when the given MSG is com-connected. We give a carefully checked proof of
correctness of our construction. Once we have such a transition system, the

analysis problems we mentioned earlier can be solved easily for com-connected
MSG’s with synchronous messages.

It is also worth pointing out that the transition system 7/ we describe is
sound and complete for general MSG’s (i.e. not necessarily com-connected) as
well — though of course, it may not be finite-state in this case. Our construc-
tion also handles both synchronous and asynchronous messaging in the MSG’s.
Further, it has no e-transitions (i.e. hidden or silent transitions), and has a
bounded number of transitions applicable in any state. Thus, this transition
system can be used to perform a bounded analysis or model-checking to check
properties like “there are no property violations by behaviours of length < 15 in
the given MSG model,” or that “there are no implied scenarios of length < 15
in the given MSG model.”

We thus hope that the construction we give will be a basis on which the
software engineering community can build more accurate tools for analysing
MSC-based specifications.

2 DMessage Sequence Charts

We begin with some preliminary notions. For a finite alphabet A, we denote the
set, of finite words over A by A*. The empty word is denoted €. For words u and
v over A, we denote the concatenation of u followed by v by u - v or simply uv.
We write u < v (or u <y v) to denote the fact that u is a prefix (or non-empty
prefix respectively) of v. Also, u < v denotes that u -« = v for some non-empty
a.

A transition system is a tuple 7 = (Q, A, go, —) where:

e () is a set of states

A is the set of labels or alphabet of the transition system

qo is the initial state
e -C @ x A XxQ is the labeled transition relation.

We define a run from ¢; to ¢a on a word w € A* denoted by ¢ —* g2 by
induction on length of w as follows: ¢ ——*qi, and q; —=* ¢y if there exists
g3 € Q such that ¢, —* ¢3 and g3 — ¢2. The language generated by 7, denoted
L(T), is defined to be {w € A* | gy —=* ¢ for some ¢ € Q}. For a state ¢ € Q,
we represent the language generated by 7 starting at g as L,(T"). We define
this to be

{we A* | ¢ =*r for some r € Q}.

A message sequence chart or MSC' is a tuple
M =(P,E,C,\,B,{<p}pep)
where:
e P is a finite set of processes.

e F is a finite set of events.

e (' is a finite set of message labels.

The set of actions of M is defined to be Xy = P x {L,?7} x P x C
where (p, !, g, m) signifies process p sending message m to ¢, while action
(p, ?,q, m) signifies p receiving message m from ¢g. All actions of the form
(p,!, q,m) are called send actions, while actions of the form (p,?, g, m) are
called receive actions.

For a process p € P, the set ¥, = {a € Zy | a = (p,!,¢,m) ora =
(p,?,q,m)} where ¢ € P and m € C, is the set of all actions in which p
participates.

e \: E — ¥, is the labeling function which maps events to actions. For
a process p € P, the set E, = {e | A(e) € ¥,} are the events in which p
participates.

E is further partitioned into send events S = {e|A(e) = (p,!,m,q), p,q €
P, m € C} and receive events R = {e|A(e) = (p,?,m,q), p,q € P, m €
C'} respectively.

e B: S — R is a bijective map which maps each send event to its cor-
responding receive event. We require that if A(e) = (p,!,¢q,m) then
A(B(e)) = (q,?,p,m). We refer to B as the “matching receive” map.

e For each p € P, <, is a strict total order on E,,. In addition, the matching
receive map B induces a strict partial order <p on E, which says that a
receive event has to be preceded by the corresponding send event, defined
by e <p ¢ iff B(e) =¢'.

We define <, as the transitive closure, and <j, as the reflexive transitive
closure, of (U,cp <p)U <p respectively. It is required that the relation
<us must be a partial-order.

A linearization of the events in an MSC M as defined above is a sequence of
events w = ejes - - - e, € E* containing all the events of E without repetitions,
and respecting the partial order <,; in the sense that for no ¢ < 5 < n do
we have e; <ps e;. We denote the set of linearizations of M by lin(M). We
define the event language of M, written L¢(M), to be the set of all prefixes of
linearizations of M. Thus, L¢(M) ={z | z <y, y € lin(M)}.

Following [2], we define a cut in an MSC M to be a subset ¢ of the events
FE of M which is closed with respect to the partial order <,;: i.e. if e € ¢ and
e’ < e, then €’ € c. Each prefix of a linearization of an MSC corresponds to a
sequence of “incremental” cuts as described below:

Lemma 1 Let M be an MSC with event set E. Then w € E* is a prefix of
some linearization of M if and only if there exists a sequence of cuts {¢y}r=<w
i M such that

ec.=10
e For each x-e <X w, we have ¢z.. — ¢, = {e}.

Proof Assume w is a prefix of some linearization of M. Consider z < w. Let ¢,
be the set of all events in x. By our observation about prefix of linearization, the

q r
e1 9——=0ez e 9—=0Fez

€3 €4 €3 €4

Figure 1: An example MSC and cut {e1, e3,e4} in it shown by shaded events.

set ¢, is downward closed with respect to <p;. So, ¢, is a cut in M. Trivially,
Vo e 2w, cpe —cx = {e} and ¢ = 0 . This proves the forward direction.

Now, consider the sequence of events w = ey - e5 - - - €, such that there exists
a sequence of cuts (¢z)z<qw such that ¢c = 0 and Vo - e < w, ¢p.e — ¢z = {e}. We
will prove that w is a prefix of linearization of M by showing that the claim is
true for all x < w.

We claim that V& < w, cut ¢, is the set of events of x. This is trivially true
for x = €. Let this be true for some z < w. Consider x - ¢ < w. Since, ¢, is the
set of events for z, and ¢;.. = ¢, U {e} 80, ¢z is the set of events for x - e. This
proves that c, is the set of events of z. Since cut ¢, is downward closed with
respect to M so set of events of x is downward closed.

We will now show that for no i < j < n do we have e; <) e;. This is
trivially true for x = e;. Let this be true for some x = e; -es - - - ¢; where j < n.
So, for no ¢ < j do we have e; <ps e;. Now consider x-e;11 2 w. ej41 <pr ej as
otherwise, e;11 € ¢; which means e;j;; should have appeared in z. This proves
our claim.

This proves that both the observations about prefix of linearization is satis-
fied by w. O

The Figure 1 shows an example MSC on the left, with set of events E =
{e1,e2,€3,e4}, and <,= {(e1,e3)}, <q=<,= 0. Thus the strict partial order
< is given by {(e1, e3), (e1, e2), (€3, e4), (e1,€4)}. The figure on the right shows
a cut ¢ = {ey, e, eq} in the MSC.

We now define the notion of a message sequence graph. A Message Sequence
Graph (MSG) is a vertex-labeled graph G of the form (V,vg, A, M, u), where
V is the set of vertices of the MSG, vy € V is the initial vertex, A C (V x V)
is the set of directed arcs, M is the set of MSC’s associated with the MSG,
and p: V. — M maps each vertex of G to one of the MSCs in M. We assume
that the MSC’s in M are all over a common set of processes and labels, none
of the MSC’s are empty, and also that the events across the MSC’s in M are
distinct. The set of events of G is denoted E€, and is defined to be Uvev Euw)-
We denote the set of events where process p participates by EE , defined in a
similar way as for a single MSC. The set of action labels for G is defined to be
Yo = Uyev Zuw)- Figure 2 shows an example MSG.

A path in G is a sequence of vertices v1,...,v; (k > 0) of G such that
(vi,vi41) € A for each i € {1,...,k — 1}. An initial path in G is a path
beginning at vg. We will use the convention that «, 3, etc. denote paths in G,
and u, v etc. denote vertices in G.

Let m be a non-empty path in G. For each vertex v in G, let each MSC
p(v) be (Py, Ey, C, Ay, By, {<p}pep). We define the (weak) concatenation of

the MSCs in the path 7w to be the MSC M, = (P, E,,C,)\ﬂ,BW,{<g}p€p)
where:

i E7\' = Upvjw(EU X {p’U})
e For each pv < 7, we define A, (e, pv) = A, (e).

e For each pv < 7, and for all send events e € F,, we define B(e, pv) =
(By(e), pv).

e For each p € P, < is given as follows: Let pv < 7 and p'v' < 7 and
e € B, and ¢ € E,. Then (e,pv) <7 (¢/,pv") iff e and e’ are p-events
and either pv < p'v" or pv = p'v’ and e <) €.

The set of linearizations of G, denoted by lin(G), is defined to be
{e1--- e | w initial path in G, (e1,p1) - (€n, pn) € lin(M)}.

The event language of G, denoted L¢(G), is defined to be {u | w < v and v €
lin(G)}. The action language of G is denoted L%(G), and defined to be

{Ao,(e1) Ay, (€n) | €1+ en € lin(G), each e; € Ey, }.

We give one final definition in this section. Consider an MSC

M =(P,E,C,\,B,{<p}pep)-

The communication graph of M is the directed graph on the set of process
P of M, where we have an edge (p, q) iff process p sends a message to process g
in M (i.e. there exists an event e € E, and an event ¢’ in E,, with B(e) = ¢’).
The MSC M is said to be com-connected [2] if the communication graph of M
contains at most one non-trivial strongly connected component and all strongly
connected components are isolated (i.e. there are no edges between them). We
say an MSG G is com-connected if for every loop, i.e. a path of the form uaou,
in G, the communication graph of M, is com-connected. We illustrate this
using the MSG G, in Figure 2. The communication graph for the loop vyvivg
is comm-connected, whereas the loop vgvvg is not com-connected. Thus the
MSG (7 is not com-connected.

Our aim in this paper is to provide a constructive proof of the following
claim:

Theorem 2 ([2, 8]) Let G be a com-connected MSG. Then L¢(G) is regular
(i.e. it can be generated by a finite-state transition system).

We will prove this claim in Section 6. We first show in the next section
how for a general (not necessarily com-connected) MSG G we can associate a
transition system 7 which generates precisely the language L¢(G), but which
may have an infinite number of states. In the following section we give a couple
of rules by which we can reduce the state space of 75, while preserving its
language, to obtain a transition system 7/. Finally in Section 6 we show that
when the given MSG is com-connected, this reduced transition system 7/ will
indeed have a finite number of states.

vo

€1 = e2

eq 9="QFes
€6 €5
Figure 2: An example MSG G

3 Transition system for an MSG

In this section we show how we can associate a transition system 75 with a
given general MSG G, which generates exactly the same event language as G.
This transition system will, in general, have an infinite number of states.

In the sequel we fix an MSG G = (V,vp, A, M, p).

We begin with some preliminary notions.

We define a configuration of G to be a pair of the form (7, ¢) where 7 is a
path in G and c is a cut in M. Configurations will play the role of states in
7. We can view a configuration (7, ¢) as a snapshot of the events each process
has completed in its process line in the MSC M. Each process p can be viewed
to be positioned at last event it has performed.

Next we introduce some notation regarding insertion and deletion in paths
and cuts in G. For a path 7 = af in G, by ™ + «/v we denote the sequence of
nodes ayf8 in G. We note that m + /v may not be a path in G. Similarly, if
m = afy is a path in G, then we define 7 — /3 to mean the sequence of nodes
ayin G.

Let (m,¢) be a configuration of G, and let 7 = a3. Then we define the set
of events corresponding to ¢ in ™ + «/~, denoted ¢+ « /v, to be

{(e;p) ec|p=2atu{(e,ayp) | (e,ap) € cand p # €}.

Once again, it is not necessary that ¢ + «/v is a cut in Mqg.
Similarly, if (7, ¢) is a configuration of G, and m = a7, we define the set of
events corresponding to ¢ in 7 — /3, denoted ¢ — /3 to be

{(e;p) eclp=2ajU{(e,ap) | (e, abp) €c, p# e}

Let (7, ¢) be a configuration of G, with m = a3y. We say that § is completely
traversed in c if all the events in 3 are included in ¢, and all processes which
react in § have their maximal event in ¢ located in . Formally, we represent
this as a predicate Ez(m, «, 8, ¢) which is true iff the conditions below are true:

w3 — Eo C ¢, and

e For each p € P, if (e, apv) € ¢ with e € E, and pv < (3, then there exists
¢’ € E, and p'v" < v such that (¢/,a8p0v') € c.

Similarly, we say 3 is completely unexecuted in c if none of the events in (3 are
included in ¢: ie. (Eqp — Eq) Ne=0.

Consider a configuration (7, ¢) of G. We now want to define a way of cutting
out loops in 7 which are completely unexecuted in c¢. It is not difficult to see
that if we remove an unexecuted loop from a configuration, we get another valid
configuration. The following lemma proves this claim.

Lemma 3 If (aufuy,c) is a configuration in G such that (Egugy — Eou) = 0
then ¢ = ¢ — au/fu is a cut in May,

Proof For every (e,p) € c all (¢/,p') <aupuy (e,p) will belong to ¢. Since
(Eoupu — Eau) = 0 so clearly, ¢’ is downward closed with respect to <qu. O

Given a configuration (7, ¢) in G, we say aju1fB1us - - Qptiy Sptyy is an un-
executed loop decomposition of m with respect to ¢ if

e FEach f;u; is unexecuted

e There is no unexecuted loop in ajug -« - apuyy wrt (c— ayuy /frug — -+ —
a1uy - - anun/ﬁnun)

Correspondingly, (ajuy -+ - iy, c—qu1 /frur — - - — iUy -+ - Qpln / Briin)
is called an unezxecuted loop-free configuration of (m,c).

There may be several unexecuted loop decompositions for a given configura-
tion, and hence also several unexecuted loop-free configurations. For example,
consider a configuration (vqvov1v3v2v4, ¢) for some MSG such that no events of
v1, v2 and vz is included in ¢. Then, we have two unexecuted loop decomposi-
tions of (1)1’02’[)17}31)2’04 with respect to ¢ - v1v3vavy and v1v2v4.

We denote by | (7, ¢)] e the set of all unexecuted loop-free configurations of
(m,c).

We also define a (unique) left-most mazimal unexecuted loop decomposition
of a configuration (m,c). We define this to be ajuifius -+ pu,Bruyy with
n > 0 where:

o T =a1u1fB1U1 - O UnBpliny

e Each B;u; is the left-most unexecuted loop in the segment
Q;u; B - Bruny. That is, for each mv7g such that Mo = «;, there
is no T3V =X U B0 p1Uit1 - AUy BrUyy such that m13v is completely
unexecuted.

e Each f[;u; is maximal: That is, no prefix Tu; of
Qi1 U1 Big1Uig1 - - QU Bpuyy is completely unexecuted.

e 7 does not have any completely unexecuted loops.

Each a;u; marks the beginning of the i-th maximal loop which is completely
unexecuted in ¢, starting from the left of 7. It is easy to see that this decompo-
sition is unique. In the above example, v1v3v9v4 is the unique left most maximal
decomposition.

We define the (unique) left-most mazimal unexecuted loop configuration
induced by (m,¢), denoted |(m,¢)] e, to be:

(qur -+~ apupny, (- (e —oqur /Brur) - --) — @iug -« ann/Brun).

— e1

€3
T3

€2

e] 9—=Q0eax |—= €1 9—=9%e
T1

e es e4 e+e¢ ‘

T2¢el % ° 3

+
%
(e%@) e1 i% e2

— e1 *9 D}

Figure 3: Initial transitions in 74 for MSG Gj.

We are now in a position to describe a transition system corresponding to
the given MSG G. We define 7¢ = (Q, Eg,qo,—) where: @ is the set of
configurations of G; E¢ is the set of events of G as defined in the last section;
the initial state is qo = (¢,0); and the transition relation — is given by the
following rules:

(T1) (m,¢) > (m,c) provided ¢ = cU{(e,p)} for some p < 7 and (e, p) & c.

(T2) (m,¢) > (mpv, ') provided ¢ = cU{(e,mpv)} and puv is loop-free. Also, if
m = € then pv has to be an initial path in G.

(T3) (mums,c) = |(miumours,c’)]we provided there exists a non-empty and
loop-free o and a loop-free 3 such that mou = a8 and ¢+ myu/mau is a cut
in Mo, umpurs and ¢ is (¢ + mu/mau) U {(e, miua)}.

According to the transition (T1) a process can do an event e in its event set
provided it is in the node list 7, and does not violate any causality conditions
in M. This is enforced by requiring the new set of events ¢’ to be a cut in M.
According to (T2), a process can extend the current node list 7 by a loop-free
path pv and perform an event e in node v, again provided it does not violate
any causality conditions in My ,,. Finally, according to rule (T3), a process p
can insert a loop after a prefix mu of the current node list 7, which comprises
a loop-free path « to a node (in which it must then perform an event) followed
by a loop-free path back to u. Once again, no causality conditions in the MSC
corresponding to the extended path should be violated. After the insertion, we
eliminate unexecuted loops in the extended path by taking the induced left-most
unexecuted loop-free configuration.

We illustrate these transition rules in Figure 3.

We note that all configurations (m, ¢) of 7g reachable from the initial state,
satisfy that properties that they always have a process in the last node of ,
and also that they are always unexecuted loop free.

4 Correctness of 7

We now sketch a proof of the correctness of our construction of 7¢, by showing
that it accepts exactly the language L¢(G). We first show that 7¢ is “complete”
in the sense that it accepts all event sequences in L¢(G).

Before proceeding with the correctness proof for our construction, we present
some simple lemmas which will be useful in our proofs.

10

Lemma 4 (auvy,c) is a configuration in G and there is a path aufuy in G such
that V(e, aup) € ¢ p <ne v, if e € E, for somep € P then Eg,(E, = 0. Then,
d =cH+oau/fu is a cut in Muoygur-

Proof Clearly, for any (e,p) € ¢, (e,p + au/pu) € ¢ . As ¢ is downward
closed wrt <,y this means, c is downward closed wrt <quguy- S0, ¢ is a cut in
Mauﬁu7~ U

Lemma 5 Let (w,c) be a configuration in G. For all a =<,. 7 such that
J(e,a) €Ecandaf =7, if (,c,) € [(,c—a/B)],, and (B',cj) € [(B,c—€/a)],.
then (o/ B, c,, U(cj +€/a)) € [(m,¢)] .-

Proof This easily follows from the fact in configuration (m, ¢), there is an exe-
cution in «. O

We will show that L¢(G) C L(7g). Let w € L¢(G) with w = ejeq -+ e,.
Then we know by Lemma 1 that there is a sequence of incremental cuts ¢y, c1, -+ -, ¢,
in M, for some initial path 7 in G, such that ¢y = () and for each i € {0,...,n—
1}, ¢iv1 — ¢; = {(€i11, pi+1)} for some p;41 < 7. For each i € {0,...,n}, let 6;
be max{p; | j < i}. We claim that w has a run

€n

(mo,do) = (m1,dy) 3 - 3 (w0, dy)

in 7¢, where mg = €, dg = 0, and for all j € {0,...,n}, (7;,d;) € | (0;,¢)) |ue-
We do this by showing, using induction on 4, that for each i € {0,...,n} we
can produce a run

€;

(w0, do) = (m1,dy) = -+ 5 (my,d;)

in 7¢ such that (7, dy) = (¢,0), and for each I € {1,...,i}, (m,d;) € [(01, ¢1) |ue-

For i = 0, we get mg = € and dg =) as ¢p = 0.

Assume that the hypothesis is true for some ¢ < n. Then, (7, dy) = (¢, 0)
and for each [€ [1,4](m,d;) € [(01, ¢1)]ue. Let an unexecuted loop decomposi-
tion of 6; wrt ¢; be aquiBius - - - oju;Biu vy and correspondingly,

(ﬂ'i, dl) = (oqul e OtjUj’%Ci — a1u1/ﬁ1u1 — s —Q1uy - ajuj/ﬁjuj).

We now consider {(e;41, pi+1)} and show that (m;, d;) s (mit1,di41) where
(Tit1,dit1) € |(0i41, Cit1)|ue following the transition rules for 7g. Following
cases need to be analyzed:

e 0; < 0;41. This means, p;+1 = 6;+1 = 0;p for some non-empty path p in G.
Let oju)Biu] - - - ajulBury be an unexecuted loop free decomposition
of p wrt (ej+1,p). We set (miy1,div1) = (w7, di U{(€ix1,mi7)} where
T=ajul - oqu .

Since 3(6’, 91) € Cijt+1 SO by Lemma 5, (7Ti+17 di+1) S L(GH_l,CH_l)J uwe-

By Lemma 3, as (0;41, ¢;+1) is a valid configuration, so, d; 1 is a valid cut

along M, Also, 7 is clearly unexecuted loop free. So, by transition

rule (T2) we have (m;,d;) A (Tig1,dig1) in Tg.

i+1°

11

o 0; =0it1, pit1 = crurfrur - - agugSrukp where p e appiugir ifk <j
else p <y¢ 7. Then we define (m;41,d;4+1)

= (aruy -+ ajuyy, (e U{(eir1, aun - - augp) }) —
aqur/Prur — - aqun - agug/ Bug)

= (s, d; J{(€i41, rus - - - agugrp)}) as p does not have any unexecuted
loop.

Clearly, (mi41,dit1) € |(0ix1,Cit1) |ue. By Lemma 3, as (6;4+1,c¢i11) is a

valid configuration, so, d;y1 is a valid cut in My, ,. So, by transition rule
€it1

(Tl) we have (Wi,di) — (7Ti+1,di+1) in Tc;.

o 0; =0;11, pir1 = qruifrug - - - apugPrukp for some k < j and p <. Brug.

Let 7 be ayuifiug - - - apug and 7o be a1 Upr1Bk41Uk41 - - 05U 85057
Let pn = Brug. Also, let 71 and 75 be aqus - - - gy, and g1 Up41 - - - Qu;7y
respectively. Let p’ be some unexecuted loop free decomposition of p wrt
{(es+1,p)} and let " be some loop free form of 7. Clearly both 7{ and n’
ends in ug.

By hypothesis, (7174, d;) is a configuration in G. So, by Lemma 4, (71 p'n| 74, d;+

71/p'1’) is a configuration of G as well.
We set (m;41,dit1) to
L(rip'ms, di +71/p'n') US (€iga, 710} e

So, following rule (T3) we can have a transition (m;,d;) — (741, dis1)
in 7g. Also by Lemma 5, it can be easily shown that

(Mit1, dit1) € [(Bit1, Civ1) Jue-
This case is illustrated in Figure 4.

We now argue the “soundness” of 7, by showing that if w € L(7g) then w €
L¢(G). Let w € L(7g) with w = ejey - - - e, such that (mg, o) a (m1,01) - b
(T, ¢n) is a run in 7. We note that each 7; must be an initial path in G. We
claim that w will produce a sequence of incremental cuts ¢, cj,...,c, in My
where ¢y = 0, ¢}, = ¢,, and for each i € {0,...,n—1}, ¢, — ¢ = {(€ir1, pit1)}
for some p; 11 < m,. We prove this by induction on length of w.

For n = 0, we have 1y = € and ¢, = ¢y = @ and we have nothing more to
prove.

For the induction step, assuming that the claim holds good for w of length

n, let us consider the case for |w| =n+ 1.

Let w = ejep - - - e,11 € L(7g) which creates a run (7o, ¢o) = (71, ¢1) - - - ey

(Tn+1,cnt1) in Tg. By induction hypothesis, we have a sequence of incremental
cuts do,dy, -+ dy in M, such that dg =0 , d,, = ¢,, and for each i € [0,n — 1],
di+1 — dl = {(6i+1,p¢+1)} fOI‘ some pP;41 jne Ty

Depending on the type of transition (7, ¢,) pay (Tn+1,Cnt1) in T we have
the following cases.

o Case (T1): (mp,cn) ™' (Tpg1, Cns1) where cnpq = o U{(ens1,p)} for
some p = Ty,.

Clearly, 7,41 = m,. For each i € [0,n] we set ¢ to d; and ¢}, | = ¢pq1.
Then, ¢, -+, c},, is the required sequence of incremental cuts in My,
satisfying the three conditions.

12

B Bau
(6i+1.Cis1) -
A0(1U1 azUp T
- (tp,)
(Ths1.0ie1) O1U; OoUz T T aiy; Y
(U o', d) (N O 1Uke 1 ALY, ©) "
Insertion of alooping path

Figure 4: Insertion Of Looping Path - Completeness

€n+1

o Case (T2): (mn,cn) = (Tnp,cnt1) where cpi1 = ¢ | J{(€nt1,mnp)} for
a non-empty and loop free p.

We note that, m,11 = m,p . A cut in M, is also a cut in My ,. For each
i € [0,n] we set ¢ to d; and ¢, || = Cpq1.

For i € [0,n], d; is a cut in M, , and so ¢ is a cut in My . Then,
o>+ Cpyq is the required sequence of incremental cuts in M, satis-

fying the three conditions.

e Case (T3): (mn,cn) S (Tn+1, Cnt1) is an instance of T3. Thus m, is

of the form 7y u7s, there exists a path 7u in G of the form «f for some
non empty and loop free o and loop free § such that (¢, + mu/m2u)
is a cut in My yrpurs a0d (Tpy1,Cnt1) = [(Tiumaurs,)] we where ¢ =
(cn + 1u/mu) U{(ent1, muc)}.

Note that 7 u and 73 is unexecuted loop free. Let 71 = maz{p < myul(e, p) €
cn} and let Tu = nyns.

In ¢/, there is no execution in «a except in its last node. Since Tu is
unexecuted loop free, so if there is any unexecuted loop formed in 77 ucq,
wrt ¢/, then, it must be in noar . Let aquq fruq - - - oju; Buy be left-most
maximal unexecuted loop decomposition of o wrt {(€,41,720)}.

B is also loop free and unexcuted. Let n3 = min{p =< 73|(e, up) € c,}
and let 73 = n374. So, if there is any unexecuted loop formed in 813, wrt ¢/

13

OlgUy Oy

O

rlurl...urkurkyr

'[3

(Thh,C)

(T + ToU/a, ¢, + Tyu/aP)

| (T + TaW/aB, (G + TwaB) L] {(ens1,TaU0)}) fiye

Figure 5: Insertion Of Looping Path - Soundness

, then it must be in On3. Let ofu)fiu] - - - o upBruy' na be the left-most
maximal unexecuted loop decomposition of G713 wrt ¢’

Then, (7p41,Cne1) will be
(moquy -~ ajujyaiu] - - g u)y'na,
d - 7710¢1U1/ﬁ1u1 — =M1 uy - Oéjuj/ﬂjuj
—Mroqug e ajujﬁyallu/l/ﬁiull .
TMaiur - ogugyeh Ul - agug/Brug).
By our hypothesis, d,, = ¢,. By transition, (¢, + Tu/mu) is a cut in

M uroms and so, (d,, + Tiu/mu) is a cut in My yryr,. S0, clearly, (d; +
Tiu/Tou) is a cut in Mr yryrs-
For each i € [0,n] we set ¢} to
di + T1u/Tou — nraguy /Brug — - -
—Mmoquy - ajuj/ﬁjuj —hoayuy - ajuj’ya/lull/ﬁiull -
—monuy - ogugyaud - agu /B,
As mentioned above, V(e,7) € d,,, either 7 < 1y or mynens < 7. So, for
each i € [0,n — 1], V(e,) € d;, either 7 <y or mmans < 7. So, clearly, ¢}
is a cut in Mmmm~-a_7-uj'ya/1u’1---oz§cu§;wn4 or My, ...
We set ¢, to ¢,41. So, now we have got incremental cuts on cp, ¢f, -+ -, ¢,
in My, ,, satisfying the three clauses.
So, all the three conditions are satisfied. This case is as illustrated in
Figure 5.

This proves the correctness of our construction.

14

5 Reducing 7

In this section our aim is to show that the state-space of the transition system
7 can be reduced, by observing that we can remove fully traversed prefixes
and loops from configurations without affecting the language generated by the
transition system. To do this it will be convenient to make use of the notion of
bisimulation and some results concerning it.

Let 7 = (Q, A, go, —) be a transition system. A binary relation R C Q X @
is called a bisimulation relation on T if

e Whenever (¢,7) € R and ¢ = ¢ for some ¢’ € Q and a € A, there exists
7’ € Q such that » % " and (¢/,r') € R.

e Whenever (¢,7) € R and r 5 ¢’ for some r’ € Q and a € A, there exists
¢’ € Q such that ¢ % ¢/ and (¢/,r') € R.

We say that states ¢ and r in 7 are bisimilar if there exists a bisimulation
relation R on 7 with (g, r) € R. It is easy to see that bisimilar states satisfy the
property that the event sequences in 7 starting from any of them are identical.

Proposition 6 Let 7 = (Q, A, qo,—) be a transition system. Let g, v € Q) be
two bisimilar states. Then L,(T) = L,(T). O

We note that the identity relation is always a bisimulation relation on a tran-
sition system 7. Further, if R and S are bisimulation relations on a transition
system 7 so is the relation R U S. Finally, let us define the reflexive transi-
tive closure of R, denoted R*, by (gq,r) € R* iff there exist states ro,r1,...,7%
in @, with & > 0, such that rg = ¢, rx = 7, and (r;,7;41) € R for each
i €{0,...,k —1}. Then if R is a bisimulation relation on a transition system
T, s0is R*.

The lemma below shows how we can reduce the state space of a transition
system using a bisimulation relation on it.

Lemma 7 Let T = (Q, A, qo, —) be a transition system, and let R be bisimu-
lation relation on T. Consider a transition system T' = (Q', A, qo,=) where
Q' C Q, and —' satisfies the following conditions for any ¢’ € Q':

o whenever ¢ % 1 in T, there exists a state v’ € Q' such that ¢ = 1/ in
7', and (r,r') € R.

o whenever ¢ = v’ in T, there exists r € Q such that ¢ = r in T and
(r,r") € R.
Then L(T) = L(T").
Proof We first show that L(7) C L(7”’). We prove by induction on length of
w € Y " that if gg ——*qin 7 then 3¢’ € Q' s.t. o ==*¢' in T’ and (¢,¢') € R*.
For w = e, it is trivial as gy ——* go and gy ==* qo and clearly (qo,qo) € R*.

Assume that the hypothesis is true for any |w| = n. Consider a w-a € L(T)
such that gy —* ¢ — r. Then,

1. By hypothesis, 3¢’ € @', such that g ==*¢’ in 7’ and (q,¢') € R*.

15

2.

¢ % rand (¢,¢) € R*. So, I € @Q such that ¢ % +”. Clearly,
(r,r") € R*.

Since ¢’ € @', so, by construction, 3’ € Q' , such that ¢’ = ' in 7’ and
(r",r") € R*.

Since (r,r") € R* and (r",7") € R* so (r,r’) € R*. Then in 7', we have
qo ==* ¢’ = 1’ such that (r,7) € R*.

This proves that L(7) C L(7"). Now we show L(7") C L(7). We prove by
induction on length of w € 3" that if gy ==* ¢’ in 7’ then 3g € Q s.t. gp ——*¢
in 7 and (¢,¢') € R*.

For w = ¢, it is trivial as gy ==* qo and gy —* qo and clearly (go, o) € R*.
Assume that the hypothesis is true for any |w| = n.

Consider a w - a € L(T"') such that gy ==* ¢’ = r’. Then,

1. By hypothesis, 3¢ € Q s.t. g9 —*q in T and (q,¢') € R*.

2. As ¢ = 1’ so by construction, I € Q such that ¢ % 7" in T and
(r",r") € R*.

3. As (¢,¢)) € R* and ¢ % " so Ir € Q such that ¢ % r in 7 and
(r,r") € R*.

4. As (r,r") € R* and (r"',7") € R* so (r,7') € R*. Then, in 7, we have
g —=*q % rand (r,r) € R

This proves that L(7") C L(7). O

We return now to our transition system 74 corresponding to the given MSG

G.

We give two bisimulation relations in 7g which are stated informally below:

1.

2.

A configuration in 7¢ which has a completely traversed prefix in its node
list is bisimilar to a corresponding configuration which has the prefix re-
moved.

A configuration in 75 which has a completely traversed loop in its node list
is bisimilar to a corresponding configuration which has the loop removed.

Before proving that these are actually bisimulation relations, first we prove
few simple lemmas regarding the operation on cuts, which will be used in the
bisimulation proofs going forward.

Lemma 8 If (af3v,c) is a configuration in G, then, (c—e/a)—€/B =c—e/af.

Proof (c—e/a) —¢/B = {(e,p)|(e,afp) € c and p <, v} = ¢ — €/apf. O

Lemma 9 If (af102037,¢) is a configuration in G, then, (¢ —e/a) — B1/B2 =
(c—aBi/B2) —€/a.

16

Proof (c—e€/a) — (1/062

T {(e,;p)l(e;ap) € c and p Ze i} U {(e; Brp)l(e; aB182p) € ¢ and p =ne
B3y

Also, (¢ — af1/B2) — €/

= ({(e,pl(e:p) € c and p < afy } U {(e;arp)l(e, aB1B2p) € ¢ and p Zne
Ps7}) - €/

= {(e,p)|(e,ap) € cand p =Zpe ﬁl} U {(eﬂﬂlp)l(evaﬂlﬂQP) € cand p =p,
Bav} O

Lemma 10 if (af171 5272, ¢) is a configuration in G, then, (c—a/B1)—avy1 /B2
(¢ —abim/B2) — a/B

Proof (c—a/B1) —avi/B2
= {(e,p)|(e,p) € cand p < a}
U({(e,ap)|(e,aﬁ1p) € c and P jne ’Yl}
U{(e, amip)|(e, af17182p) € ¢ and p <pe 12}).
Also, (¢ —afiv1/B2) — a/B
= ({(e;p)l(e,p) € c and p = afim) U{(e, aBi71p)[(e, aB171P2p) € ¢ and
P =ne 72}) - a/ﬁl
= {(e,p)|(e;p) € cand p <}
U{(e, ap)l(e,apip) € cand p Zpe 71}
U{(67a71p)|(67a5171ﬂ2p> € cand P Zne 72})' U

Lemma 11 If (af17172,¢) is a configuration in G, then, (c—a/B1)+ay1 /B2 =
(c+afim/B2) —a/br.

Proof (c—a/B1) +avi/Be
= {(e,p)|(e,p) € cand p < a}
U{(@,OZ,D)KB, O‘ﬂlp) € c and P =ne 71}
U{(e, a1 B2p)l(e; aBivip) € c and p <pe Y2}
Also, (¢ + afim/B2) —a/B
= ({(e;p)l(e,p) € c and p = af1m1}
U{ (e, aBim1B2p)|(e; afiy1p) € c and p =pe 12}) — /B
= {(e,p)l(e,p) € cand p < a}
U{(G,OZP)KQ, O‘ﬂlp) € c and P =ne ’71}
U{(e, av182p)|(e,afiv1p) € c and p Zpe Y2}
O

Lemma 12 If (ay172,¢) is a configuration in G, then, (c+a/B1)+ab1v1/02 =
(c+am/B2) +a/br.

Proof (c+ «/f1) + af171/ 062
= ({(e;p)l(e,p) € c and p < a}
U{(evaﬁlp)l(e7ap) € cand 14 jne 71}
U{((e; aB17152p)| (e, av1p) € ¢ and p Zpe 72}
Also, (¢+ av1/B2) + /01
= ({(e,p)l(e,p) € cand p < oy}
U{(e; am1B2p)|(e, amip) € c and p <ye 12}) + /B

17

= ({(e,p)l(e, p) € cand p < a}
U{(e7aﬁ1p)|(e7ap) € c and 14 jne 71}
U{((evaﬁl’71ﬁ2p)|(e7 CY’Ylp) € cand 1Y jne 72} O

We now present two lemmas related to removal and addition of some com-
pletely traversed prefix to a configuration.

Lemma 13 Let (af,c) be a configuration in G, such that Exz(af, ¢, «, ¢) is true.
Then, (8,c') is also a configuration in G, where ¢’ = ¢ —¢/a.

Proof Assume ¢’ is not a cut in Mg. This means, (e, p) € ¢ and 3(¢, p') in
Mg such that (¢/,p) <g (e, p) but (¢/,p') ¢ ¢ . Then, (¢/,ap’) <up (e, ap) but
(¢/,ap’) ¢ c. This contradicts that ¢ being a cut in M,g is downward closed
wrt <qp. S0, ¢’ is a cut in Mpg. O

Lemma 14 Let (8,c') be a configuration in G, and let ¢ = (¢’ + ¢/a)|J Eo. If
Ez(aB, e, a,c) is true then (af, c) is a configuration in G.

Proof As (3,c) be a configuration in G, all events in E,, is included in ¢ and
Ez(af, €, a,c) is true, clearly, c is downward closed wrt <,g. O

Consider the relation ~»; on the states of 7g defined below, which relates a
configuration with the one obtained from it by deleting a fully traversed prefix.
By Lemma 13 we get a valid configuration after deleting the prefix and by
Lemma 14 we get a valid configuration after adding the prefix.

We define ~~; as follows: (af,c¢) ~1 (8,¢') provided

e « is non-empty,
o Ez(af, e a,c) holds, and
o =c—¢/a.

We now show that the relation ~~; is a bisimulation relation on the states
of Tg.
Let us assume ~-; is a bisimilarity relation. Then, if (a3, c) ~1 (3, ¢) then:

1. If (aB,c) = (afi,c1) then (B,¢) 5 (B1,¢)) and (',) ~1 (B1,c}).

2. If (B,¢) S (B, ¢,) then (B, c) > (afy,c1) and (af,) ~1 (B1,¢)).

We first prove the first statement. Ez(af, €, a,c) is true wrt ¢, so, e can not
be an event in the prefix a. Also, this means Ez(a/f,€, o, c1) holds. Following
cases have to be considered:

1. Case (T1): (af,c) = (af,c1) where ¢; = c|J{(e,ap)} for some p <, 3.
We set ¢} to ¢ J{(e, p)}. Then,

¢ = ¢ Ul(es)} = (c— e/a) Ulles)} = (cUl(esap)}) — efa = 1 — e/
Since ¢1 = cJ{(e,ap)} is a cut in M, so by Lemma 13, ¢} is a cut in
Mg. (B,c) 5 (B,¢)) and as Ex(af, e, a,c;) holds so, (a3, c1) ~1 (3,¢)).

18

2. Case (T2): (aB,c) = (aBr,c) where ¢ = c|J{(e,aB7)} for some non
empty 7. We set ¢} to ¢/ J{(e, 37)}. Then,

¢ = (e, p)} = (c —e/a)U{(e,7)} = (cU{(e,af7)}) — ¢/a =

1 —€/a.
So by Lemma 13, ¢} is a cut in Mg,. (3,¢') = (87, ¢}) and as Ez(afT, €, a,c;)

holds, so, we have (af7,c1) ~1 (087, ¢)).

3. Case (T3): (amurs,c) = (an’,c1) = |(amumurs, d)| e, ¢ + amu/mu
is a cut in Moryrurs and d = (¢ + aru/mu) | J{(e,amup)} for some
non-empty and loop free p; and loop free ps such that mu = pyps.

d 4+ nu/mu=(c—e€/a)+nu/mu = (¢c+ aru/mu) — ¢/a by Lemma 11.

Clearly, Ez(amumurts, €, a, (¢ + amiu/mu)) holds. Since ¢ + armiu/mu is
a cut in Myr urpurs 80 by Lemma 13, ¢ + myu/mu is a cut in Moy yrpurs-

We set ¢) to (¢ + myu/mu) | J{(e, 1up1)}. So,
¢ = ((c —€/a) + mu/mu) U{(e, mup1)}
= ((c+ anu/mu) — e/a) | J{(e, Trup1)} by Lemma 11.
= ((¢ + anu/mu) | J{(e,amiup1)}) —€¢/a =c1 —€/a.
So, by Lemma 13, ¢} is a cut in M, yr,urs, and as it satisfies the conditions

for transition of type T3, (Tiuts, ¢’) ~»1 lue(mumours, cy) = | (Trumurs, d—
€/a)|we = (7', c1 — €/a). The ~»1 conditions are also preserved.

Now we show that (3, ¢') = (81, ¢}) then (a8, ¢) = (af1,c1) and (af', /) ~1
(B1,¢}). Since (af, c) ~1 (B,c') so, Ex(af,€,a,c) holds. We denote ¢ in terms
of d as ¢ = (¢ + ¢/a)|J E, . Following cases have to be considered:

1. Case (T1): (B,¢) = (B,c}) where ¢ = ¢/ J{(e,p)} for p <. B: We set

&1 to cU{(e,ap)}-
Then, ¢; = c|J{(e,ap)}
— (¢ + ¢/a) U o) Ul an)}
= (@ Uf(e; p)}) + ¢/a) U Ea)
= (&1 +¢/a) U Ea)
Clearly, Ez(af, €, a,c1) holds. So, by Lemma 14, (af3,c;1) is a configura-

tion in G and structurally, (a8, c1) ~1 (8,¢)). Also, (afB,¢) = (a3, c1)
following (T1).

2. Case (T2): (B,¢) = (Br,c}) where ¢} = ¢/ |J{(e, B7)} for some non empty
7. We set ¢; to c|J{(e,aB7)}.
Then, ¢; = ((¢' +¢/a) U E) U{(e,a07)}
= (('U{(e, 87)}) + ¢/a) U Ea)
= ((c1 +€¢/a) U Ea).
Clearly, Fz(afT,¢,a,c1) holds. So, by Lemma 14, (87, ¢1) is a configura-

tion in G and structurally (87, ¢;) ~1 (87,¢}) Also, (a3, ¢) = (afT, c1)
following (T2).

19

3. Case (T3): (miurs,c) = (7,¢)) = [(riumurs,d)|me, ¢ + Tiu/mu is a
cut in My, yrours and d = (¢ +7mu/mu) | J{(e, T1up1)} for some non-empty
and loop free p; and loop free p; such that mu = p1ps.

Firstly, ¢ + arju/mu = ((¢ + €¢/a) | Ea) + amiu/mu
= ((¢ + nu/mu) + €¢/a)|J Ey) by Lemma 12
Clearly, Ex(amiumuts, €, a, ¢+ amiu/mu) holds. So, by Lemma 14, ¢ +
aTiu/Tou is a cut in Mor yrours. Similarly, as (¢! +miu/mu) | J{(e, mup1)}
is a cut in My, yryurs, We can show that
dy = (e + anju/mu) U{(e, amiupr)} is a cut in Myr,urpurs -
So, by transition rule (T3), we can do
(amuts, c) = |(amurauts, di)]we = (ar’,c1).
It can be noted that « is completely traversed in d;. So,
| (amiuraurs, dl)] e
= (ar’, (¢} + ¢/a) U Ea).

So, clearly, (arn’,c1) ~1 (7', c}).

So, we have also proved that if (3,¢/) 5 (B81,¢)) then (afB,¢) 5 (afi,c1)
and (o, ') 1 (Br,c}).

This completes the proof that ~~1 is a bisimilar relation on states of 7.

We proceed to present two lemmas verifying that the downward closure
property of cuts is met by deleting or adding a fully traversed loop to the
corresponding configuration.

Lemma 15 Let (aufuvy,c) be a configuration in G. Then, (auy,c) is a con-
figuration in G, where, ¢ = ¢ — a/uf.

Proof Assume c is not a cut in Mqyy. This means, 3(e, p) € ¢ and 3(¢/, p’)
along auy such that (€¢/,p') <auy (e,p) but (¢’,p) ¢ ¢/. This contradicts that
cis a cut in Myyguy as (e,p + a/uf) € ¢, (¢, p' + a/uB) ¢ c although clearly
(e, 0"+ a/uB) <aupuy (€,p+ af/uf). So, ¢ is a cut in My,g. O

Lemma 16 Let (auvy,c’) be a configuration in G and let ¢ = (¢'+a/uf) J(Eaus-E.,)-
If Ez(aufuy, o, uf, c) holds then (aufuy, a,c) is a configuration in G.

Proof Assume that c is not a cut in Myyuguy. Since ¢’ is a cut in My, and
(Eaup—E,) C ¢, so, this means, 3(e,ap) € c for p <, uf and 3(¢/, p') <aupuy
(e,p) for p' <, « such that (¢/,p') ¢ c. Let e € E, for some process p. As
Ex(oufuy, o, uf, c) holds, this means, 3¢’ € E, such that (e’,aufp”) € c
for some p” =<, uy. So, (¢”,ap”) € ¢ but (¢/,p’) € ¢ although clearly,
(€/,p") <auy (¢,ap”). Then, cis not a cut in My, and so this is not possible.
[l

We introduce another relation ~-5 relating configurations of 75 based on
deletion of completely traversed loops.
We have (aqufury, c) ~2 (auy,) provided

20

o Ez(aufuy,a,uf,c) holds, and
o (' =c—ajuf.

We now prove that ~»5 is a bisimilarity relation on the states of 7g. We
assume that this is true for two states (aufBuy,c) and (cuy,c’) such that
(aufuy, ¢) ~9 (auy, ') and show that:

1. If (auBuy,c) = (a1, c1) then (auy,) 5 (o), c}) and (a1, ¢1) ~2 (o}, c}).
2. If (auy,) 5 (o, ¢)) then (quBuy,c) = (a1, c1) and (aq,c1) ~2 (o),).

Before the main proof, we prove another interesting property about fully
traversed loop.

Lemma 17 Let (aufBuy,c) be a configuration in G such that Ex(auBuy, o, uf, c)
holds. Then, there will be some executions in the later node u.

Proof As Ex(aufuy,a,uf,c) this means, whichever process has reacted in u/3
has reacted in uy as well. So, (e, au) € ¢ and (', aufp) € c where p <. uy
such that (e, au) <qupuy (€¢/, cuBp). If there is no execution in the later node u,
then, (e, aufu) ¢ c although clearly, (e, cufu) <auguy (€¢/, cufp). This violates
that (auBuy, c) be a configuration in G as ¢ is not downward closed wrt <quguy-
O

Now, we prove that if (cuBuy,c) = (a1,c1) then (auy,c) = (a4, ;) and
(a1, ¢1) ~2 (af,c}). We analyze the following types of transitions:

1. Case (T1): (auBuy,c) = (aufuy,ci) where ¢; = c|J{(e,p)} for some
P Sne qufuy: Since Ex(aufuy, o, uf,c) holds wrt ¢ so it is not possible
that a < p < auf. We set ¢} to ¢ J(e, p — a/uf). Then,

¢y = (c—a/uf) H(e,p — a/ub)}
= (cU{(e,p)}) — a/up
=c; —a/uf.
Since ¢1 = cJ{(e, p)} is a cut in Myyguy s0 by Lemma 15, ¢} is a cut in
Moy (cuy,c) 5 (quy, ¢;) and as Ez(auBuy, a,uf, c1) so, (qufuy,c1) ~2
(cm,).
2. Case (T2): (aufuy,c) > (auBuyr,ci) where ¢; = c|J{(e, auBuyr)} for
non-empty 7: We set ¢} to ¢’ (e, auyr). Then,
¢ = (e—ajup)U{(e;p — a/uyr)}
= (cU{(e, aupunT)}) — a/up
=c; —a/uf
So by Lemma 15, ¢} is a cut in Myyy-. So, (auy, ') = (auyr,c;) and as

Ez(auBuyt, a,uf, c1) so (qufuyt,c1) ~o (aquyt,c}).

3. Case (T3): (qufuy,c) > | (arvazvasufuy, c1) | we, where a = ayvas, c+
a1v/agv is a cut in My, vasvasupuy and ¢1 = (c+ a1v/azv) [J{(e, a1vp1)}
for some non-empty and loop free p; and loop free ps such that asv = p1ps.

21

We first show ¢’ + a1v/agv is a cut in Mo, vasvasuy- We know
d + ayv/asv = (¢ — aqvas/uf) + ayv/asv
= (c+ a1v/agv) — ayvagvas/uf by Lemma:1l.

Since c+av/asv is a cut in My, vasvasupuy, SO by Lemma 15, ¢ +aqv/asv
is a cut in Ma, vasvasuy-

We set ¢} to (¢ + ajv/azv) | J{(e, ar1vp1)}.
Then, ¢; = ((¢ + a1v/agv) — ajvasvas /uf) |J{(e, arvpl)}
= ((c+ a1v/agv) | J{(e, a1vpl)} — ayvasvasz/uf) as p1 < agv
= ¢1 — apvagvag/uf.
As ¢y isacut in My, vasvasuguy, 50 by Lemma 15, ¢y isacutin Mo, vasvasuy
. So, by transition rule (T3), we can have
(arvaszuy,) 5 | (avasvasuy, c;) | e

Clearly, Fz(ajvasvagufuy, ajvasvas,uf,cr) holds. So, there can’t be
any unexecuted portions in u(portion. Also by Lemma 17, there is some
execution in later node u. Let

c11 be {(e, p) € ¢|p Zne v1vazvaz and | (ajvasvas, ci1)|mwe = (11,d1).
c12 be {(e, ayvagvasp) € clp <. ub}
c13 be {(e, arvazvaszulp) € c|lp Zne uy} and | (uy, c13) | we = (uT2, d2).
So, by applying Lemma 10 we can say
| (aqvagvagufuy, 1) | we = (Tiufute, di) J(c12 + €/71) U(d2 + €/m1up).
Applying similar arguments, | (cavasvazuy, c))|me
= (riure, di U(da + €/71))
= (ryure, (dy U(c12 + €/71) U(da + €/m1uB)) — 71 /uf).
So, | (ayvasvasuBuy, c1) | me ~2 | (arvasvasuy, ci) | e
. Case (T3): (auBu,c) = |(aB1vf2083uY, 1) | e, where uf = B1vfs, ¢ +
afiv/favis acut in Mag, vg,08suy and ¢1 = (c+afiv/Fov) U{(e, aBrvp1)}

for some non-empty and loop free p; and loop free ps such that Gov = pyps.
We show that this is not possible.

Ez(aBivBsuy, o, B1v0s, ¢) holds. So, Ip € P and events e, e3 € E,,, such
that (e, aB1v) € cand (ea, aB1vP5p) € c where p <pe wy . (e1,aB1v02v) ¢
¢+ afiv/fBav although (ea, af1vBav05p) € ¢ + afiv/Pav.

But (e1,281v620) <apivpavssuy (€2, aB10B2083p). So, ¢ + afv/Pev can
not be a cut in Mug,vg8,08;5uy-

So, this transition is not possible.

. Case (T3): (auBuy,c) = [(Qufy1vy2v73, €1)] e Where uy = y1v7y3, ¢ +

aufy1v/v2v is a cut in Maygy, vy, and 1 = (c+aufByiv/v20) [(e, aufyivpr)}

for some non-empty and loop free p; and loop free ps such that vov = pypa:
Like in case 3, we can prove that (auy,c) = | (auy1vy2v73,¢)) | e Where
¢y = c1 — a/uf and | (aufy1vy2vy3, 1)l me ~2 [(Quy1vy2vy3, ¢h) | ue-

22

We now show that if (auy,d) = (of,c}) then (aufuy,c) > (a1,c1) and
(a1,¢1) ~9 (af,c}). By our assumption, FEz(aufuy,a,uf,c) holds and ¢ =
(¢ +a/uf) U(Eaus—FEq). We prove the statement by going through the possible
types of transitions:

1. Case (T1): (auy,c) = (auy,c)) where ¢; = ¢ |J{(e, p)} for some p <.
auy. We set ¢1 = c|J{(e,p+ a/up)}. Then,

a1 = ((¢ + a/uB) U(Baus — Ea)) U{(e, p + /uf)}

= ((U{(e,n)}) + a/uB) U(Eaup — Ea)

= (c} + a/uB) U(Eaus — Eo)-
Since Ez(aufuy, a,uf,c) holds so clearly Ez(aufuy,a,uf, c1) holds too.
As ¢ is a cut in Mgy, so by Lemma 16, ¢ is a cut in Mayguy. S0, struc-
turally (qufuy, c1) ~2 (quy, ¢;) and by transition rule (T1), (qufuy, c)
(aupfuy, c1).

2. Case (T2):(auy,c) = (auyt,c)) where ¢ = ¢ |J{(e,auyT)} for non-

empty 7: We set ¢1 to ¢ J{(e, aupfuyr)}. Then,
a1 = (¢ + a/uf) U(Eaus — Ea)) U{(e, auBuyT)}

= ((¢U{(e, auym)}) + a/uB) U(Eaus — Ea)

= (1 + a/uB) U(Eaup — Ea)

Like in last case, we can easily prove that (qufuyr, 1) ~»9 (auyt,c}) and
by transition rule (T2) we have (qufBuy,c) = (quBuyT, ci).

3. Case (T3): (auy,c) 5 [(arvasvasuy,c,)]we where o = aqvas, ¢ +
a1v/agv is a cut in My, pasvaguy and ¢ = (¢ + aqv/av) J{(e, cnvpr)}
for some non-empty and loop free p; and loop free ps such that asv = pypa:

Here, ¢ = (¢ + aqvas/uf) U(Eayvasus — Pajvas)- We first show that
¢+ aqv/agu is a cut in My, vasvasufuy-

¢+ aqv/asv
= ((C/ + alvaiﬁ/uﬁ) U(quvasuﬁ - anas)) + al”/aﬂ)
= ((C/ + 041'(1043/1‘6) + O‘l'U/OQv) U(Ealvagva3uﬁ - Ealvagvaa)

= ((C/ + a1v/agv) + arvagvasz/uf) U(Ealvazva3Uﬁ - Ealvazvas) By
Lemma 12

Also, Ezx(ajvagvasufuy, ajvasvas, uf, ¢ + ajv/asv) holds and so, by
Lemma 16 ¢ + ajv/agv is a cut in My, vasvaszuguy - We set ¢1 to (¢ +
a1v/asv) | J{(e,a1vp1)}. Then,
c1 = (((d + a1v/asv) + ajvasvas /uf)

U(Ealvazvasuﬁ — Eayvazvas))

U{(e; a1vp1)}
= (((¢' + arv/agv) U{(e, a1vp1)}) + arvagvas/uf)

U(Easvasvasus — Eayvasvas) a8 p1 = v
= (¢} + aqvasvas/ufB) | Fajvasvas) 88 p1 = v

Since ¢} is a cut in My, yayvazuy and Ez(agvagvazufuy, ayvagvas, uf, cr)
holds so, by Lemma 16 c¢; is a cut along Mq,vasvasuduy- Following

23

(T3), we have (ajvasuBuy,c) 5 |ogvasvasufuy|ye. Applying simi-
lar arguments as in case 3 of the forward direction, we can show that
larvagvasufuy, c1 fwe ~2 | (crvagvazuy,) e

4. Case (T3): (auy,c) 5 [(ay1vy2vys,c))|me where uy = yiv7y3, ¢ +
C10/720 15 & €Ut I My g a0 & = (¢ + ay10/720) U (€ a91vp1) }
for some non-empty and loop free p; and loop free ps such that vov = pypa:
Like in case 3, we can show that in this case also
(qufury, c) = | (quByivy2v73, €1) Jue
where ¢1 = (¢ + aufBy1v/v20) J{(e, aufyivp1)} and
L(auBrivyr2vys, €1)Jwe ~2 [(@1072073, €1) Jiue-

This completes the proof that ~~5 is a bisimilarity relation on the states of
Ta.
We summarize the bisimilarity discussion in the following lemma:

Lemma 18 The relations ~1 and ~»o are bimulation relations on the transi-
tion system 1. O

We will now reduce the state space of 7 using the bisimulation relations
defined above.

For a configuration (7, ¢) of G, we define its mazimal reducible decomposition
to be aqiuifruy -+ apunBpuyy with n > 0, where

o ™= aaiuiBiur - CplnBrliny.
e « is the maximal prefix of © which is completely traversed.

e Each u;0; is the leftmost completely traversed loop in the segment
QUi Bt - QU B Un Y-

e Each u;(; is maximal.
e 7 does not have any completely traversed loop.

The maximal reducible decomposition of (7, ¢) can be seen to be unique.

Let aaquifiug - apty, Bru,y be the maximal reducible decomposition of
(m,¢). Then we define the reduced form of (m,c), denoted |(m,c)|, to be the
configuration

(aqur - apupy,
(- ((c—€/a) —aruifr) —) — arur - - - Qplin /Uunfp).

Clearly, the reduced form of a configuration does not contain any completely
traversed prefix or loops.

We now define the reduced transition system corresponding to the MSG G,
denoted 7/, as follows: 7/, = (Q', E¢, qo, =) where

e Q' ={|(m)] | (7 ¢c) a configuration of G}.
e F is the set of events of G.

* g0 = (¢,0).

24

Figure 6: An MSG with an infinite-state 7.

o Let ¢/,7’ € Q. Then, ¢ = 1’ iff there exists € Q such that ¢’ = r in
TG7 and T‘/ = I_TJ

We note that the reduced form of the initial configuration (e, 0)) is itself.

We now want to argue that 7/ generates the same language as 7g. We
have already shown that ~+; and ~+9 are bisimulation relations on 7. Hence
so is the relation (~»1 U ~»9)*. Further, for any configuration (m,c), it is clear
that ((m,¢), [(m,¢)|) € (~v1 U ~>2)*. Finally, it is immediate to check that T,
satisfies the conditions of Lemma 7 with respect to Zg and the bisimulation
relation R = (~»1 U ~2)*. Hence by Lemma 7 we can conclude that L(7/) =
L(7¢).

We summarise the result of this section in the following theorem:

Theorem 19 For any MSG G, the reduced transition system T/, generates pre-
cisely the language L°(G).

We note that though 7/ has fewer states than 7¢ in general, it may still
have an infinite number of states. Consider the MSG G2 in Figure 6. The
configurations of the form (vy, {(e1,v0), (e1,v3),- -+, (e1,v})}) where n > 0 do
not have any unexecuted loops or completely traversed loops. So, for each n,
these are distinct states in 7/, and thus 74 has an infinite number of states.
In the next section we show that this is not possible for a com-connected MSG.

6 Regularity of Com-Connected MSG’s

In this section our aim is to supply a proof of Theorem 2. We begin with an
observation from [2].

Lemma 20 ([2]) Let G be a com-connected MSG. Consider a configuration
of the form (aufBuy,c). Then, either uf is completely unexecuted, or uf is
completely traversed, or there is a process whose last executed event and next
unexecuted event are both in uf.

Proof Let us assume the contrary. Then among the processes that take part in
an event in the nodes in u(, there must be processes p and ¢ such that none of
the p events in uf are executed, and all of the g events in u(are executed. As
G is com-connected, we must have a path in the communication graph of M,g
from p to q. Let this path be p=r9 - r, — -+ — r, = ¢ with n > 1. Then,
since g has completed all its events in u(, it must have also received a message
from 7, _1. Thus r,,_1 has taken part in u(, since it must have sent the message
received by ¢. Now either r,_; has another event to take part in in u3, and we
are done; or, it has completed all its events in u3 and in particular has heard

25

from r,_o. We repeat this argument till we either find a process r; which has
participated in u and has an unexecuted event in u(, or reach a contradiction
that process p has participated in an event in u83. This completes the proof of
the lemma. ([

Let us now consider the reduced transition system 7/ for a com-connected
MSG G. The states in 7/ are all in reduced form, and hence have no completely
unexecuted loops or completely traversed loops. It follows that in any loop in a
state (7, ¢) of 7/, there must be at least one process positioned in a node in that
loop. Thus no node can occur more than £+1 times in 7, where k is the number
of processes. In fact, because of the property of the reachable configurations of
7o that there is always a process positioned in the last node of the path, the
bound of k + 1 can be reduced to k. This bounds the length of 7w by mk, where
m is the number of nodes in G.
There are % ways of making strings of size m x k from m nodes each
repeating k times. It is easy to show that this is lower than m™>F. If there
are n events per MSC and for each process, then, in each configuration, each
processes can have m x n X k possible positions. This gives us the upper bound
m™*k x (m x n x k) on the number of states in 7.

This completes the proof of Theorem 2.

7 Synchronous MSG’s

In this section we consider MSG’s with synchronous (or “handshake”) messages,
and show how the transition system for them can be constructed in a similar
manner to MSG’s with asynchronous messages.

A message sequence chart with synchronous messages, or simply a syn-
chronous MSC is a tuple

M = (P,E,C, X\ {<p}pep)
where:
e P is a finite set of processes.
e F is a finite set of events.

e (' is a finite set of message labels.

The set of actions of M is defined to be ¥3; = P x P x C, where (p, q, m)
signifies processes p and ¢ synchronously exchanging message m.

For a process p € P, the set £, = {a € Zy | a = (p,g,m)ora =
(¢,p,m), g € P, m € C}, is the set of all actions in which p participates.

e \: E — X, is the labeling function which maps events to actions. For
a process p € P, the set E, = {e | A(e) € £,} are the events in which p
participates.

e For each p € P, <, is a strict total order on E,,.

We define <, as the transitive closure, and <, as the reflexive transitive
closure, of UpeP <p, and require that <p; must be a partial-order.

26

Vo i/

51
—
mi
V2 V1 i U3
€3 | | o0—— €2 €4
— — —
ms my || ——=||ma | €5
~ ms

Figure 7: MSG G4 with synchronous messages.

As for asynchronous MSC’s, we define the language of event sequences gen-
erated by a synchronous MSC M with event set E, to be the prefixes of lineari-
sations of the partial order (E,<js). A cut in M continues to be a subset of
events in F which is closed with respect to <;;. Analogous to Lemma 1 we can
characterise the event sequences of M in terms of sequences of incremental cuts
in (E, S]\/[).

The communication graph of a synchronous MSC M is an undirected graph
on the set of processes obtained by adding an undirected edge between two
processes if they participate in a common event.

A synchronous MSG is an MSG G = (V,vg, A, M, u) as defined earlier
for asynchronous MSC’s, except that M is now a set of synchronous MSC'’s.
For a non-empty path 7 in G, we can define the (weak) concatenation of the
synchronous MSC’s labelling 7, as before to be the (weak) concatenation of
the partial orders represented by the MSC’s. More formally, for each vertex
v in G, let each MSC pu(v) be (P,, E,, C, Ay, {<}}pep). We define the (weak)
concatenation of the synchronous MSC’s in the path 7 to be the MSC M, =
(P, Ex, O, A\r, {<] }pep) Where:

o Er = U, <. (Ev x {pv}).
e For each pv =< 7, we define A, (e, pv) = Ay (e).

e For each p € P, <7 is given as follows: Let pv < m and p'v" < 7 and
e € By and ¢ € Ey. Then (e, pv) <j (¢, p'v) iff e and €’ are p-events
and either pv < p'v" or pv = p'v’ and e < €.

The language of event sequences defined by a synchronous MSG G, denoted
L¢(@), is defined to be the set of all prefixes of linearizations of M, for any
initial path 7 in G.

As for asynchronous MSG’s, we say a synchronous MSG G is com-connected
iff for every loop ufu in G, the communication graph of M,s is com-connected.

The figure 7 shows a com-connected synchronous MSG Gj.

The construction of the transition systems 7¢ and 7/ for an asynchronous
MSG @G, is based purely on the partial order induced by a path in the MSG.
Hence it also applies for a synchronous MSG G. The proof of correctness of
Te and 7/ also make use of properties of the way the partial order induced

27

by a path in the MSG is defined, and these properties are also satisfied by the
definition of this partial order for synchronous MSG’s. Hence we can conclude:

Theorem 21 Let G be a synchronous MSG, and let T; and T/ be the transition
systems defined in Section 3 and 5 respectively. Then both transition systems
generate exactly the language L¢(G).

Further, Lemma 20 can also be seen to apply for synchronous MSG’s, and
hence we have:

Theorem 22 Let G be a com-connected synchronous MSG. Then L¢(G) is reg-
ular and it can be generated by a finite-state transition system with at most
m™ (mnk)* states.

Figure 8 is the transition table generated by our algorithm and Figure 9
shows the state diagram of the transition system T¢, for the MSG G4 of Figure 7.

The MSG of Figure 7 is useful for pointing out the incompleteness of the
transition system constructed by Uchitel in [12]. He constructs a transition
system, called the “trace model”, which is meant to generate the language of
event sequences for a given com-connected synchronous MSG. The construction
uses a “coordinator” component which keeps track of the current path in the
MSG traced out by processes, and ensures that other processes follow this path
consistently. The transition rules for the infinite model are similar to ours,
except that there is mo rule for inserting a path within the current node list.
The problem arises due to the equivalence relation proposed by him to reduce
the infinite model. His equivalence relation removes a loop whenever there are
no processes present there. This incorrect reduction essentially leads to the
trace model being incomplete.

The trace model generated by the LTSA-MSC tool [11, 13] on the MSG G4
as input is shown in the figure below.

28

Source| Transition Destination
State | Type | Event Configuration State
o T2 € (Vo, {(e1, V0)}) 01
T2 & (vova, { (&2 Vovi)}) gz
(o} T2 & (vova, { (ew Vo), (&, Vova)}) O3
T2 & (VovaVs, { (€1, Vo), (€4, VoV1V3)}) 4
~1 (VaVa, { (€4, ViV3)})
(o7} Tl € (vova, { (ewVo), (&, VaVi)}) O3
T2 € (VoVaVa, { (€2, Vova), (€3, VoViVa)}) Os
s T2 € (VovaVz, { (e, Vo), (&2, Vo), (€3, VovaVa)}) s
T2 € (VovaVa, { (1, Vo), (€2, Vo), (€4, VoVaVa)}) o7
~q (Vavs, {(e2, Vi), (B4, ViVa)})
U4 Tl & (VaVvs, { (€2, V1), (€4, V1V3)}) ar
Os T2 & (VovaVavy, { (€2, VoVa), (€3, VoViVa), (€2, VoViVaVi)}) Oz
~5 (Vov, { (€2, Vova)})
Tl e (VoVaVa, {(e1, Vo), (&2, Vov), (€3, VoVaVa)}) s
ds T2 € (VovaVavi, { (€1, Vo), (€2, Vo), (€3, VoVaVa) , (2, VoVaVavi)}) Os
~5 (Vova, { (e Vo), (&, Vova)})
T2 € (VovaVaVi Vs, { (€1, Vo), (€2, VoVa), (€3, VoVaVa), (€4, VoV1V2V1Va)}) o
~q (VaVava, { (€3, Vo), (B4, VaVIVR)})
o T3 € (VaVaVaVi, { (€2, V1), (€3, ViVa), (€4, VaVVIV3)}) o
~q (VoVaVs, { (€3, Vo), (€4, VoViV3)})
Tl & (Vava, { (&2, V), (€4, VaV3), (85, ViV3)}) 1o
s T1 € (VaVaV, { (&3, V), (€2, VaVi), (€4, VoVaVa)}) o7
~1 (Vava, { (€2, V1), (€4, ViVa)})
o T1 & (VaviVs, { (&3, V), (&2, Vi), (€4, VoVaVa)}) U7
~1 (Vava, {(€2, V1), (€4, ViVa)})
O1o T2 € (VaVaVo, { (&2, V1), (€4, VaV3), (&5, VaVa), (€1, VaVaVo)}) Ou
T2 & (V1VaVovy, { (€2, V1), (€4, V1V3), (&5, ViVs), (€2, VaVaVoVa)}) O12
~1 (VaVoVa, { (€4, V3), (€5, V), (€, VaVoVa)})
Ou1 T2 €4 (VaVaVoViVs, { (€2, V1), (€4, VaVa), (€5, VaVa), (€1, VaVaVg), (€4, VaVaVo ViVa)}) | Chs
T2 & (VaVaViVi, { (€2, V1), (€4, V1Va), (85, VaVa), (€1, ViVaVo), (€2, VaVaVova)}) Os
~1 (Vv { (€1, Vo), (€2, Vova)})
G2 T1 e (VaVoV, { (€4, V3), (&5, V), (€1, VaVo), (€2, VaVovi)}) Os
~1 (Vovi, { (€1, Vo), (&, Vov1)})
Chs T1 € (VaVaVioV1Va, { (€2, V1), (€4, VaVa), (65, ViVa), (€1, ViVaVo), (&2, ViVaVova), (€s, | O7
V1V3VoViV3)})
~q (Vavs, {(€2, V1), (€4, ViV3)})

Figure 8: Transition table 7/ for MSG Gj.

29

Figure 9: Transition system 7/ for MSG Gi.

ah il ahml ah e ahrnd

TraceModel

30

The event sequence ejeseseseses is not allowed by the trace model, while it
is accepted by T¢, as shown in the figure below.

Vi
T2
V3 e4 T 1 V3 % ‘ ‘

‘ ez Vl

&) T3
\Z € v ‘ ‘ 6 V2 €3
& —‘
& &
Vi e T3 <" &
V3 |
Pl Vi |

The event sequence is legal behaviour of MSG G4 being prefix of a lineari-
sation of M, where 7 is the path vovyvaviv2v1v3, shown in the figure below.
’Uo TN

o1

v1

v2

v1
€2

v1
€2

v3
€4

31

<> //\\ <>

Figure 10: System model induced by MSG G4.

8 Detecting Implied Scenarios

We now sketch how our construction of 7/ can be used to detect “implied
scenarios” in a com-connected synchronous MSG.

A synchronous MSG G induces a natural “minimal” distributed finite-state
system model (called the “architecture model” in [12]). Each process has a
component obtained by keeping track of which events it can participate in next.
The components for each process in the system model for the MSG G4 are
shown in Figure 10. Thus process a takes part in events e; and e4 and has
two states a; and a4 corresponding to these two events. The states a; and
a4 can be thought of as the positions in the process line of process a in the
MSG Gy, just before the events e; and es. The system model induced by the
components, can be viewed as the “synchronised product” of the components
for each process, where a pair of components are required to simultaneously
execute events that are common to their process lines. The system model,
which we denote Sg, can be seen to include all the behaviours in L¢(G) for a
given synchronous MSG G. The problem is that it may sometimes generate a
strict superset of the behaviours in L¢(G), and these behaviours are what are
referred to as “implied scenarios.” Thus an event sequence w € E{, is called an
implied scenario if w € L(Sg) — L¢(G). We refer the reader to [14, 12] for some
illustrative examples of implied scenarios.

We first show that the problem of detecting implied scenarios for general
MSG’s is undecidable. The proof is via a reduction from the Post Correspon-
dence Problem (PCP). Let P be an instance of PCP given by two homomor-
phisms g, h : A* — B*. A solution of P is given by a word w in AT such that
g(w) = h(w). We make use of the regular language Lp defined in [10] (see also
[9]). Lp is defined to be Ly U Ly, where L, (similarly L) is the complement of
W, = {wg(w)| 9@ | w e AT}, All we need is the fact that Lp satisfies the
property that

Lol = (AU B)*||c* if P has no solution
Pl~=1 astrict subset of (AU B)*||¢* if P has a solution

where [Lp]. denotes the trace closure (that is all possible words that can be
obtained from words in L, by commuting letters in AU B with the letter ¢) of
the language Lp; and L||M denotes the “shuffle” of words in L and M defined
tobe {w|w|(AUB) € L,w|ce M}. By w| X we mean the word obtained
by deleting all occurences of letters outside X from w.

Now let us define an MSG from Lp as follows: Let A be a finite-state
automaton accepting Lp. Without loss of generality we can assume that the
states of A (instead of the transitions) are labelled by letters in A U B U {c}.

32

a
—|

Figure 11: An automaton and the corresponding MSG.

Then we can define an MSG G p which has the same graph structure as A, and
each state v is labelled by the MSC M,, where a is the label of v, and M, is the
MSC shown below on the left if @ € (AU B) or the one on the right if a = c.

Figure 11 shows the MSG corresponding to the automaton on the left. Here
we assume a,b € AU B.

It is not difficult to see that the language specified by the MSG Gp is pre-
cisely the trace closure of Lp: that is L¢(Gp) = [Lp]~. Further, we claim that
G p has implied scenarios iff the PCP problem P has a solution. This is because:

c
—

e The language Lp is such that for each w € (AU B)*, and each ¢ € {c}*,
the strings w and ¢! both belong to Lp. Thus, it follows that Sg, will
always generate the language (AU B)*||c*.

e However, the language L°¢(Gp) equals (AU B)*||c* iff the PCP instance
P has no solutions.

e Hence Gp has implied scenarios iff P has a solution.

This completes the reduction.

We note that we have made use of final states in the MSG Gp. However
it is not difficult to adapt this reduction to MSG’s in which all states are final
(which is the definition we have followed in this paper). We can do so as follows.

e We first note that the variant of the PCP problem, called say PCP’, in
which we ask if there is a solution to the given instance which begins with
1 and ends with k, and k does not occur anywhere else (where we assume
A=1{1,2,...,k}), is also undecidable. This can be seen from the fact that
the classical reduction from the membership problem for Turing Machines
to PCP produces such an instance of PCP [6]. Further, clearly without
loss of generality, we can assume that the given PCP’ instance is such that
g(k) and h(k) both end with a ‘4’ symbol which is not in AU B.

e Let L, (and similarly Lj) be the regular language defined in [10] over
AU BU {4} U{c} corresponding to P as a usual instance of PCP.

33

e We now restrict L, by retaining only words that contain 0 or 1 occurrences
of 4. Thus we obtain

L, =Lyn{we (AUBU{H}U{c})" | w | {-} € {e,}}.

Clearly L; is also regular.

e We further define L} from L; as follows:
Ly ={we L,|w| {4} =0ju{w' 4 |we Ly, w | {4} = {4}, w | (AUBU{c}) = w'}.
Once again, since L’g is regular, it follows that L’g' is also regular.

e We now observe that the implied closure of L] (and also Lj) is
((AUB)™ - {Heb)c.

This is because for any w € (AUB)* - {, ¢}, and any ¢’ € ¢*, w € L] and
el
o

e We note that Ly and Lj satisfy

(L/UL]. = ((AuB)*-{He})]c* if P has no solution
9= hin a strict subset of (AU B)* - {H,€e})||c* if P has a solution

As a matter of fact, if there is a solution then (AUB)*- 4 ||¢* is not
contained in [Ly U Ly]~.

e Finally, Finally, since prefixes of words in LZ do not help in constructing
words in (AUB)*- 4 |[|c*, it follows that if we replace Lj by its prefix-
closure pref(Ly), and similarly Ly by pref(Lj), we will obtain a prefix-
closed regular language, namely pref(L}) U pref(L}) which satisfies all
the properties above: namely, that its implied closure is equal to its trace
closure iff the given PCP’ instance has no solution. This completes the
reduction.

Theorem 23 The problem of detecting implied scenarios for general synchronous
MSG’s is undecidable. O

However, when an MSG specification G is given to be com-connected, our
finite-state transition system 7/ we can give a procedure for detecting implied
scenarios in G. We simply generate the system model Sg for GG, and the transi-
tion system 7/ for G, and check if L(Sq) € L(7/). Note that both S¢ and 7/
are finite-state transition systems, and hence using standard automata-theoretic
techniques we can check this property and report implied scenarios if there are
any.

Using our finite-state transition system 7/ we can give a procedure for de-
tecting implied scenarios in a com-connected synchronous MSG specification
G. We simply generate the system model (event) S¢ for G, and the transi-
tion system 7/ for G, and check if L(Sg) C L(7/%). Note that both S¢ and 7%
are finite-state transition systems, and hence using standard automata-theoretic

34

techniques we can check this property and report implied scenarios if there are
any.

Uchitel uses the same procedure in his thesis [12] but due to the fact that his
trace model is incomplete, his detection algorithm is not sound. The MSG G4
can be seen to have no implied scenarios. However the LTSA-MSC tool reports
e1eqesezeses as one of the several implied scenarios for this MSG.

[14] proposes detection of implied scenarios comparing the system model
with the maximal traces of the composition of individual process’s view of the
MSG. The approach proposed in this paper claims to catch the implied scenarios
in MSGs with synchronous messaging, even if the MSG is not bounded. We
show that the proposed heuristic approach doesn’t work properly with the same
exmaple MSG Gy.

The approach first constructs the MSG as a labeled transition system with
each transition labelled with the MSG node being executed. The automaton for
G4 is drawn below.

M8 P

V3

Then each process’s local view of the MSG is constructed based on the nodes
where each process participates, as shown in the figure below.

— gt S WBeusg,
1
V3 V3

Y

The product of the local views of each process generates the composed MSG
view. This composed MSG view is compared with the MSG to mark only the
allowed transitions. Both the views for G4 is shown below.

35

The approach then proceeds to construct the ’safety language’ which com-
prises of the linearizations of MSCs hit till a node is revisited followed by the
first message in the next possible MSC as per the MSG. The safety languages
generated for G4 are mentioned in the figure below.

a b c d a b c d a b c d
e
N e = e e e
€ €4 €1
=3 &
€ € €
e €
€ e

It can be easily seen that the event sequence ejeseseseses along My, v, vy vy vav;vs
is not prefix of any of the safety strings and so will be wrongly pointed out as
implied scenario by this algorithm as well.

9 Conclusion

In this paper we have given a precise construction of a transition system for a
given MSG specification, which accepts exactly the set of behaviours specified
by the MSG. When the given MSG specification is com-connected, the transi-
tion system we give is guaranteed to be finite-state and can thus be used a basis
for building sound and complete tools for analysing properties of these specifi-
cations. Our transition system is also suitable for analysing MSG specifications
in a bounded fashion, even when the given MSG is not com-connected. We
hope that work in this paper will be useful to academicians and practitioners

36

interested in building accurate tools to analyse Message Sequence Chart based
specifications.

References

[1]

2]

R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence
charts. IEEE Trans. Software Eng., 29(7):623-633, 2003.

R. Alur and M. Yannakakis. Model checking of message sequence charts. In
J. C. M. Baeten and S. Mauw, editors, CONCUR, volume 1664 of Lecture
Notes in Computer Science, pages 114-129. Springer, 1999.

M. Clerbout and M. Latteux. Semi-commutations. Inf. Comput., 73(1):59—
74, 1987.

B. Genest, A. Muscholl, and D. Peled. Message sequence charts. In J. Desel,
W. Reisig, and G. Rozenberg, editors, Lectures on Concurrency and Petri
Nets, volume 3098 of Lecture Notes in Computer Science, pages b37-558.
Springer, 2003.

J. G. Henriksen, M. Mukund, K. N. Kumar, M. A. Sohoni, and P. S.
Thiagarajan. A theory of regular msc languages. Inf. Comput., 202(1):1-
38, 2005.

J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, Massachusetts, 1979.

H. Muccini. Detecting implied scenarios analyzing non-local branching
choices. In M. Pezze, editor, FASE, volume 2621 of Lecture Notes in Com-
puter Science, pages 372-386. Springer, 2003.

A. Muscholl and D. Peled. Message sequence graphs and decision problems
on mazurkiewicz traces. In M. Kutylowski, L. Pacholski, and T. Wierzbicki,
editors, MFCS, volume 1672 of Lecture Notes in Computer Science, pages
81-91. Springer, 1999.

A. Muscholl and H. Petersen. A note on the commutative closure of star-
free languages. Inf. Process. Lett., 57(2):71-74, 1996.

J. Sakarovitch. The “last” decision problem for rational trace languages. In
I. Simon, editor, LATIN, volume 583 of Lecture Notes in Computer Science,
pages 460-473. Springer, 1992.

S. Uchitel. LTSA-MSC tool. http://www.doc. ic.ac.uk/ su2/Synthesis/,
2001.

S. Uchitel. Incremental Elaboration of Scenario Based Specifications and
Behavior Models Using Implied Scenarios. PhD thesis, Imperial College,
2003.

S. Uchitel, R. Chatley, J. Kramer, and J. Magee. LTSA-MSC: Tool support
for behaviour model elaboration using implied scenarios. In H. Garavel and
J. Hatcliff, editors, TACAS, volume 2619 of Lecture Notes in Computer
Science, pages 597—601. Springer, 2003.

37

[14] S. Uchitel, J. Kramer, and J. Magee. Detecting implied scenarios in message
sequence chart specifications. In ESEC / SIGSOFT FSE, pages 74-82,
2001.

38

