
Analysing Message Sequence Graph Specifications∗

Joy Chakraborty
Motorola India Private Limited

C. V. Raman Nagar
Bangalore 560093, India.

j.chakraborty@motorola.com

Deepak D’Souza
Computer Science and Automation

Indian Institute of Science
Bangalore 560012, India.

deepakd@csa.iisc.ernet.in

K. Narayan Kumar
Chennai Mathematical Institute

H1 SIPCOT IT Park
Siruseri 603103, India.
kumar@cmi.ac.in

March 31, 2009

Abstract

We give a detailed construction of a finite-state transition system for
a com-connected Message Sequence Graph. Though this result is fairly
well-known in the literature there has been no precise description of such
a transition system. Several analysis and verification problems concern-
ing MSG specifications can be solved using this transition system. The
transition system can be used to construct correct tools for problems like
model-checking and detecting implied scenarios in MSG specifications.
The transition system we give can also be used for a bounded analysis of
general (not necessarily com-connected) MSG specifications.

∗Technical Report IISc-CSA-2009-1, Department of Computer Science and Automation,
Indian Institute of Science, Bangalore.

1

1 Introduction

Message Sequence Chart (MSC) based specifications are a popular model of
early system design, whose use is particularly widespread in the telecom and
software industry. A message sequence chart describes a finite sequence, or more
accurately a partially ordered sequence, of message exchanges between agents
in the system. These are typically “scenarios” that a system user and developer
alike can use to communicate and validate system requirements. Messages may
be exchanged “synchronously” as in a handshake protocol, or “asynchronously”
with separate send and receive events and a message channel to buffer unde-
livered messages. Message Sequence Graphs (MSG’s), also sometimes referred
to as “high-level” MSC’s, are an activity diagram-like notation that is often
used to describe infinite collections of system behaviour. They are finite graphs
whose vertices are labeled by MSC’s, each of which represents a single logical
unit of interaction. The behaviours specified by an MSG are obtained by taking
a path in the MSG beginning at the initial node, and collecting the behaviours
given by the “concatenation” of the MSC’s associated with the nodes along the
path.

Given that MSC-based specifications provide an early encapsulation of sys-
tem design, from an analysis and verification point of view there are some nat-
ural problems that one would like to address. Several of these have been con-
sidered in the literature, including detecting race conditions (differences in the
“visual” ordering and “execution” ordering), timing conflicts, and confluence or
“completability.” We would like to focus on the following two problems:

1. The model-checking problem [2]: Here we are given a system description
in terms of an MSG, and a property in the form of a finite-state automaton
describing say undesirable behaviours. We would like to check that the
system does not exhibit any of the undesirable behaviours.

2. Detecting implied scenarios [14, 1]: Given a description of system be-
haviour in terms of an MSG, there is a natural, distributed, system model
induced by the MSG. This system model is “minimal” in that any dis-
tributed implementation of the system that exhibits all the behaviours
specified by the given MSG, must necessarily exhibit all the behaviours
in the system model induced by the MSG. However, the minimal system
model may exhibit behaviours that are outside the ones specified by the
MSG: these behaviours are called implied scenarios. We are interested in
identifying such behaviours so that the system designer can be alerted (for
example to the fact that the exact behaviour specified by the MSG is not
realizable by a distributed implementation).

Message Sequence Chart based specifications have received a fair amount of
attention from the Computer Science theory community (see [4, 5] for surveys).
In particular the analysis problems mentioned above have been addressed in the
following works. Alur and Yannakakis [2] show that the model-checking problem
for asynchronous MSG’s is undecidable in general. They propose a condition
on the MSG, called “boundedness” or “com-connectedness” (essentially that all
processes that take part in any loop of the MSG must communicate directly or
indirectly with each other in the loop), which is sufficient to ensure that the
model-checking problem is decidable. The main task is to show that in such

2

a case the language of behaviours defined by the MSG is regular, i.e. accept-
able by a finite-state transition system. However the details of the construction
are not spelt out completely, and there is no proof of correctness given. Inde-
pendently in [8], Muscholl and Peled also give several undecidability results for
asynchronous MSG’s, including that checking for race conditions and confluence
in asynchronous MSG’s is undecidable. They also restrict the class of MSG’s
considered to com-connected ones (called “loop-connected” there), to obtain
decision procedures for the race condition and confluence problems. In this
connection they state the result that a com-connected MSG defines a regular
language. For a proof they point to an earlier line of work in trace theory which
give various sufficient conditions under which a regular language remains regu-
lar when closed under “partial commutations”. In particular they make use of
a result of Clerbout and Latteux [3] which gives such a condition, analogous to
com-connectedness. The construction and proof in [3] is in terms of grammars
and it is not easy to directly associate a transition system with a given MSG
using it.

The software engineering community parallely have developed several tools
and methodologies for analysing MSC-based specifications. However some of
these works are based on an incorrect understanding of some of the results
in the literature, in particular the result claiming regularity of com-connected
MSG’s. In Section 8 we point out some of these cases, without detracting from
the several other contributions made in these papers.

• In [14], Uchitel, Kramer, and Magee claim to solve the problem of detect-
ing implied scenarios for general (not necessarily com-connected) MSG’s
with synchronous messaging. This is done without explicitly building a
transition system for the given MSG. No complete proofs are given in the
paper or the cited technical report. This claim cannot be correct as it is
not difficult to show that the problem is in fact undecidable (i.e for general
synchronous MSG’s). We give a proof of this fact in Section 8.

• In [7] Muccini gives a technique for detecting implied scenarios based
on identifying “augmented” behaviours in the components of the system
model for a given general synchronous MSG. The technique is validated
on a few examples, but the paper gives no proofs and admits that the
“correctness and completeness are still under analysis.”

• The thesis of Uchitel [12] gives the construction of a finite-state transition
system, called there the “trace model”, for a given com-connected syn-
chronous MSG. This construction is implemented in a tool called LTSA-
MSC [11]. However, as we show in Section 7, the trace-model constructed
is incomplete: it does not accept all behaviours specified by the MSG. As
a result the tool also incorrectly flags certain behaviours of the induced
system model as implied scenarios.

Our aim in this paper is to give a precise and complete description of a
finite-state transition system accepting exactly the behaviours specified by a
given com-connected MSG G. We give a precise description of a “reduced”
transition system called T ′G in Section 5 which is guaranteed to be finite-state
when the given MSG is com-connected. We give a carefully checked proof of
correctness of our construction. Once we have such a transition system, the

3

analysis problems we mentioned earlier can be solved easily for com-connected
MSG’s with synchronous messages.

It is also worth pointing out that the transition system T ′G we describe is
sound and complete for general MSG’s (i.e. not necessarily com-connected) as
well – though of course, it may not be finite-state in this case. Our construc-
tion also handles both synchronous and asynchronous messaging in the MSG’s.
Further, it has no ε-transitions (i.e. hidden or silent transitions), and has a
bounded number of transitions applicable in any state. Thus, this transition
system can be used to perform a bounded analysis or model-checking to check
properties like “there are no property violations by behaviours of length ≤ 15 in
the given MSG model,” or that “there are no implied scenarios of length ≤ 15
in the given MSG model.”

We thus hope that the construction we give will be a basis on which the
software engineering community can build more accurate tools for analysing
MSC-based specifications.

2 Message Sequence Charts

We begin with some preliminary notions. For a finite alphabet A, we denote the
set of finite words over A by A∗. The empty word is denoted ε. For words u and
v over A, we denote the concatenation of u followed by v by u · v or simply uv.
We write u � v (or u �ue v) to denote the fact that u is a prefix (or non-empty
prefix respectively) of v. Also, u ≺ v denotes that u ·α = v for some non-empty
α.

A transition system is a tuple T = (Q,A, q0,→) where:

• Q is a set of states

• A is the set of labels or alphabet of the transition system

• q0 is the initial state

• →⊆ Q×A×Q is the labeled transition relation.

We define a run from q1 to q2 on a word w ∈ A∗ denoted by q1
w−→* q2 by

induction on length of w as follows: q1
ε−→* q1, and q1

wa−→* q2 if there exists
q3 ∈ Q such that q1

w−→* q3 and q3
a→ q2. The language generated by T , denoted

L(T), is defined to be {w ∈ A∗ | q0
w−→* q for some q ∈ Q}. For a state q ∈ Q,

we represent the language generated by T starting at q as Lq(T). We define
this to be

{w ∈ A∗ | q w−→* r for some r ∈ Q}.

A message sequence chart or MSC is a tuple

M = 〈P,E,C, λ,B, {<p}p∈P 〉

where:

• P is a finite set of processes.

• E is a finite set of events.

4

• C is a finite set of message labels.

The set of actions of M is defined to be ΣM = P × {!, ?} × P × C
where (p, !, q,m) signifies process p sending message m to q, while action
(p, ?, q,m) signifies p receiving message m from q. All actions of the form
(p, !, q,m) are called send actions, while actions of the form (p, ?, q,m) are
called receive actions.

For a process p ∈ P , the set Σp = {a ∈ ΣM | a = (p, !, q,m) or a =
(p, ?, q,m)} where q ∈ P and m ∈ C, is the set of all actions in which p
participates.

• λ : E → ΣM is the labeling function which maps events to actions. For
a process p ∈ P , the set Ep = {e | λ(e) ∈ Σp} are the events in which p
participates.

E is further partitioned into send events S = {e |λ(e) = (p, !,m, q), p, q ∈
P, m ∈ C} and receive events R = {e |λ(e) = (p, ?,m, q), p, q ∈ P, m ∈
C} respectively.

• B : S → R is a bijective map which maps each send event to its cor-
responding receive event. We require that if λ(e) = (p, !, q,m) then
λ(B(e)) = (q, ?, p,m). We refer to B as the “matching receive” map.

• For each p ∈ P , <p is a strict total order on Ep. In addition, the matching
receive map B induces a strict partial order <B on E, which says that a
receive event has to be preceded by the corresponding send event, defined
by e <B e′ iff B(e) = e′.

We define <M as the transitive closure, and ≤M as the reflexive transitive
closure, of (

⋃
p∈P <p)∪ <B respectively. It is required that the relation

≤M must be a partial-order.

A linearization of the events in an MSC M as defined above is a sequence of
events w = e1e2 · · · en ∈ E∗ containing all the events of E without repetitions,
and respecting the partial order ≤M in the sense that for no i < j ≤ n do
we have ej ≤M ei. We denote the set of linearizations of M by lin(M). We
define the event language of M , written Le(M), to be the set of all prefixes of
linearizations of M . Thus, Le(M) = {x | x � y, y ∈ lin(M)}.

Following [2], we define a cut in an MSC M to be a subset c of the events
E of M which is closed with respect to the partial order ≤M : i.e. if e ∈ c and
e′ ≤M e, then e′ ∈ c. Each prefix of a linearization of an MSC corresponds to a
sequence of “incremental” cuts as described below:

Lemma 1 Let M be an MSC with event set E. Then w ∈ E∗ is a prefix of
some linearization of M if and only if there exists a sequence of cuts {cx}x�w
in M such that

• cε = ∅

• For each x · e � w, we have cx·e − cx = {e}.

Proof Assume w is a prefix of some linearization of M . Consider x � w. Let cx
be the set of all events in x. By our observation about prefix of linearization, the

5

e1 e2

e3 e4

e1 e2

e3 e4

m

n

p q r

Figure 1: An example MSC and cut {e1, e3, e4} in it shown by shaded events.

set cx is downward closed with respect to ≤M . So, cx is a cut in M . Trivially,
∀x · e � w, cx·e − cx = {e} and cε = ∅ . This proves the forward direction.

Now, consider the sequence of events w = e1 · e2 · · · en such that there exists
a sequence of cuts (cx)x�w such that cε = ∅ and ∀x · e � w, cx·e − cx = {e}. We
will prove that w is a prefix of linearization of M by showing that the claim is
true for all x � w.

We claim that ∀x � w, cut cx is the set of events of x. This is trivially true
for x = ε. Let this be true for some x � w. Consider x · e � w. Since, cx is the
set of events for x, and cx·e = cx ∪ {e} so, cx·e is the set of events for x · e. This
proves that cx is the set of events of x. Since cut cx is downward closed with
respect to M so set of events of x is downward closed.

We will now show that for no i < j ≤ n do we have ej ≤M ei. This is
trivially true for x = e1. Let this be true for some x = e1 · e2 · · · ej where j < n.
So, for no i < j do we have ej ≤M ei. Now consider x ·ej+1 � w. ej+1 ≤M ej as
otherwise, ej+1 ∈ cx which means ej+1 should have appeared in x. This proves
our claim.

This proves that both the observations about prefix of linearization is satis-
fied by w. �

The Figure 1 shows an example MSC on the left, with set of events E =
{e1, e2, e3, e4}, and <p= {(e1, e3)}, <q=<r= ∅. Thus the strict partial order
<M is given by {(e1, e3), (e1, e2), (e3, e4), (e1, e4)}. The figure on the right shows
a cut c = {e1, e3, e4} in the MSC.

We now define the notion of a message sequence graph. A Message Sequence
Graph (MSG) is a vertex-labeled graph G of the form 〈V, v0,∆,M, µ〉, where
V is the set of vertices of the MSG, v0 ∈ V is the initial vertex, ∆ ⊆ (V × V)
is the set of directed arcs, M is the set of MSC’s associated with the MSG,
and µ : V →M maps each vertex of G to one of the MSCs in M. We assume
that the MSC’s in M are all over a common set of processes and labels, none
of the MSC’s are empty, and also that the events across the MSC’s in M are
distinct. The set of events of G is denoted EG, and is defined to be

⋃
v∈V Eµ(v).

We denote the set of events where process p participates by EGp , defined in a
similar way as for a single MSC. The set of action labels for G is defined to be
ΣG =

⋃
v∈V Σµ(v). Figure 2 shows an example MSG.

A path in G is a sequence of vertices v1, . . . , vk (k ≥ 0) of G such that
(vi, vi+1) ∈ ∆ for each i ∈ {1, . . . , k − 1}. An initial path in G is a path
beginning at v0. We will use the convention that α, β, etc. denote paths in G,
and u, v etc. denote vertices in G.

Let π be a non-empty path in G. For each vertex v in G, let each MSC
µ(v) be 〈Pv, Ev, C, λv, Bv, {<vp}p∈P 〉. We define the (weak) concatenation of

6

the MSCs in the path π to be the MSC Mπ = 〈P,Eπ, C, λπ, Bπ, {<πp}p∈P 〉
where:

• Eπ =
⋃
ρv�π(Ev × {ρv}).

• For each ρv � π, we define λπ(e, ρv) = λv(e).

• For each ρv � π, and for all send events e ∈ Ev, we define Bπ(e, ρv) =
(Bv(e), ρv).

• For each p ∈ P , <πp is given as follows: Let ρv � π and ρ′v′ � π and
e ∈ Ev and e′ ∈ Ev′ . Then (e, ρv) <πp (e′, ρ′v′) iff e and e′ are p-events
and either ρv ≺ ρ′v′ or ρv = ρ′v′ and e <vp e

′.

The set of linearizations of G, denoted by lin(G), is defined to be

{e1 · · · en | π initial path in G, (e1, ρ1) · · · (en, ρn) ∈ lin(Mπ)}.

The event language of G, denoted Le(G), is defined to be {u | u � v and v ∈
lin(G)}. The action language of G is denoted La(G), and defined to be

{λv1(e1) · · ·λvn(en) | e1 · · · en ∈ lin(G), each ei ∈ Evi}.

We give one final definition in this section. Consider an MSC
M = 〈P,E,C, λ,B, {<p}p∈P 〉.
The communication graph of M is the directed graph on the set of process

P of M , where we have an edge (p, q) iff process p sends a message to process q
in M (i.e. there exists an event e ∈ Ep and an event e′ in Eq, with B(e) = e′).
The MSC M is said to be com-connected [2] if the communication graph of M
contains at most one non-trivial strongly connected component and all strongly
connected components are isolated (i.e. there are no edges between them). We
say an MSG G is com-connected if for every loop, i.e. a path of the form uαu,
in G, the communication graph of Muα is com-connected. We illustrate this
using the MSG G1 in Figure 2. The communication graph for the loop v0v1v0
is comm-connected, whereas the loop v0v2v0 is not com-connected. Thus the
MSG G1 is not com-connected.

Our aim in this paper is to provide a constructive proof of the following
claim:

Theorem 2 ([2, 8]) Let G be a com-connected MSG. Then Le(G) is regular
(i.e. it can be generated by a finite-state transition system).

We will prove this claim in Section 6. We first show in the next section
how for a general (not necessarily com-connected) MSG G we can associate a
transition system TG which generates precisely the language Le(G), but which
may have an infinite number of states. In the following section we give a couple
of rules by which we can reduce the state space of TG, while preserving its
language, to obtain a transition system T ′G. Finally in Section 6 we show that
when the given MSG is com-connected, this reduced transition system T ′G will
indeed have a finite number of states.

7

e4 e3

e1 e2

e6 e5

v0

v1 v2

Figure 2: An example MSG G1

3 Transition system for an MSG

In this section we show how we can associate a transition system TG with a
given general MSG G, which generates exactly the same event language as G.
This transition system will, in general, have an infinite number of states.

In the sequel we fix an MSG G = 〈V, v0,∆,M, µ〉.
We begin with some preliminary notions.
We define a configuration of G to be a pair of the form (π, c) where π is a

path in G and c is a cut in Mπ. Configurations will play the role of states in
TG. We can view a configuration (π, c) as a snapshot of the events each process
has completed in its process line in the MSC Mπ. Each process p can be viewed
to be positioned at last event it has performed.

Next we introduce some notation regarding insertion and deletion in paths
and cuts in G. For a path π = αβ in G, by π + α/γ we denote the sequence of
nodes αγβ in G. We note that π + α/γ may not be a path in G. Similarly, if
π = αβγ is a path in G, then we define π− α/β to mean the sequence of nodes
αγ in G.

Let (π, c) be a configuration of G, and let π = αβ. Then we define the set
of events corresponding to c in π + α/γ, denoted c+ α/γ, to be

{(e, ρ) ∈ c | ρ � α} ∪ {(e, αγρ) | (e, αρ) ∈ c and ρ 6= ε}.

Once again, it is not necessary that c+ α/γ is a cut in Mαγβ .
Similarly, if (π, c) is a configuration of G, and π = αβγ, we define the set of

events corresponding to c in π − α/β, denoted c− α/β to be

{(e, ρ) ∈ c | ρ � α} ∪ {(e, αρ) | (e, αβρ) ∈ c, ρ 6= ε}.

Let (π, c) be a configuration of G, with π = αβγ. We say that β is completely
traversed in c if all the events in β are included in c, and all processes which
react in β have their maximal event in c located in γ. Formally, we represent
this as a predicate Ex (π, α, β, c) which is true iff the conditions below are true:

• Eαβ − Eα ⊆ c, and

• For each p ∈ P , if (e, αρv) ∈ c with e ∈ Ep and ρv � β, then there exists
e′ ∈ Ep and ρ′v′ � γ such that (e′, αβρ′v′) ∈ c.

8

Similarly, we say β is completely unexecuted in c if none of the events in β are
included in c: i.e. (Eαβ − Eα) ∩ c = ∅.

Consider a configuration (π, c) of G. We now want to define a way of cutting
out loops in π which are completely unexecuted in c. It is not difficult to see
that if we remove an unexecuted loop from a configuration, we get another valid
configuration. The following lemma proves this claim.

Lemma 3 If (αuβuγ, c) is a configuration in G such that (Eαuβu − Eαu) = ∅
then c′ = c− αu/βu is a cut in Mαuγ .

Proof For every (e, ρ) ∈ c all (e′, ρ′) <αuβuγ (e, ρ) will belong to c. Since
(Eαuβu − Eαu) = ∅ so clearly, c′ is downward closed with respect to <αuγ . �

Given a configuration (π, c) in G, we say α1u1β1u1 · · ·αnunβnunγ is an un-
executed loop decomposition of π with respect to c if

• Each βiui is unexecuted

• There is no unexecuted loop in α1u1 · · ·αnunγ wrt (c−α1u1/β1u1−· · ·−
α1u1 · · ·αnun/βnun)

Correspondingly, (α1u1 · · ·αnunγ, c−α1u1/β1u1−· · ·−α1u1 · · ·αnun/βnun)
is called an unexecuted loop-free configuration of (π, c).

There may be several unexecuted loop decompositions for a given configura-
tion, and hence also several unexecuted loop-free configurations. For example,
consider a configuration (v1v2v1v3v2v4, c) for some MSG such that no events of
v1, v2 and v3 is included in c. Then, we have two unexecuted loop decomposi-
tions of (v1v2v1v3v2v4 with respect to c - v1v3v2v4 and v1v2v4.

We denote by b(π, c)cue the set of all unexecuted loop-free configurations of
(π, c).

We also define a (unique) left-most maximal unexecuted loop decomposition
of a configuration (π, c). We define this to be α1u1β1u1 · · ·αnunβnunγ with
n ≥ 0 where:

• π = α1u1β1u1 · · ·αnunβnunγ

• Each βiui is the left-most unexecuted loop in the segment
αiuiβiui · · ·βnunγ. That is, for each τ1vτ2 such that τ1vτ2 = αi, there
is no τ3v � uiβiαu+1ui+1 · · ·αnunβnunγ such that τ2τ3v is completely
unexecuted.

• Each βiui is maximal: That is, no prefix τui of
αi+1ui+1βi+1ui+1 · · ·αnunβnunγ is completely unexecuted.

• γ does not have any completely unexecuted loops.

Each αiui marks the beginning of the i-th maximal loop which is completely
unexecuted in c, starting from the left of π. It is easy to see that this decompo-
sition is unique. In the above example, v1v3v2v4 is the unique left most maximal
decomposition.

We define the (unique) left-most maximal unexecuted loop configuration
induced by (π, c), denoted b(π, c)clue , to be:

(α1u1 · · ·αnunγ, (· · · (c− α1u1/β1u1) · · ·) − α1u1 · · ·αnun/βnun).

9

T2 T3T1

T2

e1 e2

e6

e1 e2

e5

e1 e2

e6 e5

e1 e2

e4 e3

e1 e2

e5 e3e2

(ε, ∅)

e1

Figure 3: Initial transitions in TG for MSG G1.

We are now in a position to describe a transition system corresponding to
the given MSG G. We define TG = (Q,EG, q0,→) where: Q is the set of
configurations of G; EG is the set of events of G as defined in the last section;
the initial state is q0 = (ε, ∅); and the transition relation → is given by the
following rules:

(T1) (π, c) e→ (π, c′) provided c′ = c ∪ {(e, ρ)} for some ρ � π and (e, ρ) 6∈ c.

(T2) (π, c) e→ (πρv, c′) provided c′ = c ∪ {(e, πρv)} and ρv is loop-free. Also, if
π = ε then ρv has to be an initial path in G.

(T3) (π1uπ3, c)
e→ b(π1uπ2uπ3, c

′)clue provided there exists a non-empty and
loop-free α and a loop-free β such that π2u = αβ and c+π1u/π2u is a cut
in Mπ1uπ2uπ3 and c′ is (c+ π1u/π2u) ∪ {(e, π1uα)}.

According to the transition (T1) a process can do an event e in its event set
provided it is in the node list π, and does not violate any causality conditions
in Mπ. This is enforced by requiring the new set of events c′ to be a cut in Mπ.
According to (T2), a process can extend the current node list π by a loop-free
path ρv and perform an event e in node v, again provided it does not violate
any causality conditions in Mπρv. Finally, according to rule (T3), a process p
can insert a loop after a prefix π1u of the current node list π, which comprises
a loop-free path α to a node (in which it must then perform an event) followed
by a loop-free path back to u. Once again, no causality conditions in the MSC
corresponding to the extended path should be violated. After the insertion, we
eliminate unexecuted loops in the extended path by taking the induced left-most
unexecuted loop-free configuration.

We illustrate these transition rules in Figure 3.
We note that all configurations (π, c) of TG reachable from the initial state,

satisfy that properties that they always have a process in the last node of π,
and also that they are always unexecuted loop free.

4 Correctness of TG
We now sketch a proof of the correctness of our construction of TG, by showing
that it accepts exactly the language Le(G). We first show that TG is “complete”
in the sense that it accepts all event sequences in Le(G).

Before proceeding with the correctness proof for our construction, we present
some simple lemmas which will be useful in our proofs.

10

Lemma 4 (αuγ, c) is a configuration in G and there is a path αuβuγ in G such
that ∀(e, αuρ) ∈ c ρ �ne γ, if e ∈ Ep for some p ∈ P then Eβu

⋂
Ep = ∅. Then,

c′ = c+ αu/βu is a cut in Mαuβuγ .

Proof Clearly, for any (e, ρ) ∈ c, (e, ρ + αu/βu) ∈ c′ . As c is downward
closed wrt <αuγ this means, c is downward closed wrt <αuβuγ . So, c is a cut in
Mαuβuγ . �

Lemma 5 Let (π, c) be a configuration in G. For all α �ne π such that
∃(e, α) ∈ c and αβ = π , if (α′, c′α) ∈ b(α, c− α/β)cue and (β′, c′β) ∈ b(β, c− ε/α)cue
then (α′β′, c′α

⋃
(c′β + ε/α)) ∈ b(π, c)cue.

Proof This easily follows from the fact in configuration (π, c), there is an exe-
cution in α. �

We will show that Le(G) ⊆ L(TG). Let w ∈ Le(G) with w = e1e2 · · · en.
Then we know by Lemma 1 that there is a sequence of incremental cuts c0, c1, · · · , cn
in Mπ for some initial path π in G, such that c0 = ∅ and for each i ∈ {0, . . . , n−
1}, ci+1 − ci = {(ei+1, ρi+1)} for some ρi+1 � π. For each i ∈ {0, . . . , n}, let θi
be max{ρj | j ≤ i}. We claim that w has a run

(π0, d0) e1→ (π1, d1) e2→ · · · en→ (πn, dn)

in TG, where π0 = ε, d0 = ∅, and for all j ∈ {0, . . . , n}, (πj , dj) ∈ b(θj , cj)cue .
We do this by showing, using induction on i, that for each i ∈ {0, . . . , n} we

can produce a run

(π0, d0) e1→ (π1, d1) e2→ · · · ei→ (πi, di)

in TG such that (π0, d0) = (ε, ∅), and for each l ∈ {1, . . . , i}, (πl, dl) ∈ b(θl, cl)cue .
For i = 0, we get π0 = ε and d0 = ∅ as c0 = ∅.
Assume that the hypothesis is true for some i < n. Then, (π0, d0) = (ε, ∅)

and for each l ∈ [1, i](πl, dl) ∈ b(θl, cl)cue . Let an unexecuted loop decomposi-
tion of θi wrt ci be α1u1β1u1 · · ·αjujβjujγ and correspondingly,

(πi, di) = (α1u1 · · ·αjujγ, ci − α1u1/β1u1 − · · · − α1u1 · · ·αjuj/βjuj).
We now consider {(ei+1, ρi+1)} and show that (πi, di)

ei+1→ (πi+1, di+1) where
(πi+1, di+1) ∈ b(θi+1, ci+1)cue following the transition rules for TG. Following
cases need to be analyzed:

• θi ≺ θi+1. This means, ρi+1 = θi+1 = θiρ for some non-empty path ρ in G.
Let α′1u

′
1β
′
1u
′
1 · · ·α′ku′kβ′ku′kγ′ be an unexecuted loop free decomposition

of ρ wrt (ei+1, ρ). We set (πi+1, di+1) = (πiτ, di
⋃
{(ei+1, πiτ)} where

τ = α′1u
′
1 · · ·α′ku′kγ′.

Since ∃(e, θi) ∈ ci+1 so by Lemma 5, (πi+1, di+1) ∈ b(θi+1, ci+1)cue .

By Lemma 3, as (θi+1, ci+1) is a valid configuration, so, di+1 is a valid cut
along Mπi+1 . Also, τ is clearly unexecuted loop free. So, by transition
rule (T2) we have (πi, di)

ei+1→ (πi+1, di+1) in TG.

11

• θi = θi+1, ρi+1 = α1u1β1u1 · · ·αkukβkukρ where ρ �ne αk+1uk+1 if k < j
else ρ �ne γ. Then we define (πi+1, di+1)

= (α1u1 · · ·αjujγ, (ci
⋃
{(ei+1, α1u1 · · ·αkukρ)})−

α1u1/β1u1 − · · ·α1u1 · · ·αjuj/βjuj)
= (πi, di

⋃
{(ei+1, α1u1 · · ·αkukρ)}) as ρ does not have any unexecuted

loop.

Clearly, (πi+1, di+1) ∈ b(θi+1, ci+1)cue . By Lemma 3, as (θi+1, ci+1) is a
valid configuration, so, di+1 is a valid cut in Mπi+1 . So, by transition rule
(T1) we have (πi, di)

ei+1→ (πi+1, di+1) in TG.

• θi = θi+1, ρi+1 = α1u1β1u1 · · ·αkukβkukρ for some k ≤ j and ρ �ne βkuk.

Let τ1 be α1u1β1u1 · · ·αkuk and τ2 be αk+1uk+1βk+1uk+1 · · ·αjujβjujγ.
Let ρ η = βkuk. Also, let τ ′1 and τ ′2 be α1u1 · · ·αkuk and αk+1uk+1 · · ·αjujγ
respectively. Let ρ′ be some unexecuted loop free decomposition of ρ wrt
{(ei+1, ρ)} and let η′ be some loop free form of η. Clearly both τ ′1 and η′

ends in uk.

By hypothesis, (τ ′1τ
′
2, di) is a configuration inG. So, by Lemma 4, (τ ′1ρ

′η′1τ
′
2, di+

τ ′1/ρ
′η′) is a configuration of G as well.

We set (πi+1, di+1) to

b(τ ′1ρ′η′1τ ′2, di + τ ′1/ρ
′η′)

⋃
{(ei+1, τ

′
1ρ
′)}clue .

So, following rule (T3) we can have a transition (πi, di)
ei+1→ (πi+1, di+1)

in TG. Also by Lemma 5, it can be easily shown that

(πi+1, di+1) ∈ b(θi+1, ci+1)cue .

This case is illustrated in Figure 4.

We now argue the “soundness” of TG, by showing that if w ∈ L(TG) then w ∈
Le(G). Let w ∈ L(TG) with w = e1e2 · · · en such that (π0, c0) e1→ (π1, c1) · · · en→
(πn, cn) is a run in TG. We note that each πi must be an initial path in G. We
claim that w will produce a sequence of incremental cuts c′0, c

′
1, . . . , c

′
n in Mπn

where c′0 = ∅, c′n = cn, and for each i ∈ {0, . . . , n−1}, c′i+1− c′i = {(ei+1, ρi+1)}
for some ρi+1 � πn. We prove this by induction on length of w.

For n = 0, we have π0 = ε and c′0 = c0 = ∅ and we have nothing more to
prove.

For the induction step, assuming that the claim holds good for w of length
n, let us consider the case for |w| = n+ 1.

Let w = e1e2 · · · en+1 ∈ L(TG) which creates a run (π0, c0) e1→ (π1, c1) · · · en+1→
(πn+1, cn+1) in TG. By induction hypothesis, we have a sequence of incremental
cuts d0, d1, · · · dn in Mπn such that d0 = ∅ , dn = cn and for each i ∈ [0, n− 1],
di+1 − di = {(ei+1, ρi+1)} for some ρi+1 �ne πn.

Depending on the type of transition (πn, cn)
en+1→ (πn+1, cn+1) in TG we have

the following cases.

• Case (T1): (πn, cn)
en+1→ (πn+1, cn+1) where cn+1 = cn

⋃
{(en+1, ρ)} for

some ρ � πn.

Clearly, πn+1 = πn. For each i ∈ [0, n] we set c′i to di and c′n+1 = cn+1.
Then, c′0, · · · , c′n+1 is the required sequence of incremental cuts in Mπn+1

satisfying the three conditions.

12

α1u1 αkuk

β1u1
βkuk

βjuj

αjuj γ
(θi+1,ci+1)

ρ η

(τ1ρ, ci
1)

ei+1

α2u2

β2u2

(ητ2, ci
2)

α1u1 α2u2 αkuk

ρ′
ei+1

η′

αjuj γ
βkuk

(α1u1
…αkukρ′, di

1) (η′αk+1uk+1
…αjujγ, di

2)

(πi+1,di+1)

αk+1uk+1

αk+1uk+1

Insertion of a looping path

τ1 τ2

Figure 4: Insertion Of Looping Path - Completeness

• Case (T2): (πn, cn)
en+1→ (πnρ, cn+1) where cn+1 = cn

⋃
{(en+1, πnρ)} for

a non-empty and loop free ρ.

We note that, πn+1 = πnρ . A cut in Mπn is also a cut in Mπnρ. For each
i ∈ [0, n] we set c′i to di and c′n+1 = cn+1.

For i ∈ [0, n], di is a cut in Mπn , and so c′i is a cut in Mπn+1 . Then,
c′0, · · · , c′n+1 is the required sequence of incremental cuts in Mπn+1 satis-
fying the three conditions.

• Case (T3): (πn, cn)
en+1→ (πn+1, cn+1) is an instance of T3. Thus πn is

of the form τ1uτ3, there exists a path τ2u in G of the form αβ for some
non empty and loop free α and loop free β such that (cn + τ1u/τ2u)
is a cut in Mτ1uτ2uτ3 and (πn+1, cn+1) = b(τ1uτ2uτ3, c′)clue where c′ =
(cn + τ1u/τ2u)

⋃
{(en+1, τ1uα)}.

Note that τ1u and τ3 is unexecuted loop free. Let η1 = max{ρ � τ1u|(e, ρ) ∈
cn} and let τ1u = η1η2.

In c′, there is no execution in α except in its last node. Since τ1u is
unexecuted loop free, so if there is any unexecuted loop formed in τ1uα,
wrt c′, then, it must be in η2α . Let α1u1β1u1 · · ·αjujβjujγ be left-most
maximal unexecuted loop decomposition of η2α wrt {(en+1, η2α)}.
β is also loop free and unexcuted. Let η3 = min{ρ � τ3|(e, τ1uρ) ∈ cn}
and let τ3 = η3η4. So, if there is any unexecuted loop formed in βτ3, wrt c′

13

τ1

u

τ3

(πn,cn)

η1

η2

η3

η4

τ1

u

τ3

(πn + τ1u/αβ, cn + τ1u/αβ)

η1

η2

η3

η4

u

α

β

τ1

u

τ3

(πn + τ1u/αβ, (cn + τ1u/αβ)∪ {(en+1,τ1uα)})lue

η1

η4

u

α1u1
…αjujγ

α′1u′1…α′ku′kγ′

Figure 5: Insertion Of Looping Path - Soundness

, then it must be in βη3. Let α′1u
′
1β
′
1u
′
1 · · ·α′ku′kβ′ku′kγ′η4 be the left-most

maximal unexecuted loop decomposition of βτ3 wrt c′.

Then, (πn+1, cn+1) will be

(η1α1u1 · · ·αjujγα′1u′1 · · ·α′ku′kγ′η4,
c′ − η1α1u1/β1u1 − · · · − η1α1u1 · · ·αjuj/βjuj
−η1α1u1 · · ·αjujγα′1u′1/β′1u′1 − · · ·−
η1α1u1 · · ·αjujγα′1u′1 · · ·α′ku′k/β′ku′k).

By our hypothesis, dn = cn. By transition, (cn + τ1u/τ2u) is a cut in
Mτ1uτ2π3 and so, (dn + τ1u/τ2u) is a cut in Mτ1uτ2π3 . So, clearly, (di +
τ1u/τ2u) is a cut in Mτ1uτ2π3 .

For each i ∈ [0, n] we set c′i to

di + τ1u/τ2u− η1α1u1/β1u1 − · · ·
−η1α1u1 · · ·αjuj/βjuj − η1α1u1 · · ·αjujγα′1u′1/β′1u′1 − · · ·
−η1α1u1 · · ·αjujγα′1u′1 · · ·α′ku′k/β′ku′k

As mentioned above, ∀(e, τ) ∈ dn, either τ � η1 or η1η2η3 � τ . So, for
each i ∈ [0, n− 1], ∀(e, τ) ∈ di, either τ � η1 or η1η2η3 � τ . So, clearly, c′i
is a cut in Mη1α1u1···αjujγα′

1u
′
1···α′

ku
′
kγ

′η4 or Mπn+1 .

We set c′n to cn+1. So, now we have got incremental cuts on c′0, c
′
1, · · · , c′n+1

in Mπn+1 satisfying the three clauses.

So, all the three conditions are satisfied. This case is as illustrated in
Figure 5.

This proves the correctness of our construction.

14

5 Reducing TG
In this section our aim is to show that the state-space of the transition system
TG can be reduced, by observing that we can remove fully traversed prefixes
and loops from configurations without affecting the language generated by the
transition system. To do this it will be convenient to make use of the notion of
bisimulation and some results concerning it.

Let T = (Q,A, q0,→) be a transition system. A binary relation R ⊆ Q×Q
is called a bisimulation relation on T if

• Whenever (q, r) ∈ R and q
a→ q′ for some q′ ∈ Q and a ∈ A, there exists

r′ ∈ Q such that r a→ r′ and (q′, r′) ∈ R.

• Whenever (q, r) ∈ R and r
a→ r′ for some r′ ∈ Q and a ∈ A, there exists

q′ ∈ Q such that q a→ q′ and (q′, r′) ∈ R.

We say that states q and r in T are bisimilar if there exists a bisimulation
relation R on T with (q, r) ∈ R. It is easy to see that bisimilar states satisfy the
property that the event sequences in T starting from any of them are identical.

Proposition 6 Let T = (Q,A, q0,→) be a transition system. Let q, r ∈ Q be
two bisimilar states. Then Lq(T) = Lr(T). �

We note that the identity relation is always a bisimulation relation on a tran-
sition system T . Further, if R and S are bisimulation relations on a transition
system T so is the relation R ∪ S. Finally, let us define the reflexive transi-
tive closure of R, denoted R∗, by (q, r) ∈ R∗ iff there exist states r0, r1, . . . , rk
in Q, with k ≥ 0, such that r0 = q, rk = r, and (ri, ri+1) ∈ R for each
i ∈ {0, . . . , k − 1}. Then if R is a bisimulation relation on a transition system
T , so is R∗.

The lemma below shows how we can reduce the state space of a transition
system using a bisimulation relation on it.

Lemma 7 Let T = (Q,A, q0,→) be a transition system, and let R be bisimu-
lation relation on T . Consider a transition system T ′ = (Q′, A, q0,⇒) where
Q′ ⊆ Q, and →′ satisfies the following conditions for any q′ ∈ Q′:

• whenever q′ a→ r in T , there exists a state r′ ∈ Q′ such that q′ a⇒ r′ in
T ′, and (r, r′) ∈ R.

• whenever q′ a⇒ r′ in T ′, there exists r ∈ Q such that q′ a→ r in T and
(r, r′) ∈ R.

Then L(T) = L(T ′).

Proof We first show that L(T) ⊆ L(T ′). We prove by induction on length of
w ∈

∑∗ that if q0
w−→* q in T then ∃q′ ∈ Q′ s.t. q0

w=⇒* q′ in T ′ and (q, q′) ∈ R∗.
For w = ε, it is trivial as q0

ε−→* q0 and q0
ε=⇒* q0 and clearly (q0, q0) ∈ R∗.

Assume that the hypothesis is true for any |w| = n. Consider a w ·a ∈ L(T)
such that q0

w−→* q a→ r. Then,

1. By hypothesis, ∃q′ ∈ Q′, such that q0
w=⇒* q′ in T ′ and (q, q′) ∈ R∗.

15

2. q a→ r and (q, q′) ∈ R∗. So, ∃r′′ ∈ Q such that q′
a→ r′′. Clearly,

(r, r′′) ∈ R∗.

3. Since q′ ∈ Q′, so, by construction, ∃r′ ∈ Q′ , such that q′ a⇒ r′ in T ′ and
(r′′, r′) ∈ R∗.

4. Since (r, r′′) ∈ R∗ and (r′′, r′) ∈ R∗ so (r, r′) ∈ R∗. Then in T ′, we have
q0

w=⇒* q′ a⇒ r′ such that (r, r′) ∈ R∗.

This proves that L(T) ⊆ L(T ′). Now we show L(T ′) ⊆ L(T). We prove by
induction on length of w ∈

∑∗ that if q0
w=⇒* q′ in T ′ then ∃q ∈ Q s.t. q0

w−→* q
in T and (q, q′) ∈ R∗.

For w = ε, it is trivial as q0
ε=⇒* q0 and q0

ε−→* q0 and clearly (q0, q0) ∈ R∗.
Assume that the hypothesis is true for any |w| = n.

Consider a w · a ∈ L(T ′) such that q0
w=⇒* q′ a⇒ r′. Then,

1. By hypothesis, ∃q ∈ Q s.t. q0
w−→* q in T and (q, q′) ∈ R∗.

2. As q′ a⇒ r′ so by construction, ∃r′′ ∈ Q such that q′ a→ r′′ in T and
(r′′, r′) ∈ R∗.

3. As (q, q′) ∈ R∗ and q′
a→ r′′ so ∃r ∈ Q such that q a→ r in T and

(r, r′′) ∈ R∗.

4. As (r, r′′) ∈ R∗ and (r′′, r′) ∈ R∗ so (r, r′) ∈ R∗. Then, in T , we have
q0

w−→* q a→ r and (r, r′) ∈ R∗.

This proves that L(T ′) ⊆ L(T). �

We return now to our transition system TG corresponding to the given MSG
G.

We give two bisimulation relations in TG which are stated informally below:

1. A configuration in TG which has a completely traversed prefix in its node
list is bisimilar to a corresponding configuration which has the prefix re-
moved.

2. A configuration in TG which has a completely traversed loop in its node list
is bisimilar to a corresponding configuration which has the loop removed.

Before proving that these are actually bisimulation relations, first we prove
few simple lemmas regarding the operation on cuts, which will be used in the
bisimulation proofs going forward.

Lemma 8 If (αβγ, c) is a configuration in G, then, (c− ε/α)− ε/β = c− ε/αβ.

Proof (c− ε/α)− ε/β = {(e, ρ)|(e, αβρ) ∈ c and ρ �ne γ} = c− ε/αβ. �

Lemma 9 If (αβ1β2β3γ, c) is a configuration in G, then, (c− ε/α)− β1/β2 =
(c− αβ1/β2)− ε/α.

16

Proof (c− ε/α)− β1/β2

= {(e, ρ)|(e, αρ) ∈ c and ρ �ne β1}
⋃
{(e, β1ρ)|(e, αβ1β2ρ) ∈ c and ρ �ne

β3γ}
Also, (c− αβ1/β2)− ε/α
= ({(e, ρ)|(e, ρ) ∈ c and ρ � αβ1 }

⋃
{(e, αβ1ρ)|(e, αβ1β2ρ) ∈ c and ρ �ne

β3γ}) - ε/α
= {(e, ρ)|(e, αρ) ∈ c and ρ �ne β1}

⋃
{(e, β1ρ)|(e, αβ1β2ρ) ∈ c and ρ �ne

β3γ} �

Lemma 10 if (αβ1γ1β2γ2, c) is a configuration in G, then, (c−α/β1)−αγ1/β2 =
(c− αβ1γ1/β2)− α/β1

Proof (c− α/β1)− αγ1/β2

= {(e, ρ)|(e, ρ) ∈ c and ρ � α}⋃
({(e, αρ)|(e, αβ1ρ) ∈ c and ρ �ne γ1}⋃
{(e, αγ1ρ)|(e, αβ1γ1β2ρ) ∈ c and ρ �ne γ2}).

Also, (c− αβ1γ1/β2)− α/β1

= ({(e, ρ)|(e, ρ) ∈ c and ρ � αβ1γ1)
⋃
{(e, αβ1γ1ρ)|(e, αβ1γ1β2ρ) ∈ c and

ρ �ne γ2}) - α/β1

= {(e, ρ)|(e, ρ) ∈ c and ρ � α}⋃
({(e, αρ)|(e, αβ1ρ) ∈ c and ρ �ne γ1}⋃
{(e, αγ1ρ)|(e, αβ1γ1β2ρ) ∈ c and ρ �ne γ2}). �

Lemma 11 If (αβ1γ1γ2, c) is a configuration in G, then, (c−α/β1)+αγ1/β2 =
(c+ αβ1γ1/β2)− α/β1.

Proof (c− α/β1) + αγ1/β2

= {(e, ρ)|(e, ρ) ∈ c and ρ � α}⋃
{(e, αρ)|(e, αβ1ρ) ∈ c and ρ �ne γ1}⋃
{(e, αγ1β2ρ)|(e, αβ1γ1ρ) ∈ c and ρ �ne γ2}.

Also, (c+ αβ1γ1/β2)− α/β1

= ({(e, ρ)|(e, ρ) ∈ c and ρ � αβ1γ1}⋃
{(e, αβ1γ1β2ρ)|(e, αβ1γ1ρ) ∈ c and ρ �ne γ2})− α/β1

= {(e, ρ)|(e, ρ) ∈ c and ρ � α}⋃
{(e, αρ)|(e, αβ1ρ) ∈ c and ρ �ne γ1}⋃
{(e, αγ1β2ρ)|(e, αβ1γ1ρ) ∈ c and ρ �ne γ2}.

�

Lemma 12 If (αγ1γ2, c) is a configuration in G, then, (c+α/β1)+αβ1γ1/β2 =
(c+ αγ1/β2) + α/β1.

Proof (c+ α/β1) + αβ1γ1/β2

= ({(e, ρ)|(e, ρ) ∈ c and ρ � α}⋃
{(e, αβ1ρ)|(e, αρ) ∈ c and ρ �ne γ1}⋃
{((e, αβ1γ1β2ρ)|(e, αγ1ρ) ∈ c and ρ �ne γ2}

Also, (c+ αγ1/β2) + α/β1

= ({(e, ρ)|(e, ρ) ∈ c and ρ � αγ1}⋃
{(e, αγ1β2ρ)|(e, αγ1ρ) ∈ c and ρ �ne γ2}) + α/β1

17

= ({(e, ρ)|(e, ρ) ∈ c and ρ � α}⋃
{(e, αβ1ρ)|(e, αρ) ∈ c and ρ �ne γ1}⋃
{((e, αβ1γ1β2ρ)|(e, αγ1ρ) ∈ c and ρ �ne γ2} �

We now present two lemmas related to removal and addition of some com-
pletely traversed prefix to a configuration.

Lemma 13 Let (αβ, c) be a configuration in G, such that Ex (αβ, ε, α, c) is true.
Then, (β, c′) is also a configuration in G, where c′ = c− ε/α.

Proof Assume c′ is not a cut in Mβ . This means, ∃(e, ρ) ∈ c′ and ∃(e′, ρ′) in
Mβ such that (e′, ρ′) <β (e, ρ) but (e′, ρ′) /∈ c′ . Then, (e′, αρ′) <αβ (e, αρ) but
(e′, αρ′) /∈ c. This contradicts that c being a cut in Mαβ is downward closed
wrt <αβ . So, c′ is a cut in Mβ . �

Lemma 14 Let (β, c′) be a configuration in G, and let c = (c′ + ε/α)
⋃
Eα. If

Ex (αβ, ε, α, c) is true then (αβ, c) is a configuration in G.

Proof As (β, c′) be a configuration in G, all events in Eα is included in c and
Ex (αβ, ε, α, c) is true, clearly, c is downward closed wrt <αβ . �

Consider the relation 1 on the states of TG defined below, which relates a
configuration with the one obtained from it by deleting a fully traversed prefix.
By Lemma 13 we get a valid configuration after deleting the prefix and by
Lemma 14 we get a valid configuration after adding the prefix.

We define 1 as follows: (αβ, c) 1 (β, c′) provided

• α is non-empty,

• Ex (αβ, ε, α, c) holds, and

• c′ = c− ε/α.

We now show that the relation 1 is a bisimulation relation on the states
of TG.

Let us assume 1 is a bisimilarity relation. Then, if (αβ, c) 1 (β, c′) then:

1. If (αβ, c) e→ (αβ1, c1) then (β, c′) e→ (β1, c
′
1) and (αβ′, c′) 1 (β1, c

′
1).

2. If (β, c′) e→ (β1, c
′
1) then (αβ, c) e→ (αβ1, c1) and (αβ′, c′) 1 (β1, c

′
1).

We first prove the first statement. Ex (αβ, ε, α, c) is true wrt c, so, e can not
be an event in the prefix α. Also, this means Ex (αβ1, ε, α, c1) holds. Following
cases have to be considered:

1. Case (T1): (αβ, c) e→ (αβ, c1) where c1 = c
⋃
{(e, αρ)} for some ρ �ne β.

We set c′1 to c′
⋃
{(e, ρ)}. Then,

c′1 = c′
⋃
{(e, ρ)} = (c− ε/α)

⋃
{(e, ρ)} = (c

⋃
{(e, αρ)})− ε/α = c1 − ε/α.

Since c1 = c
⋃
{(e, αρ)} is a cut in Mαβ so by Lemma 13, c′1 is a cut in

Mβ . (β, c′) e→ (β, c′1) and as Ex (αβ, ε, α, c1) holds so, (αβ, c1) 1 (β, c′1).

18

2. Case (T2): (αβ, c) e→ (αβτ, c′) where c′ = c
⋃
{(e, αβτ)} for some non

empty τ . We set c′1 to c′
⋃
{(e, βτ)}. Then,

c′1 = c′
⋃
{(e, βτ)} = (c − ε/α)

⋃
{(e, βτ)} = (c

⋃
{(e, αβτ)}) − ε/α =

c1 − ε/α.

So by Lemma 13, c′1 is a cut inMβτ . (β, c′) e→ (βτ, c′1) and as Ex (αβτ, ε, α, c1)
holds, so, we have (αβτ, c1) 1 (βτ, c′1).

3. Case (T3): (ατ1uτ3, c)
e→ (απ′, c1) = b(ατ1uτ2uτ3, d)clue , c + ατ1u/τ2u

is a cut in Mατ1uτ2uτ3 and d = (c + ατ1u/τ2u)
⋃
{(e, ατ1uρ1)} for some

non-empty and loop free ρ1 and loop free ρ2 such that τ2u = ρ1ρ2.

c′+ τ1u/τ2u = (c− ε/α) + τ1u/τ2u = (c+ατ1u/τ2u)− ε/α by Lemma 11.

Clearly, Ex (ατ1uτ2uτ3, ε, α, (c + ατ1u/τ2u)) holds. Since c + ατ1u/τ2u is
a cut in Mατ1uτ2uτ3 so by Lemma 13, c′ + τ1u/τ2u is a cut in Mτ1uτ2uτ3 .

We set c′1 to (c′ + τ1u/τ2u)
⋃
{(e, τ1uρ1)}. So,

c′1 = ((c− ε/α) + τ1u/τ2u)
⋃
{(e, τ1uρ1)}

= ((c+ ατ1u/τ2u)− ε/α)
⋃
{(e, τ1uρ1)} by Lemma 11.

= ((c+ ατ1u/τ2u)
⋃
{(e, ατ1uρ1)})− ε/α = c1 − ε/α.

So, by Lemma 13, c′1 is a cut in Mτ1uτ2uτ3 , and as it satisfies the conditions
for transition of type T3, (τ1uτ3, c′) 1 lue(τ1uτ2uτ3, c′1) = b(τ1uτ2uτ3, d−
ε/α)clue = (π′, c1 − ε/α). The 1 conditions are also preserved.

Now we show that (β, c′) e→ (β1, c
′
1) then (αβ, c) e→ (αβ1, c1) and (αβ′, c′) 1

(β1, c
′
1). Since (αβ, c) 1 (β, c′) so, Ex (αβ, ε, α, c) holds. We denote c in terms

of c′ as c = (c′ + ε/α)
⋃
Eα . Following cases have to be considered:

1. Case (T1): (β, c′) e→ (β, c′1) where c′1 = c′
⋃
{(e, ρ)} for ρ �ne β: We set

c1 to c
⋃
{(e, αρ)}.

Then, c1 = c
⋃
{(e, αρ)}

= ((c′ + ε/α)
⋃
Eα)

⋃
{(e, αρ)}

= ((c′
⋃
{(e, ρ)}) + ε/α)

⋃
Eα)

= ((c′1 + ε/α)
⋃
Eα)

Clearly, Ex (αβ, ε, α, c1) holds. So, by Lemma 14, (αβ, c1) is a configura-
tion in G and structurally, (αβ, c1) 1 (β, c′1). Also, (αβ, c) e→ (αβ, c1)
following (T1).

2. Case (T2): (β, c′) e→ (βτ, c′1) where c′1 = c′
⋃
{(e, βτ)} for some non empty

τ . We set c1 to c
⋃
{(e, αβτ)}.

Then, c1 = ((c′ + ε/α)
⋃
Eα)

⋃
{(e, αβτ)}

= ((c′
⋃
{(e, βτ)}) + ε/α)

⋃
Eα)

= ((c′1 + ε/α)
⋃
Eα).

Clearly, Ex (αβτ, ε, α, c1) holds. So, by Lemma 14, (αβτ, c1) is a configura-
tion in G and structurally (αβτ, c1) 1 (βτ, c′1) Also, (αβ, c) e→ (αβτ, c1)
following (T2).

19

3. Case (T3): (τ1uτ3, c′)
e→ (π′, c′1) = b(τ1uτ2uτ3, d)clue , c′ + τ1u/τ2u is a

cut in Mτ1uτ2uτ3 and d = (c′+τ1u/τ2u)
⋃
{(e, τ1uρ1)} for some non-empty

and loop free ρ1 and loop free ρ2 such that τ2u = ρ1ρ2.

Firstly, c+ ατ1u/τ2u = ((c′ + ε/α)
⋃
Eα) + ατ1u/τ2u

= ((c′ + τ1u/τ2u) + ε/α)
⋃
Eα) by Lemma 12

Clearly, Ex (ατ1uτ2uτ3, ε, α, c + ατ1u/τ2u) holds. So, by Lemma 14, c +
ατ1u/τ2u is a cut in Mατ1uτ2uτ3 . Similarly, as (c′+τ1u/τ2u)

⋃
{(e, τ1uρ1)}

is a cut in Mτ1uτ2uτ3 , we can show that

d1 = (c+ ατ1u/τ2u)
⋃
{(e, ατ1uρ1)} is a cut in Mατ1uτ2uτ3 .

So, by transition rule (T3), we can do

(ατ1uτ3, c)
e→ b(ατ1uτ2uτ3, d1)clue = (απ′, c1).

It can be noted that α is completely traversed in d1. So,

b(ατ1uτ2uτ3, d1)clue
= (απ′, (c′1 + ε/α)

⋃
Eα).

So, clearly, (απ′, c1) 1 (π′, c′1).

So, we have also proved that if (β, c′) e→ (β1, c
′
1) then (αβ, c) e→ (αβ1, c1)

and (αβ′, c′) 1 (β1, c
′
1).

This completes the proof that 1 is a bisimilar relation on states of TG.
We proceed to present two lemmas verifying that the downward closure

property of cuts is met by deleting or adding a fully traversed loop to the
corresponding configuration.

Lemma 15 Let (αuβuγ, c) be a configuration in G. Then, (αuγ, c′) is a con-
figuration in G, where, c′ = c− α/uβ.

Proof Assume c is not a cut in Mαuγ . This means, ∃(e, ρ) ∈ c′ and ∃(e′, ρ′)
along αuγ such that (e′, ρ′) <αuγ (e, ρ) but (e′, ρ′) /∈ c′. This contradicts that
c is a cut in Mαuβuγ as (e, ρ + α/uβ) ∈ c, (e′, ρ′ + α/uβ) /∈ c although clearly
(e′, ρ′ + α/uβ) <αuβuγ (e, ρ+ α/uβ). So, c′ is a cut in Mαuβ . �

Lemma 16 Let (αuγ, c′) be a configuration in G and let c = (c′+α/uβ)
⋃

(Eαuβ−Eα).
If Ex (αuβuγ, α, uβ, c) holds then (αuβuγ, α, c) is a configuration in G.

Proof Assume that c is not a cut in Mαuβuγ . Since c′ is a cut in Mαuγ and
(Eαuβ−Eα) ⊆ c, so, this means, ∃(e, αρ) ∈ c for ρ �ne uβ and ∃(e′, ρ′) <αuβuγ
(e, ρ) for ρ′ �ne α such that (e′, ρ′) /∈ c. Let e ∈ Ep for some process p. As
Ex (αuβuγ, α, uβ, c) holds, this means, ∃e′′ ∈ Ep such that (e′′, αuβρ′′) ∈ c
for some ρ′′ �ne uγ. So, (e′′, αρ′′) ∈ c′ but (e′, ρ′) ∈ c′ although clearly,
(e′, ρ′) <αuγ (e′′, αρ′′). Then, c is not a cut in Mαuγ and so this is not possible.
�

We introduce another relation 2 relating configurations of TG based on
deletion of completely traversed loops.

We have (αuβuγ, c) 2 (αuγ, c′) provided

20

• Ex (αuβuγ, α, uβ, c) holds, and

• c′ = c− α/uβ.

We now prove that 2 is a bisimilarity relation on the states of TG. We
assume that this is true for two states (αuβuγ, c) and (αuγ, c′) such that
(αuβuγ, c) 2 (αuγ, c′) and show that:

1. If (αuβuγ, c) e→ (α1, c1) then (αuγ, c′) e→ (α′1, c
′
1) and (α1, c1) 2 (α′1, c

′
1).

2. If (αuγ, c′) e→ (α′1, c
′
1) then (αuβuγ, c) e→ (α1, c1) and (α1, c1) 2 (α′1, c

′
1).

Before the main proof, we prove another interesting property about fully
traversed loop.

Lemma 17 Let (αuβuγ, c) be a configuration in G such that Ex (αuβuγ, α, uβ, c)
holds. Then, there will be some executions in the later node u.

Proof As Ex (αuβuγ, α, uβ, c) this means, whichever process has reacted in uβ
has reacted in uγ as well. So, ∃(e, αu) ∈ c and ∃(e′, αuβρ) ∈ c where ρ �ne uγ
such that (e, αu) <αuβuγ (e′, αuβρ). If there is no execution in the later node u,
then, (e, αuβu) /∈ c although clearly, (e, αuβu) <αuβuγ (e′, αuβρ). This violates
that (αuβuγ, c) be a configuration in G as c is not downward closed wrt <αuβuγ .
�

Now, we prove that if (αuβuγ, c) e→ (α1, c1) then (αuγ, c′) e→ (α′1, c
′
1) and

(α1, c1) 2 (α′1, c
′
1). We analyze the following types of transitions:

1. Case (T1): (αuβuγ, c) e→ (αuβuγ, c1) where c1 = c
⋃
{(e, ρ)} for some

ρ �ne αuβuγ: Since Ex (αuβuγ, α, uβ, c) holds wrt c so it is not possible
that α ≺ ρ � αuβ. We set c′1 to c′

⋃
(e, ρ− α/uβ). Then,

c′1 = (c− α/uβ)
⋃
{(e, ρ− α/uβ)}

= (c
⋃
{(e, ρ)})− α/uβ

= c1 − α/uβ.

Since c1 = c
⋃
{(e, ρ)} is a cut in Mαuβuγ so by Lemma 15, c′1 is a cut in

Mαuγ . (αuγ, c′) e→ (αuγ, c′1) and as Ex (αuβuγ, α, uβ, c1) so, (αuβuγ, c1) 2

(αuγ, c′1).

2. Case (T2): (αuβuγ, c) e→ (αuβuγτ, c1) where c1 = c
⋃
{(e, αuβuγτ)} for

non-empty τ : We set c′1 to c′
⋃

(e, αuγτ). Then,

c′1 = (c− α/uβ)
⋃
{(e, ρ− α/uγτ)}

= (c
⋃
{(e, αuβuγτ)})− α/uβ

= c1 − α/uβ

So by Lemma 15, c′1 is a cut in Mαuγτ . So, (αuγ, c′) e→ (αuγτ, c′1) and as
Ex (αuβuγτ, α, uβ, c1) so (αuβuγτ, c1) 2 (αuγτ, c′1).

3. Case (T3): (αuβuγ, c) e→ b(α1vα2vα3uβuγ, c1)clue , where α = α1vα3, c+
α1v/α2v is a cut in Mα1vα2vα3uβuγ and c1 = (c+α1v/α2v)

⋃
{(e, α1vρ1)}

for some non-empty and loop free ρ1 and loop free ρ2 such that α2v = ρ1ρ2.

21

We first show c′ + α1v/α2v is a cut in Mα1vα2vα3uγ . We know

c′ + α1v/α2v = (c− α1vα3/uβ) + α1v/α2v

= (c+ α1v/α2v)− α1vα2vα3/uβ by Lemma:11.

Since c+α1v/α2v is a cut in Mα1vα2vα3uβuγ , so by Lemma 15, c′+α1v/α2v
is a cut in Mα1vα2vα3uγ .

We set c′1 to (c′ + α1v/α2v)
⋃
{(e, α1vρ1)}.

Then, c′1 = ((c+ α1v/α2v)− α1vα2vα3/uβ)
⋃
{(e, α1vρ1)}

= ((c+ α1v/α2v)
⋃
{(e, α1vρ1)} − α1vα2vα3/uβ) as ρ1 � α2v

= c1 − α1vα2vα3/uβ.

As c1 is a cut inMα1vα2vα3uβuγ , so by Lemma 15, c′1 is a cut inMα1vα2vα3uγ

. So, by transition rule (T3), we can have

(α1vα3uγ, c
′) e→ b(α1vα2vα3uγ, c

′
1)clue .

Clearly, Ex (α1vα2vα3uβuγ, α1vα2vα3, uβ, c1) holds. So, there can’t be
any unexecuted portions in uβ portion. Also by Lemma 17, there is some
execution in later node u. Let

c11 be {(e, ρ) ∈ c|ρ �ne α1vα2vα3 and b(α1vα2vα3, c11)clue = (τ1, d1).

c12 be {(e, α1vα2vα3ρ) ∈ c|ρ �ne uβ}
c13 be {(e, α1vα2vα3uβρ) ∈ c|ρ �ne uγ} and b(uγ, c13)clue = (uτ2, d2).

So, by applying Lemma 10 we can say

b(α1vα2vα3uβuγ, c1)clue = (τ1uβuτ2, d1)
⋃

(c12 + ε/τ1)
⋃

(d2 + ε/τ1uβ).

Applying similar arguments, b(α1vα2vα3uγ, c
′
1)clue

= (τ1uτ2, d1

⋃
(d2 + ε/τ1))

= (τ1uτ2, (d1

⋃
(c12 + ε/τ1)

⋃
(d2 + ε/τ1uβ))− τ1/uβ).

So, b(α1vα2vα3uβuγ, c1)clue 2 b(α1vα2vα3uγ, c
′
1)clue .

4. Case (T3): (αuβu, c) e→ b(αβ1vβ2vβ3uγ, c1)clue , where uβ = β1vβ3, c +
αβ1v/β2v is a cut in Mαβ1vβ2vβ3uγ and c1 = (c+αβ1v/β2v)

⋃
{(e, αβ1vρ1)}

for some non-empty and loop free ρ1 and loop free ρ2 such that β2v = ρ1ρ2.
We show that this is not possible.

Ex (αβ1vβ3uγ, α, β1vβ3, c) holds. So, ∃p ∈ P and events e1, e2 ∈ Ep, such
that (e1, αβ1v) ∈ c and (e2, αβ1vβ3ρ) ∈ c where ρ �ne uγ . (e1, αβ1vβ2v) /∈
c+ αβ1v/β2v although (e2, αβ1vβ2vβ3ρ) ∈ c+ αβ1v/β2v.

But (e1, αβ1vβ2v) <αβ1vβ2vβ3uγ (e2, αβ1vβ2vβ3ρ). So, c + αβ1v/β2v can
not be a cut in Mαβ1vβ2vβ3uγ .

So, this transition is not possible.

5. Case (T3): (αuβuγ, c) e→ b(αuβγ1vγ2vγ3, c1)clue where uγ = γ1vγ3, c +
αuβγ1v/γ2v is a cut inMαuβγ1vγ2vγ3 and c1 = (c+αuβγ1v/γ2v)

⋃
{(e, αuβγ1vρ1)}

for some non-empty and loop free ρ1 and loop free ρ2 such that γ2v = ρ1ρ2:
Like in case 3, we can prove that (αuγ, c′) e→ b(αuγ1vγ2vγ3, c

′
1)clue where

c′1 = c1 − α/uβ and b(αuβγ1vγ2vγ3, c1)clue 2 b(αuγ1vγ2vγ3, c
′
1)clue .

22

We now show that if (αuγ, c′) e→ (α′1, c
′
1) then (αuβuγ, c) e→ (α1, c1) and

(α1, c1) 2 (α′1, c
′
1). By our assumption, Ex (αuβuγ, α, uβ, c) holds and c =

(c′+α/uβ)
⋃

(Eαuβ−Eα). We prove the statement by going through the possible
types of transitions:

1. Case (T1): (αuγ, c′) e→ (αuγ, c′1) where c′1 = c′
⋃
{(e, ρ)} for some ρ �ne

αuγ. We set c1 = c
⋃
{(e, ρ+ α/uβ)}. Then,

c1 = ((c′ + α/uβ)
⋃

(Eαuβ − Eα))
⋃
{(e, ρ+ α/uβ)}

= ((c′
⋃
{(e, ρ)}) + α/uβ)

⋃
(Eαuβ − Eα)

= (c′1 + α/uβ)
⋃

(Eαuβ − Eα).

Since Ex (αuβuγ, α, uβ, c) holds so clearly Ex (αuβuγ, α, uβ, c1) holds too.
As c′1 is a cut in Mαuγ , so by Lemma 16, c1 is a cut in Mαuβuγ . So, struc-
turally (αuβuγ, c1) 2 (αuγ, c′1) and by transition rule (T1), (αuβuγ, c) e→
(αuβuγ, c1).

2. Case (T2):(αuγ, c′) e→ (αuγτ, c′1) where c′1 = c′
⋃
{(e, αuγτ)} for non-

empty τ : We set c1 to c
⋃
{(e, αuβuγτ)}. Then,

c1 = ((c′ + α/uβ)
⋃

(Eαuβ − Eα))
⋃
{(e, αuβuγτ)}

= ((c′
⋃
{(e, αuγτ)}) + α/uβ)

⋃
(Eαuβ − Eα)

= (c′1 + α/uβ)
⋃

(Eαuβ − Eα)

Like in last case, we can easily prove that (αuβuγτ, c1) 2 (αuγτ, c′1) and
by transition rule (T2) we have (αuβuγ, c) e→ (αuβuγτ, c1).

3. Case (T3): (αuγ, c′) e→ b(α1vα2vα3uγ, c
′
1)clue where α = α1vα3, c′ +

α1v/α2v is a cut in Mα1vα2vα3uγ and c′1 = (c′ + α1v/α2v)
⋃
{(e, α1vρ1)}

for some non-empty and loop free ρ1 and loop free ρ2 such that α2v = ρ1ρ2:

Here, c = (c′ + α1vα3/uβ)
⋃

(Eα1vα3uβ − Eα1vα3). We first show that
c+ α1v/α2v is a cut in Mα1vα2vα3uβuγ .

c+ α1v/α2v

= ((c′ + α1vα3/uβ)
⋃

(Eα1vα3uβ − Eα1vα3)) + α1v/α2v

= ((c′ + α1vα3/uβ) + α1v/α2v)
⋃

(Eα1vα2vα3uβ − Eα1vα2vα3)

= ((c′ + α1v/α2v) + α1vα2vα3/uβ)
⋃

(Eα1vα2vα3uβ − Eα1vα2vα3) By
Lemma 12

Also, Ex (α1vα2vα3uβuγ, α1vα2vα3, uβ, c + α1v/α2v) holds and so, by
Lemma 16 c + α1v/α2v is a cut in Mα1vα2vα3uβuγ . We set c1 to (c +
α1v/α2v)

⋃
{(e, α1vρ1)}. Then,

c1 = (((c′ + α1v/α2v) + α1vα2vα3/uβ)⋃
(Eα1vα2vα3uβ − Eα1vα2vα3))⋃
{(e, α1vρ1)}

= (((c′ + α1v/α2v)
⋃
{(e, α1vρ1)}) + α1vα2vα3/uβ)⋃

(Eα1vα2vα3uβ − Eα1vα2vα3) as ρ1 � α2v

= (c′1 + α1vα2vα3/uβ)
⋃
Eα1vα2vα3) as ρ1 � α2v

Since c′1 is a cut in Mα1vα2vα3uγ and Ex (α1vα2vα3uβuγ, α1vα2vα3, uβ, c1)
holds so, by Lemma 16 c1 is a cut along Mα1vα2vα3uβuγ . Following

23

(T3), we have (α1vα3uβuγ, c)
e→ bα1vα2vα3uβuγclue . Applying simi-

lar arguments as in case 3 of the forward direction, we can show that
bα1vα2vα3uβuγ, c1clue 2 b(α1vα2vα3uγ, c

′
1)clue .

4. Case (T3): (αuγ, c′) e→ b(αγ1vγ2vγ3, c
′
1)clue where uγ = γ1vγ3, c′ +

αγ1v/γ2v is a cut in Mαγ1vγ2vγ3 and c′1 = (c′ + αγ1v/γ2v)
⋃
{(e, αγ1vρ1)}

for some non-empty and loop free ρ1 and loop free ρ2 such that γ2v = ρ1ρ2:

Like in case 3, we can show that in this case also
(αuβuγ, c) e→ b(αuβγ1vγ2vγ3, c1)clue
where c1 = (c+ αuβγ1v/γ2v)

⋃
{(e, αuβγ1vρ1)} and

b(αuβγ1vγ2vγ3, c1)clue 2 b(αγ1vγ2vγ3, c
′
1)clue .

This completes the proof that 2 is a bisimilarity relation on the states of
TG.

We summarize the bisimilarity discussion in the following lemma:

Lemma 18 The relations 1 and 2 are bimulation relations on the transi-
tion system TG. �

We will now reduce the state space of TG using the bisimulation relations
defined above.

For a configuration (π, c) of G, we define its maximal reducible decomposition
to be αα1u1β1u1 · · · αnunβnunγ with n ≥ 0, where

• π = αα1u1β1u1 · · ·αnunβnunγ.

• α is the maximal prefix of π which is completely traversed.

• Each uiβi is the leftmost completely traversed loop in the segment
αiuiβiui · · ·αnunβnunγ.

• Each uiβi is maximal.

• γ does not have any completely traversed loop.

The maximal reducible decomposition of (π, c) can be seen to be unique.
Let αα1u1β1u1 · · ·αnunβnunγ be the maximal reducible decomposition of

(π, c). Then we define the reduced form of (π, c), denoted b(π, c)c, to be the
configuration

(α1u1 · · ·αnunγ,
(· · · ((c− ε/α)− α1u1β1)− · · ·)− α1u1 · · ·αnun/unβn).

Clearly, the reduced form of a configuration does not contain any completely
traversed prefix or loops.

We now define the reduced transition system corresponding to the MSG G,
denoted T ′G, as follows: T ′G = (Q′, EG, q0,⇒) where

• Q′ = {b(π, c)c | (π, c) a configuration of G}.

• EG is the set of events of G.

• q0 = (ε, ∅).

24

e1 e2
m

v0

Figure 6: An MSG with an infinite-state T ′G.

• Let q′, r′ ∈ Q′. Then, q′ e⇒ r′ iff there exists r ∈ Q such that q′ e→ r in
TG, and r′ = brc.

We note that the reduced form of the initial configuration (ε, ∅) is itself.
We now want to argue that T ′G generates the same language as TG. We

have already shown that 1 and 2 are bisimulation relations on TG. Hence
so is the relation (1 ∪ 2)∗. Further, for any configuration (π, c), it is clear
that ((π, c), b(π, c)c) ∈ (1 ∪ 2)∗. Finally, it is immediate to check that T ′G
satisfies the conditions of Lemma 7 with respect to TG and the bisimulation
relation R = (1 ∪ 2)∗. Hence by Lemma 7 we can conclude that L(T ′G) =
L(TG).

We summarise the result of this section in the following theorem:

Theorem 19 For any MSG G, the reduced transition system T ′G generates pre-
cisely the language Le(G).

We note that though T ′G has fewer states than TG in general, it may still
have an infinite number of states. Consider the MSG G2 in Figure 6. The
configurations of the form (vn0 , {(e1, v0), (e1, v2

0), · · · , (e1, vn0)}) where n > 0 do
not have any unexecuted loops or completely traversed loops. So, for each n,
these are distinct states in T ′G2

, and thus T ′G2
has an infinite number of states.

In the next section we show that this is not possible for a com-connected MSG.

6 Regularity of Com-Connected MSG’s

In this section our aim is to supply a proof of Theorem 2. We begin with an
observation from [2].

Lemma 20 ([2]) Let G be a com-connected MSG. Consider a configuration
of the form (αuβuγ, c). Then, either uβ is completely unexecuted, or uβ is
completely traversed, or there is a process whose last executed event and next
unexecuted event are both in uβ.

Proof Let us assume the contrary. Then among the processes that take part in
an event in the nodes in uβ, there must be processes p and q such that none of
the p events in uβ are executed, and all of the q events in uβ are executed. As
G is com-connected, we must have a path in the communication graph of Muβ

from p to q. Let this path be p = r0 → r1 → · · · → rn = q with n ≥ 1. Then,
since q has completed all its events in uβ, it must have also received a message
from rn−1. Thus rn−1 has taken part in uβ, since it must have sent the message
received by q. Now either rn−1 has another event to take part in in uβ, and we
are done; or, it has completed all its events in uβ and in particular has heard

25

from rn−2. We repeat this argument till we either find a process ri which has
participated in uβ and has an unexecuted event in uβ, or reach a contradiction
that process p has participated in an event in uβ. This completes the proof of
the lemma. �

Let us now consider the reduced transition system T ′G for a com-connected
MSG G. The states in T ′G are all in reduced form, and hence have no completely
unexecuted loops or completely traversed loops. It follows that in any loop in a
state (π, c) of T ′G, there must be at least one process positioned in a node in that
loop. Thus no node can occur more than k+1 times in π, where k is the number
of processes. In fact, because of the property of the reachable configurations of
TG that there is always a process positioned in the last node of the path, the
bound of k+ 1 can be reduced to k. This bounds the length of π by mk, where
m is the number of nodes in G.

There are (m×k)!
(k!)m ways of making strings of size m × k from m nodes each

repeating k times. It is easy to show that this is lower than mm×k. If there
are n events per MSC and for each process, then, in each configuration, each
processes can have m×n× k possible positions. This gives us the upper bound
mm×k × (m× n× k)k on the number of states in T ′G.

This completes the proof of Theorem 2.

7 Synchronous MSG’s

In this section we consider MSG’s with synchronous (or “handshake”) messages,
and show how the transition system for them can be constructed in a similar
manner to MSG’s with asynchronous messages.

A message sequence chart with synchronous messages, or simply a syn-
chronous MSC is a tuple

M = 〈P,E,C, λ, {<p}p∈P 〉

where:

• P is a finite set of processes.

• E is a finite set of events.

• C is a finite set of message labels.

The set of actions of M is defined to be ΣM = P ×P ×C, where (p, q,m)
signifies processes p and q synchronously exchanging message m.

For a process p ∈ P , the set Σp = {a ∈ ΣM | a = (p, q,m) or a =
(q, p,m), q ∈ P, m ∈ C}, is the set of all actions in which p participates.

• λ : E → ΣM is the labeling function which maps events to actions. For
a process p ∈ P , the set Ep = {e | λ(e) ∈ Σp} are the events in which p
participates.

• For each p ∈ P , <p is a strict total order on Ep.

We define <M as the transitive closure, and ≤M as the reflexive transitive
closure, of

⋃
p∈P <p, and require that ≤M must be a partial-order.

26

e4

e1

e2e3

e5

v1 v3v2

a b c d
v0

m1

m3 m2 m4

m5

Figure 7: MSG G4 with synchronous messages.

As for asynchronous MSC’s, we define the language of event sequences gen-
erated by a synchronous MSC M with event set E, to be the prefixes of lineari-
sations of the partial order (E,≤M). A cut in M continues to be a subset of
events in E which is closed with respect to ≤M . Analogous to Lemma 1 we can
characterise the event sequences of M in terms of sequences of incremental cuts
in (E,≤M).

The communication graph of a synchronous MSC M is an undirected graph
on the set of processes obtained by adding an undirected edge between two
processes if they participate in a common event.

A synchronous MSG is an MSG G = (V, v0,∆,M, µ) as defined earlier
for asynchronous MSC’s, except that M is now a set of synchronous MSC’s.
For a non-empty path π in G, we can define the (weak) concatenation of the
synchronous MSC’s labelling π, as before to be the (weak) concatenation of
the partial orders represented by the MSC’s. More formally, for each vertex
v in G, let each MSC µ(v) be 〈Pv, Ev, C, λv, {<vp}p∈P 〉. We define the (weak)
concatenation of the synchronous MSC’s in the path π to be the MSC Mπ =
〈P,Eπ, C, λπ, {<πp}p∈P 〉 where:

• Eπ =
⋃
ρv�π(Ev × {ρv}).

• For each ρv � π, we define λπ(e, ρv) = λv(e).

• For each p ∈ P , <πp is given as follows: Let ρv � π and ρ′v′ � π and
e ∈ Ev and e′ ∈ Ev′ . Then (e, ρv) <πp (e′, ρ′v′) iff e and e′ are p-events
and either ρv ≺ ρ′v′ or ρv = ρ′v′ and e <vp e

′.

The language of event sequences defined by a synchronous MSG G, denoted
Le(G), is defined to be the set of all prefixes of linearizations of Mπ for any
initial path π in G.

As for asynchronous MSG’s, we say a synchronous MSG G is com-connected
iff for every loop uβu in G, the communication graph of Muβ is com-connected.

The figure 7 shows a com-connected synchronous MSG G4.
The construction of the transition systems TG and T ′G for an asynchronous

MSG G, is based purely on the partial order induced by a path in the MSG.
Hence it also applies for a synchronous MSG G. The proof of correctness of
TG and T ′G also make use of properties of the way the partial order induced

27

by a path in the MSG is defined, and these properties are also satisfied by the
definition of this partial order for synchronous MSG’s. Hence we can conclude:

Theorem 21 Let G be a synchronous MSG, and let TG and T ′G be the transition
systems defined in Section 3 and 5 respectively. Then both transition systems
generate exactly the language Le(G).

Further, Lemma 20 can also be seen to apply for synchronous MSG’s, and
hence we have:

Theorem 22 Let G be a com-connected synchronous MSG. Then Le(G) is reg-
ular and it can be generated by a finite-state transition system with at most
mmk(mnk)k states.

Figure 8 is the transition table generated by our algorithm and Figure 9
shows the state diagram of the transition system T ′G for the MSG G4 of Figure 7.

The MSG of Figure 7 is useful for pointing out the incompleteness of the
transition system constructed by Uchitel in [12]. He constructs a transition
system, called the “trace model”, which is meant to generate the language of
event sequences for a given com-connected synchronous MSG. The construction
uses a “coordinator” component which keeps track of the current path in the
MSG traced out by processes, and ensures that other processes follow this path
consistently. The transition rules for the infinite model are similar to ours,
except that there is no rule for inserting a path within the current node list.
The problem arises due to the equivalence relation proposed by him to reduce
the infinite model. His equivalence relation removes a loop whenever there are
no processes present there. This incorrect reduction essentially leads to the
trace model being incomplete.

The trace model generated by the LTSA-MSC tool [11, 13] on the MSG G4

as input is shown in the figure below.

28

Transition Destination Source
State Type Event Configuration State

T2 e1 (v0, {(e1, v0)}) q1 q0
T2 e2 (v0v1, {(e2, v0v1)}) q2
T2 e2 (v0v1, {(e1, v0), (e2, v0v1)}) q3 q1
T2 e4 (v0v1v3, {(e1, v0), (e4, v0v1v3)})

ֆ1 (v1v3, {(e4, v1v3)})

q4

T1 e1 (v0v1, {(e1,v0), (e2, v0v1)}) q3 q2
T2 e3 (v0v1v2, {(e2, v0v1), (e3, v0v1v2)}) q5
T2 e3 (v0v1v2, {(e1, v0), (e2, v0v1), (e3, v0v1v2)}) q6 q3

T2 e4 (v0v1v3, {(e1, v0), (e2, v0v1), (e4, v0v1v3)})

ֆ1 (v1v3, {(e2, v1), (e4, v1v3)})

q7

q4 T1 e2 (v1v3, {(e2, v1), (e4, v1v3)}) q7

T2 e2 (v0v1v2v1, {(e2, v0v1), (e3, v0v1v2), (e2, v0v1v2v1)})

ֆ2 (v0v1, {(e2, v0v1)})

q2 q5

T1 e1 (v0v1v2, {(e1, v0), (e2, v0v1), (e3, v0v1v2)}) q6
T2 e2 (v0v1v2v1, {(e1, v0), (e2, v0v1), (e3, v0v1v2) , (e2, v0v1v2v1)})

ֆ2 (v0v1, {(e1, v0), (e2, v0v1)})

q3 q6

T2 e4 (v0v1v2v1v3, {(e1, v0), (e2, v0v1), (e3, v0v1v2), (e4, v0v1v2v1v3)})

ֆ1 (v2v1v3, {(e3, v2), (e4, v2v1v3)})

q8

T3 e3 (v1v2v1v3, {(e2, v1), (e3, v1v2), (e4, v1v2v1v3)})

ֆ1 (v2v1v3, {(e3, v2), (e4, v2v1v3)})

q9 q7

T1 e5 (v1v3, {(e2, v1), (e4, v1v3), (e5, v1v3)}) q10

q8 T1 e2 (v2v1v3, {(e3, v2), (e2, v2v1), (e4, v2v1v3)})

ֆ1 (v1v3, {(e2, v1), (e4, v1v3)})

q7

q9 T1 e2 (v2v1v3, {(e3, v2), (e2, v2v1), (e4, v2v1v3)})

ֆ1 (v1v3, {(e2, v1), (e4, v1v3)})

q7

T2 e1 (v1v3v0, {(e2, v1), (e4, v1v3), (e5, v1v3), (e1, v1v3v0)}) q11 q10

T2 e2 (v1v3v0v1, {(e2, v1), (e4, v1v3), (e5, v1v3), (e2, v1v3v0v1)})

ֆ1 (v3v0v1, {(e4, v3), (e5, v3), (e2, v3v0v1)})

q12

T2 e4 (v1v3v0v1v3, {(e2, v1), (e4, v1v3), (e5, v1v3), (e1, v1v3v0), (e4, v1v3v0 v1v3)}) q13 q11

T2 e2 (v1v3v0v1, {(e2, v1), (e4, v1v3), (e5, v1v3), (e1, v1v3v0), (e2, v1v3v0v1)})

ֆ1 (v0v1, {(e1, v0), (e2, v0v1)})

q3

q12 T1 e1 (v3v0v1, {(e4, v3), (e5, v3), (e1, v3v0), (e2, v3v0v1)})

ֆ1 (v0v1, {(e1, v0), (e2, v0v1)})

q3

q13 T1 e2 (v1v3v0v1v3, {(e2, v1), (e4, v1v3), (e5, v1v3), (e1, v1v3v0), (e2, v1v3v0v1), (e4,
v1v3v0v1v3)})

ֆ1 (v1v3, {(e2, v1), (e4, v1v3)})

q7

Figure 8: Transition table T ′G for MSG G4.

29

Figure 9: Transition system T ′G for MSG G4.

30

The event sequence e1e4e2e3e2e3 is not allowed by the trace model, while it
is accepted by T ′G as shown in the figure below.

(e,Ø) e1
e1

T2

e2

e4

e4

T2
e2

T1

e3 T3

e2

T1

e4

e3

e2
e3

T3

e4

e3

e2

v2

v1

v3

v0

v1

v3

v3

v1

v2

e2

e4 v3

v1

e4

e2 v1

v3

The event sequence is legal behaviour of MSG G4 being prefix of a lineari-
sation of Mπ, where π is the path v0v1v2v1v2v1v3, shown in the figure below.

e4
e5

e1

e3

e2

e2

e3

e2

v2

v1

v0

v1

v2

v1

v3

31

e4

e5

e1 e2

e5
e2

e3
e1e4

a1

a4

e2e3

e2

Figure 10: System model induced by MSG G4.

8 Detecting Implied Scenarios

We now sketch how our construction of T ′G can be used to detect “implied
scenarios” in a com-connected synchronous MSG.

A synchronous MSG G induces a natural “minimal” distributed finite-state
system model (called the “architecture model” in [12]). Each process has a
component obtained by keeping track of which events it can participate in next.
The components for each process in the system model for the MSG G4 are
shown in Figure 10. Thus process a takes part in events e1 and e4 and has
two states a1 and a4 corresponding to these two events. The states a1 and
a4 can be thought of as the positions in the process line of process a in the
MSG G4, just before the events e1 and e4. The system model induced by the
components, can be viewed as the “synchronised product” of the components
for each process, where a pair of components are required to simultaneously
execute events that are common to their process lines. The system model,
which we denote SG, can be seen to include all the behaviours in Le(G) for a
given synchronous MSG G. The problem is that it may sometimes generate a
strict superset of the behaviours in Le(G), and these behaviours are what are
referred to as “implied scenarios.” Thus an event sequence w ∈ E∗G is called an
implied scenario if w ∈ L(SG)−Le(G). We refer the reader to [14, 12] for some
illustrative examples of implied scenarios.

We first show that the problem of detecting implied scenarios for general
MSG’s is undecidable. The proof is via a reduction from the Post Correspon-
dence Problem (PCP). Let P be an instance of PCP given by two homomor-
phisms g, h : A∗ → B∗. A solution of P is given by a word w in A+ such that
g(w) = h(w). We make use of the regular language LP defined in [10] (see also
[9]). LP is defined to be Lg ∪Lh, where Lg (similarly Lh) is the complement of
Wg = {wg(w)‖c|g(w)| | w ∈ A+}. All we need is the fact that LP satisfies the
property that

[LP]∼ =
{

(A ∪B)∗‖c∗ if P has no solution
a strict subset of (A ∪B)∗‖c∗ if P has a solution

where [LP]∼ denotes the trace closure (that is all possible words that can be
obtained from words in Lp by commuting letters in A ∪B with the letter c) of
the language LP ; and L‖M denotes the “shuffle” of words in L and M defined
to be {w | w � (A ∪B) ∈ L,w � c ∈M}. By w � X we mean the word obtained
by deleting all occurences of letters outside X from w.

Now let us define an MSG from LP as follows: Let A be a finite-state
automaton accepting LP . Without loss of generality we can assume that the
states of A (instead of the transitions) are labelled by letters in A ∪ B ∪ {c}.

32

a c

b
b

ca

Figure 11: An automaton and the corresponding MSG.

Then we can define an MSG GP which has the same graph structure as A, and
each state v is labelled by the MSC Ma, where a is the label of v, and Ma is the
MSC shown below on the left if a ∈ (A ∪B) or the one on the right if a = c.

a c

Figure 11 shows the MSG corresponding to the automaton on the left. Here
we assume a, b ∈ A ∪B.

It is not difficult to see that the language specified by the MSG GP is pre-
cisely the trace closure of LP : that is Le(GP) = [LP]∼. Further, we claim that
GP has implied scenarios iff the PCP problem P has a solution. This is because:

• The language LP is such that for each w ∈ (A ∪B)∗, and each ci ∈ {c}∗,
the strings w and ci both belong to LP . Thus, it follows that SGP will
always generate the language (A ∪B)∗‖c∗.

• However, the language Le(GP) equals (A ∪ B)∗‖c∗ iff the PCP instance
P has no solutions.

• Hence GP has implied scenarios iff P has a solution.

This completes the reduction.
We note that we have made use of final states in the MSG GP . However

it is not difficult to adapt this reduction to MSG’s in which all states are final
(which is the definition we have followed in this paper). We can do so as follows.

• We first note that the variant of the PCP problem, called say PCP’, in
which we ask if there is a solution to the given instance which begins with
1 and ends with k, and k does not occur anywhere else (where we assume
A = {1, 2, . . . , k}), is also undecidable. This can be seen from the fact that
the classical reduction from the membership problem for Turing Machines
to PCP produces such an instance of PCP [6]. Further, clearly without
loss of generality, we can assume that the given PCP’ instance is such that
g(k) and h(k) both end with a ‘a’ symbol which is not in A ∪B.

• Let Lg (and similarly Lh) be the regular language defined in [10] over
A ∪B ∪ {a} ∪ {c} corresponding to P as a usual instance of PCP.

33

• We now restrict Lg by retaining only words that contain 0 or 1 occurrences
of a. Thus we obtain

L′g = Lg ∩ {w ∈ (A ∪B ∪ {a} ∪ {c})∗ | w � {a} ∈ {ε,a}}.

Clearly L′g is also regular.

• We further define L′′g from L′g as follows:

L′′g = {w ∈ L′g |w � {a} = ∅}∪{w′ a |w ∈ L′g, w � {a} = {a}, w � (A∪B∪{c}) = w′}.

Once again, since L′g is regular, it follows that L′′g is also regular.

• We now observe that the implied closure of L′′g (and also L′′h) is

((A ∪B)∗ · {a, ε})‖c∗.

This is because for any w ∈ (A∪B)∗ · {a, ε}, and any ci ∈ c∗, w ∈ L′′g and
ci ∈ L′′g .

• We note that L′′g and L′′h satisfy

[L′′g∪L′′h]∼ =
{

((A ∪B)∗ · {a, ε})‖c∗ if P has no solution
a strict subset of ((A ∪B)∗ · {a, ε})‖c∗ if P has a solution

As a matter of fact, if there is a solution then (AUB)∗· a ‖c∗ is not
contained in [L′′g ∪ L′′h]∼.

• Finally, Finally, since prefixes of words in L′′g do not help in constructing
words in (AUB)∗· a ‖c∗, it follows that if we replace L′′g by its prefix-
closure pref (L′′g), and similarly L′′h by pref (L′′h), we will obtain a prefix-
closed regular language, namely pref (L′′g) ∪ pref (L′′h) which satisfies all
the properties above: namely, that its implied closure is equal to its trace
closure iff the given PCP’ instance has no solution. This completes the
reduction.

Theorem 23 The problem of detecting implied scenarios for general synchronous
MSG’s is undecidable. �

However, when an MSG specification G is given to be com-connected, our
finite-state transition system T ′G we can give a procedure for detecting implied
scenarios in G. We simply generate the system model SG for G, and the transi-
tion system T ′G for G, and check if L(SG) ⊆ L(T ′G). Note that both SG and T ′G
are finite-state transition systems, and hence using standard automata-theoretic
techniques we can check this property and report implied scenarios if there are
any.

Using our finite-state transition system T ′G we can give a procedure for de-
tecting implied scenarios in a com-connected synchronous MSG specification
G. We simply generate the system model (event) SG for G, and the transi-
tion system T ′G for G, and check if L(SG) ⊆ L(T ′G). Note that both SG and T ′G
are finite-state transition systems, and hence using standard automata-theoretic

34

techniques we can check this property and report implied scenarios if there are
any.

Uchitel uses the same procedure in his thesis [12] but due to the fact that his
trace model is incomplete, his detection algorithm is not sound. The MSG G4

can be seen to have no implied scenarios. However the LTSA-MSC tool reports
e1e4e2e3e2e3 as one of the several implied scenarios for this MSG.

[14] proposes detection of implied scenarios comparing the system model
with the maximal traces of the composition of individual process’s view of the
MSG. The approach proposed in this paper claims to catch the implied scenarios
in MSGs with synchronous messaging, even if the MSG is not bounded. We
show that the proposed heuristic approach doesn’t work properly with the same
exmaple MSG G4.

The approach first constructs the MSG as a labeled transition system with
each transition labelled with the MSG node being executed. The automaton for
G4 is drawn below.

v0 v1

v2

v3

0 1 2

Then each process’s local view of the MSG is constructed based on the nodes
where each process participates, as shown in the figure below.

v0

v3

0 1
v0

v3

0 1
v2

v3

0 1 v1
v2 0 1 v1 v1

The product of the local views of each process generates the composed MSG
view. This composed MSG view is compared with the MSG to mark only the
allowed transitions. Both the views for G4 is shown below.

35

v0

0 1

v1

2

v2

3 4

v1

v3 v0

v1
v0 v1

5

v0

0 1

v1

2

v2

3 4

v1

v3 v0

v1 v1
-1

The approach then proceeds to construct the ’safety language’ which com-
prises of the linearizations of MSCs hit till a node is revisited followed by the
first message in the next possible MSC as per the MSG. The safety languages
generated for G4 are mentioned in the figure below.

e1
a b c d

e2
e3

e2

e1
a b c d

e2

e2

e4
e5

e3
e1

e1
a b c d

e2

e2

e4
e5

e4
e1

It can be easily seen that the event sequence e1e4e2e3e2e3 alongMv0v1v2v1v2v1v3

is not prefix of any of the safety strings and so will be wrongly pointed out as
implied scenario by this algorithm as well.

9 Conclusion

In this paper we have given a precise construction of a transition system for a
given MSG specification, which accepts exactly the set of behaviours specified
by the MSG. When the given MSG specification is com-connected, the transi-
tion system we give is guaranteed to be finite-state and can thus be used a basis
for building sound and complete tools for analysing properties of these specifi-
cations. Our transition system is also suitable for analysing MSG specifications
in a bounded fashion, even when the given MSG is not com-connected. We
hope that work in this paper will be useful to academicians and practitioners

36

interested in building accurate tools to analyse Message Sequence Chart based
specifications.

References

[1] R. Alur, K. Etessami, and M. Yannakakis. Inference of message sequence
charts. IEEE Trans. Software Eng., 29(7):623–633, 2003.

[2] R. Alur and M. Yannakakis. Model checking of message sequence charts. In
J. C. M. Baeten and S. Mauw, editors, CONCUR, volume 1664 of Lecture
Notes in Computer Science, pages 114–129. Springer, 1999.

[3] M. Clerbout and M. Latteux. Semi-commutations. Inf. Comput., 73(1):59–
74, 1987.

[4] B. Genest, A. Muscholl, and D. Peled. Message sequence charts. In J. Desel,
W. Reisig, and G. Rozenberg, editors, Lectures on Concurrency and Petri
Nets, volume 3098 of Lecture Notes in Computer Science, pages 537–558.
Springer, 2003.

[5] J. G. Henriksen, M. Mukund, K. N. Kumar, M. A. Sohoni, and P. S.
Thiagarajan. A theory of regular msc languages. Inf. Comput., 202(1):1–
38, 2005.

[6] J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, Massachusetts, 1979.

[7] H. Muccini. Detecting implied scenarios analyzing non-local branching
choices. In M. Pezzè, editor, FASE, volume 2621 of Lecture Notes in Com-
puter Science, pages 372–386. Springer, 2003.

[8] A. Muscholl and D. Peled. Message sequence graphs and decision problems
on mazurkiewicz traces. In M. Kutylowski, L. Pacholski, and T. Wierzbicki,
editors, MFCS, volume 1672 of Lecture Notes in Computer Science, pages
81–91. Springer, 1999.

[9] A. Muscholl and H. Petersen. A note on the commutative closure of star-
free languages. Inf. Process. Lett., 57(2):71–74, 1996.

[10] J. Sakarovitch. The “last” decision problem for rational trace languages. In
I. Simon, editor, LATIN, volume 583 of Lecture Notes in Computer Science,
pages 460–473. Springer, 1992.

[11] S. Uchitel. LTSA-MSC tool. http://www.doc.ic.ac.uk/ su2/Synthesis/,
2001.

[12] S. Uchitel. Incremental Elaboration of Scenario Based Specifications and
Behavior Models Using Implied Scenarios. PhD thesis, Imperial College,
2003.

[13] S. Uchitel, R. Chatley, J. Kramer, and J. Magee. LTSA-MSC: Tool support
for behaviour model elaboration using implied scenarios. In H. Garavel and
J. Hatcliff, editors, TACAS, volume 2619 of Lecture Notes in Computer
Science, pages 597–601. Springer, 2003.

37

[14] S. Uchitel, J. Kramer, and J. Magee. Detecting implied scenarios in message
sequence chart specifications. In ESEC / SIGSOFT FSE, pages 74–82,
2001.

38

