
Equivalence of the Pointwise and Continuous Semantics of First Order Logic
with Linear Constraints

Deepak D’Souza
Indian Institute of Science
Bangalore 560012, India.
deepakd@csa.iisc.ernet.in

Raveendra Holla
Indian Institute of Science
Bangalore 560012, India.

raveendra@csa.iisc.ernet.in

Raj Mohan Matteplackel
Indian Institute of Science
Bangalore 560012, India.

raj@csa.iisc.ernet.in

Abstract

We consider a first-order logic with linear constraints
which can be interpreted naturally in both a pointwise or
continuous way over timed words. We show that the two
interpretations of this logic coincide in terms of expressive-
ness. As a consequence it follows that the pointwise and
continuous semantics of the logicTPTL with the since op-
erator [2] also coincide. We also exhibit a normal form for
formulae in these logics.

1 Introduction

Several real-time logics proposed in the literature have
been interpreted over timed behaviours in two natural ways
which have come to be called the “pointwise” and “con-
tinuous” interpretations. These interpretations can be car-
ried out over the popular model of a timed word which
is a sequence of actions along with their associated real-
valued time stamps. In the pointwise semantics formulae
may be asserted only at the discrete set of points where
actions occur (the so called “action points”), while in the
continuous semantics formulae may be asserted at arbitrary
time points. To illustrate these semantics, consider the pop-
ular timed temporal logic Metric Temporal Logic (MTL)
[5, 1, 6], which extends theU operator of classicalLTL
with an interval index to allow formulae of the formθUIη,
which says thatθ is satisfied until a future time point where
η is satisfied, and which lies at a distance that falls in the in-
tervalI. Consider a timed wordσ shown in Fig. 1 in which
the first action is ana at time 2, followed subsequently by
only b’s. TheMTL formula3(3[1,1]a) (where3Iθ stands
for ⊤UIθ) asserts that there is a time pointt from which an
actiona occurs in the future at a distance of 1. The formula
is satisfied in the timed wordσ in the continuous semantics,
butnot in the pointwise semantics (essentially since there is
no action at time point 1).

0 1 2 3 4

a b b

Figure 1. Timed word σ

The Timed Temporal Logic (TPTL) of Alur and Hen-
zinger [2] is a well-known timed temporal logic for spec-
ifying real-time behaviours. The logic is interpreted over
timed words and extends classicalLTL with the “freeze”
quantifierx.θ which bindsx to the value of the current time
point, along with the ability to constrain these time points
using linear constraints of the formx ∼ y+ c. For example
the formulax.(3y.(a ∧ y = x + 2)) says that with respect
to the current time point, ana-event occurs exactly two time
units later. Once again, the3 operator can be interpreted in
a pointwise or continuous manner.

It is not difficult to see that for a typical timed logic the
continuous semantics is at least as expressive as the point-
wise one, since one can ask for a time point to be an action
point by asserting

∨

a∈Σ a (whereΣ is the set of possible ac-
tions) at each quantified time point. For the logicMTL and
its variants there have been several results in the literature
which show that the continuous semantics is in fact strictly
more expressive than the pointwise one [3, 4, 7]. Thus the
logics MTL, MTLS (MTL with the “since” operatorS),
MTLSI

(MTL with theSI operator), andMITL (MTL re-
stricted to non-singular intervals), are all strictly moreex-
pressive in the continuous semantics than their pointwise
counterparts.

In this paper we consider the expressiveness of the point-
wise and continuous interpretations of a natural first-order
logic with linear constraints which is interpreted over timed
words and is similar in flavour toTPTL. Thus the logic al-
lows atomic predicates of the forma(x) which says that an
a-event occurs at time pointx, and constraints of the form
x ∼ y + c. The interpretation of the quantifier∃x depends
on the continuous or pointwise semantics: in the continuous

semantics it is interpreted as “there exists a time pointx,”
while in the pointwise semantics it is interpreted as “there
exists anaction pointx.” As an example, theFO(<,+) for-
mula∃x(∃y(a(y) ∧ y = x+ 1)) is satisfied in the example
timed wordσ above in the continuous interpretation while
it is not satisfied in the pointwise semantics.

Our main result in this paper is that the expressiveness of
the logic in these two semantics coincide. The logicFO(<
,+) can be seen to be expressively the same asTPTL
with the “since” modality, which we denoteTPTLS . Thus
our expressive equivalence result carries over toTPTLS

as well. To our knowledge these are the first instances of
real-time logics for which the pointwise and continuous se-
mantics are known to be equally expressive.

The main proof idea is to first go over to a normal form
for FO(<,+) sentences in which all quantified subformu-
lae are essentially of the form∃x(a(x) ∧ π ∧ ν), wherea
is an action inΣ, π is a linear constraint involvingx, and
ν is a conjunction of formulae satisfying a similar restric-
tion on quantified subformulae. This is similar in spirit to a
normal form proposed for a sublogic ofTPTL in [3]. We
then show how to transform an arbitrary sentence in normal
form in FO(<,+) to a sentence inFO(<,+) which uses
only “active” quantifiers. We say that the formula∃xϕ is
actively quantified ifϕ is of the forma(x) ∧ ψ for some
actiona and formulaψ; and say it is “passively” quanti-
fied otherwise. A sentence in which all quantifiers are ac-
tive, is clearly equivalent to a pointwise formula. Thus, we
show how to eliminate passively quantified variables using
only actively quantified ones. As an example, the formula
∃x(1 ≤ x ∧ ∃y(b(y) ∧ x+ 1 ≤ y)) is passively quantified.
We can eliminatex from it to get the equivalent actively
quantified formula∃y(b(y) ∧ 2 ≤ y).

2 Preliminaries

Let N denote the set of non-negative integers, andR and
R≥0 the set of reals and non-negative reals respectively. By
an interval we will mean a convex subset ofR, and denote
these using standard notation: for example[1, 3) will denote
the set{t ∈ R | 1 ≤ t < 3}.

For an alphabetA we denote byAω the set of infi-
nite words overA. Let Σ be a finite alphabet of actions,
which we fix for the rest of this paper. An (infinite)timed
word σ over Σ is an element of(Σ × R≥0)

ω of the form
(a0, t0)(a1, t1) · · · , satisfying the conditions that: for each
i ∈ N, ti < ti+1 (strict monotonicity), and for eacht ∈ R≥0

there exists ani ∈ N such thatt < ti (progressiveness). For
convenience, we will also assume in this paper thatt0 = 0.
We will sometimes represent the timed wordσ above as a
pair (α, τ), whereα = a0a1 · · · andτ = t0t1 · · · . Thus
α(i) andτ(i) denote the action and the time stamp respec-
tively, in σ at positioni. We writeTΣω to denote the set of

all timed words overΣ.
We now introduce the linear constraints we use in this

paper, and some notation for manipulating them. We as-
sume a supply of variablesVar = {x, y, . . .} which we
will use in constraints as well as later in our logics. We
use restricted linear constraints of the formx ∼ y + c or
x ∼ c, wherex andy are variables inVar , ∼ is one of the
relations in{<,≤,=,≥, >}, andc ∈ R ∪ {∞}. We call
these constraintssimple constraints. In general, we will al-
low constraints to be boolean combinations of simple con-
straints given by the syntaxδ ::= g | ¬δ | δ∧δ | δ∨δ, where
g is a simple constraint.

An interpretationfor variables is a mapI : Var → R.
For t ∈ R andx ∈ Var we will useI[t/x] to represent the
interpretation which sendsx to t, and agrees withI on all
other variables. When we are interested in a finite set of
variables{x1, . . . , xn} we will write [t1/x1, . . . , tn/xn] to
represent an interpretation that maps eachxi to ti. For an
interpretationI and a constraintδ, we writeI |= δ to mean
that the constraintδ is satisfied in the interpretationI, and
define it in the expected way.

We will use the notion of an “interval constraint” for a
variablex, which is a constraint whose solution set forx
given any interpretation for variables other thanx, forms
an interval. More precisely, aninterval constraintfor x is a
constraint of the formπl∧πr, whereπl is a positive boolean
combination of simple constraints of the forme ≺ x andπr

is a positive boolean combination of simple constraints of
the formx ≺ e, where≺ stands for one of the relations<
or ≤. We callπl the “left boundary” ofπ, and denote it
by l(π), andπr the “right boundary” ofπ and denote it by
r(π). It will be convenient to view the left boundary of an
interval constraint as a disjunction of conjunctions of sim-
ple constraints, or equivalently as the “minimum of maxi-
mums” of each conjunct. Note that ifπ1 andπ2 are two in-
terval constraints, thenπ1∧π2 is also an interval constraint,
as it can be written as(l(π1) ∧ l(π2)) ∧ (r(π1) ∧ r(π2)).

Let π1 andπ2 be two interval constraints forx. Then the
constraintπ3 = ¬r(π1)∧¬l(π2) is again an interval which
spans from the right boundary ofπ1 to the left boundary of
π2. Note here that negation of right boundary ofπ1 becomes
a left boundary ofπ3 which begins from where intervalπ1

ends. If for some interpretation the intervalsπ1 andπ2 are
overlapping or the intervalπ2 precedesπ1, then this interval
will be empty. This is useful in forcing some ordering over
intervals. For example consider a formula (from a generic
first-order logic interpreted over the reals) of the form

∃y(ϕ ∧ ∃zψ)

Letπ1 = y−1 ≤ x ≤ y+1 andπ2 = z−2 ≤ x ≤ z+2 be
two interval constraints forx. Each value fory andz gives
us an interval of values forx satisfyingπ1 (and similarly
for π2). If we want to restrict ourselves to values ofy and

2

z such that the induced interval forx in π1 comes strictly
“before” that ofπ2, we can modify the formula as follows:

∃y(ϕ ∧ ∃z(ψ ∧ ∃x(¬r(π1) ∧ ¬l(π2))))
= ∃y(ϕ ∧ ∃z(ψ ∧ ∃x(y + 1 < x ∧ x < z − 2)))

In a similar manner, the interval constraintl(π1) ∧ ¬l(π2)
will be nonempty (i.e. have a nonempty solution set) iff
the interval induced byπ1 starts strictly before the interval
induced byπ2, and the interval constraint¬r(π1) ∧ r(π2)
will be nonempty iff the intervalπ1 ends strictly before the
intervalπ2.

As a final piece of notation, we recall the well-known
Fourier-Motzkin method (see [8]) for eliminating variables
from constraints. Consider a conjunction of simple con-
straintsπ. We assume for now thatπ has no strict con-
straints. The constraints inπ can then be written as:

ei ≤ x (i ∈ {1, . . . ,m1})
x ≤ ej (j ∈ {m1 + 1, . . . ,m2})
ek ≤ fk (k ∈ {m2 + 1, . . . ,m3}),

where0 ≤ m1 ≤ m2 ≤ m3, and eachei andfi are expres-
sions not containingx. The variablex can be eliminated
by taking the conjunction of the simple constraints below
which do not containx:

ei ≤ ej (i ∈ {1, . . . ,m1}, j ∈ {m1 + 1, . . . ,m2})(1)

ek ≤ fk (k ∈ {m2 + 1, . . . ,m3}). (2)

We denote this conjunction byfmx(π). The constraint
fmx(π) preserves the solution set ofπ in that it is the pro-
jection of the solution set ofπ to the variables inπ other
thanx. More precisely, ifx, y1, . . . , yn were the variables
in π, then [t1/y1, . . . , tn/yn] is a solution forfmx(π) iff
there existst ∈ R such that[t/x, t1/y1, . . . , tn/yn] is a so-
lution toπ.

The method can be extended to the case when some of
the constraints are strict, by writingei < ej in (1) above
whenever at least one of thei-th or j-th constraints is strict,
and ei ≤ ej otherwise. It can also be extended to elim-
inate x from an interval constraintπ for x. For this we
first rewrite l(π) andr(π) as a disjunction of conjunctsδi
andρi respectively, and then taking the disjunction of each
fmx(δi ∧ ρj).

3 The logic FO(<, +)

We now introduce the first-order logic of linear con-
straints we will be concerned with in this paper. The logic
is denotedFO(<,+) and its formulae are given by the fol-
lowing syntax:

ϕ ::= a(x) | g | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∃xϕ,

wherea ∈ Σ, x ∈ Var , andg is a simple constraint.
The logic is interpreted over timed words overΣ. We

first define thecontinuoussemantics forFO(<,+). Let ϕ
be a formula inFO(<,+). Letσ = (α, τ) be a timed word
over Σ, and letI be an interpretation for variables. Then
the satisfaction relationσ, I |=c ϕ (read “σ satisfiesϕ in the
interpretationI in the continuous semantics”) is inductively
defined as:

σ, I |=c a(x) iff ∃i ∈ N : α(i) = a and τ(i) = I(x)
σ, I |=c g iff I |= g
σ, I |=c ¬ψ iff σ, I 6|=c ψ
σ, I |=c ψ ∧ µ iff σ, I |=c ψ and σ, I |=c µ
σ, I |=c ψ ∨ µ iff σ, I |=c ψ or σ, I |=c µ
σ, I |=c ∃xψ iff ∃t ∈ R≥0 : σ, I[t/x] |=c ψ.

We say that formulaeϕ andψ are (logically)equivalent,
denotedϕ ≡ ψ, if for every timed wordσ and for every
interpretationI, we haveσ, I |=c ϕ iff σ, I |=c ψ.

A variablex is said to occurfree in a formulaϕ if it
has an occurrence outside the scope of a quantifier∃x. A
sentenceis a formula in which there are no free occurrences
of variables. Thus for a sentenceϕ, the interpretation plays
no role, and we write the satisfaction relation as simplyσ |=
ϕ. The timed language defined by anFO(<,+) sentenceϕ
in the continuous semantics is denotedLc(ϕ) and defined
to be{σ ∈ TΣω | σ |=c ϕ}. We denote this continuous
version of the logic byFOc(<,+).

In the pointwiseversion of the logic the quantification
is over action points in the timed word. The satisfaction
relation “|=pw ” for the pointwise semantics is defined as
in the continuous case, except for the∃x clause which is
defined as:

σ, I |=pw ∃xψ iff ∃i ∈ N : σ, I[τ(i)/x] |=pw ψ.

The timed language defined by a sentenceϕ in the point-
wise semantics is defined to beLpw (ϕ) = {σ ∈ TΣω |
σ |=pw ϕ}. We denote the pointwise version of the logic by
FOpw (<,+).

Our aim in this paper is to show that the logicsFOc(<
,+) and FOpw (<,+) are expressively equivalent, in the
sense that the class of timed languages definable by sen-
tences in the two logics coincide.

4 A normal form for FO(<, +) sentences

In this section we exhibit a normal form forFO(<,+)
sentences which will be useful in our proofs. AnFO(<,+)
formula is said to be in∃-normal formif it is of the form

∃x(a(x) ∧ π(x) ∧ α),

wherea ∈ Σ, π(x) is an interval constraint forx, andα is
a conjunction of formulae of the formψ or¬ψ, where each

3

ψ is again in∃-normal form. In addition, we allow any of
the componentsa(x) or α to be absent. We assume that all
the variables are distinct.

The figure below shows an the formula tree of an exam-
ple formula in∃-normal form, and the structure of a formula
tree in normal form.

0 ≤ x ≤ 1

¬∃z∃y

x < y b(z) x < za(y)

∧

∧ ∧

∃x

∧

∨

∧ ¬

∃x

g(w)

∃y

∃z

∧

g(y)

g(x)

b(z) g(z)

∧

a(x)

¬∃w

∧

∧

Figure 2. Formula tree of a formula in ∃-
normal form, and (right) a depiction of a for-
mula tree in normal form.

Theorem 1 EveryFO(<,+) sentence can be transformed
to an equivalent sentence in∃-normal form.

Proof Let ϕ be anFO(<,+) sentence. Sinceϕ is a sen-
tence it must be a boolean combination of sentences of the
form ∃xϕ′. We transformϕ into an equivalent sentence in
∃-normal form by carry out the following steps on its for-
mula tree:

1. In every subtree rooted at a∃ node, push every¬ oper-
ator downwards over∨ and∧ nodes. We stop pushing
when we reach a∃ node or an “action” node of the
form a(x). However we push negations all the way
through the “g” nodes. After this step, the subtree be-
low every∃ node contains only conjunctions and dis-
junctions ofa, ¬a, ∃, ¬∃, andg nodes.

2. In this step and the next we view¬∃ as a single com-
posite node in the formula tree. Pull all the∨’s up-
wards in the formula tree using the following iden-
tities: α1 ∧ (α2 ∨ α3) ≡ (α1 ∧ α2) ∨ (α1 ∧ α3),
∃x(α1∨α2) ≡ (∃xα1)∨(∃xα2), and¬∃x(α1∨α2) ≡
(¬∃x(α1))∧(¬∃x(α2)). Using these identities we can
propagate all the∨ nodes upwards so that each subtree
rooted at a∃ node or¬∃ node contains only conjunc-
tions ofa, ¬a, ∃, ¬∃, andg nodes. It is not difficult to
see that this step terminates (see the Appendix for an
argument).

3. In this step we pull up from a subtree rooted at a∃x
node, all nodes which are independent ofx, namely
nodes of the formb(y), ¬b(y) (with y 6= x), andg
whereg does not containx. This is done by repeatedly
applying the following equivalences starting from the
lower most∃x or ¬∃x nodes:∃x(b(y) ∧ α) ≡ b(y) ∧
∃x(α) and¬∃x(b(y) ∧ α) ≡ ¬b(y) ∨ ¬∃x(α) (when
x 6= y). We can use similar equivalences for¬b(y)
andg to pull them up the tree. Finally, we move all the
newly generated∨’s up the tree using Step 2.

After this step, the subtrees rooted at each∃x node is
a conjunction ofa(x), ¬a(x), ∃, ¬∃ andg(x) nodes.

4. We now update the formula tree with the following
equivalences:a(x)∧b(x) ≡ ⊥, where⊥ is the formula
0 < 0 denoting “false,” anda(x) ∧ ¬b(x) ≡ a(x),
whenevera, b ∈ Σ with a 6= b. After this step the
only action-related nodes in a subtree rooted at a∃x
node are a single action nodea(x) or a conjunction of
negation of actions of the form

∧

a∈A ¬a(x) for some
A ⊆ Σ.

5. We now replace subtrees rooted at∃x nodes which
contain formulae of the form∃x(

∧

a∈A ¬a(x)∧π∧α),
by a disjunction of∃ and¬∃ subformulae which con-
tain at most one action in their “immediate” subtree.
This is described below. We can now pull the newly
generated∨ nodes up the formula tree using Step (2).
After this step the subtree rooted at every∃x node con-
tains only conjunctions ofa(x), ∃,¬∃, andg(x) nodes.
We can then collect theg(x) nodes together to get a
single conjunction of constraintsπ(x). Thus finally
each subtree rooted at a∃ node is in∃-normal form,
and the resulting formula is in∃-normal form.

We now show how we can replace a formulaϕ of the
form ∃x(

∧

a∈A ¬a(x) ∧ π(x) ∧ α) by a disjunction of for-
mulae in∃-normal form. LetA(x) be shorthand for the
formula

∨

a∈A a(x). Thenϕ = ∃x(¬A(x) ∧ π(x) ∧ α).
We claim thatϕ ≡ ψ1 ∨ ψ2 ∨ ψ3 ∨ ψ4 where:

ψ1 = ¬∃x(A(x) ∧ π(x)) ∧ ∃x(π(x) ∧ α)
ψ2 = ∃xl(A(xl) ∧ π[xl/x] ∧ ¬∃x

′(A(x′) ∧ π[x′/x]
∧x′ < xl) ∧ ∃x(π(x) ∧ x < xl ∧ α))

ψ3 = ∃xl(A(xl) ∧ π[xl/x] ∧ ∃xr(A(xr) ∧ π[xr/x]
∧¬∃x′(A(x′) ∧ π[x′/x] ∧ xl < x′ < xr)
∧∃x′′(π[x′′/x] ∧ xl < x′′ < xr ∧ α)))

ψ4 = ∃xr(A(xr) ∧ π[xr/x] ∧ ¬∃x
′(A(x′) ∧ π[x′/x]

∧xr < x′) ∧ ∃x′′(π[x′′/x] ∧ xr < x′′ ∧ α))

This translation can be justified using the figure be-
low which shows the four cases corresponding to each
ψ1, ψ2, ψ3, ψ4 in clockwise order starting from the top left.

4

π π

π

A A A A

x

π

A A AA A

x

A A A

x

A A AA

x

The formulaϕ is satisfied in a given timed word and inter-
pretation iff either there is noA-point in π and there is a
point inπ satisfyingα (ψ1 is satisfied), or there is a point in
π satisfyingα that occurs before the firstA-point in π (ψ2

is satisfied), or between two consecutiveA-points inπ (ψ3

is satisfied), or after the lastA-point in π (ψ4 is satisfied).
We note that we make use of the progressiveness assump-
tion on timed words here: since the action timepoints are
progressive, the set ofA-points cannot be dense inπ. 2

5 Expressive equivalence of FOc and FOpw

In this section our aim is to show that the logicsFOpw (<
,+) andFOc(<,+) are expressively equivalent. It is easy
to translate anFOpw (<,+) sentenceϕ to an equivalent
FOc(<,+) sentence by simply replacing every∃xψ sub-
formula, by∃x(

∨

a∈Σ a(x) ∧ ψ
′), whereψ′ is obtained by

similarly replacing∃ subformulae inψ.
In the converse direction, let us call anFOc(<,+) for-

mulaϕ actively quantified(or simplyactive) if every∃ sub-
formula is of the form∃x(a(x)∧ϕ′), for some actiona ∈ Σ
and formulaϕ′. An activeFOc(<,+) sentence clearly de-
fines the same language of timed words, regardless of the
semantics being pointwise or continuous. Hence, our aim
in the rest of this section is to show how we can go from
an arbitrary formula inFOc(<,+) to an equivalent active
formula.

An arbitrary formula in the continuous semantics has the
advantage of being able to associate any value inR≥0 to
its variables, whereas an actively quantified variable can be
asserted only at the action points in a timed word. As an ex-
ample, consider the language of all timed words over{a, b},
where there is ab in the interval[1, 2] for which there is noa
in the interval[0, 1] which is exactly a distance of one time
unit from it. This language can be expressed inFOc as:

∃x(¬a(x) ∧ 0 ≤ x ∧ x ≤ 1 ∧ ∃y(b(y) ∧ y = x+ 1)).

The same formula in the pointwise semantics however de-
fines only a strict subset of the above language. One can
nonetheless give an equivalent formula in the pointwise se-
mantics, namely

∃y(b(y)∧1 ≤ y ≤ 2∧¬∃x(a(x)∧0 ≤ x ≤ 1∧y = x+1)).

However we need a systematic way of doing this. The
method we propose is to first convert the given formula to

0 1 2
π2(x)

π1(x)
a(y1)

a(y2)

Figure 3. Intervals of x where formula (3) is
satisfied.

normal form, and then essentially replace passively quanti-
fied subformulae by equivalent actively quantified ones.

We will formally define our translation in Lemma 1. We
first illustrate the main ideas behind the translation usinga
sequence of examples of increasing complexity.

In the first examplex is passively quantified:

∃x
(

0 ≤ x ≤ 1 ∧ ∃y(a(y) ∧ x+ 1 ≤ y ≤ x+ 1.2)
)

. (3)

The above formula is true iff there is a point in[0, 1],
from which there is an actiona at a distance which lies in
[1, 1.2]. We can rewrite the formula as follows:

∃y(a(y) ∧ ∃x(0 ≤ x ∧ y − 1.2 ≤ x ≤ 1 ∧ x ≤ y − 1)). (4)

Let π(x) be the constraint0 ≤ x ∧ y − 1.2 ≤ x ≤ 1 ∧ x ≤
y − 1. We can obtain an active formula equivalent to the
formula (4) above:

∃y(a(y) ∧ 1 ≤ y ≤ 2.2), (5)

by using the FM-elimination method to eliminatex from
the interval constraintπ(x). Observe that if (5) is satisfied
at somey = t, then every point in the intervalπ[t/y] will
satisfy (3). Ify = 1.5 then the interval ofxwill be [0.3, 0.5]
and ify = 2.1 then interval ofx will be [0.9, 1].

As the second example, consider the following modified
version of (3):

∃x
(

0 ≤ x ≤ 1 ∧ ¬∃y(a(y) ∧ x+ 1 ≤ y ≤ x+ 1.2)
)

(6)

We can make use of our elimination technique for for-
mula (3) to eliminate the passively quantified variablex
from this formula. We first consider all “intervals” ofx
in [0,1] which satisfy (3) in the given model (the bracketed
region in the figure). The formula (6) is true in that model
iff there are some “gaps” in[0, 1] where formula (3) is not
satisfied. There can be the following four types of gaps:

1. Nox satisfies (3), so the whole of[0, 1] is a gap.

2. A gap from0 to the beginning of the “first” interval of
x satisfying (3).

3. A gap between two “consecutive” intervals ofx satis-
fying formula (3).

4. A gap from the end of the “last” interval ofx satisfying
(3) to1.

5

The formula (6) can be satisfied iff any of the above gaps
exist and these gaps define the intervals ofx that satisfy (6).
We will now give four formulaeψ1, ψ2, ψ3 andψ4 which
characterise the four cases above.

For the first case, there must be noa’s in the interval
from [1, 2.2]. The formulaψ1 below says this:

¬∃y(a(y) ∧ 1 ≤ y ≤ 2.2). (7)

The corresponding interval of values ofx which satisfy (6)
is 0 ≤ x ≤ 1 .

For case2 we need to characterise the first interval for
x where formula (3) is true. Lety1 be a value fory which
satisfies formula (5) in a given model. Let us denote the
corresponding interval ofx generated byy1 by π1(x) =
π[y1/y]. If π1(x) is the first interval ofx satisfying (3), then
there must not exist any valuey2 for y such that it satisfies
formula (5) and the left boundary of its intervalπ2(x) =
π[y2/y] starts beforeπ1. This can be stated as follows:

∃y1

(

a(y1) ∧ 1 ≤ y1 ≤ 2.2

∧¬∃y2
(

a(y2) ∧ 1 ≤ y2 ≤ 2.2 ∧ ∃x(l(π2) ∧ ¬l(π1))
)

)

.

The formula∃x(l(π2)∧¬l(π1)) evaluates to true iff the left
boundary ofπ2 starts beforeπ1. The variablex present here
can be eliminated using FM-elimination to get an active for-
mula. If the above formula is satisfied, then every point in
the interval of0 ≤ x ∧ ¬l(π1) will satisfy (6) as in this in-
terval the formula (3) is not satisfied (becauseπ1 is the first
interval satisfying the formula (3)). One issue still remains:
if π1 starts from0 itself, then even if the above formula is
satisfied, the interval of points satisfying (6) may be empty.
Incorporating this condition we get following formula:

∃y1

(

a(y1) ∧ 1 ≤ y1 ≤ 2.2 ∧ fmx(0 ≤ x ∧ ¬l(π1))

∧¬∃y2
(

a(y2) ∧ 1 ≤ y2 ≤ 2.2 ∧ fmx(l(π2) ∧ ¬l(π1))
)

)

Here conditionfmx(0 ≤ x∧¬l(π1)) ensures that, the inter-
val from 0 to the left boundary ofπ1 is not empty. Finally
eliminating x using FM-elimination, we get the required
formulaψ2:

∃y1
(

a(y1) ∧ 1 ≤ y1 ≤ 2.2 ∧ 1.2 < y1
∧¬∃y2(a(y2) ∧ 1 ≤ y2 ≤ 2.2 ∧ y2 < y1)

) (8)

If any timed word satisfies the formula (8), then it satisfies
the formula (6) for all points in the interval0 ≤ x < y1 −
1.2.

Lety = y1 andy = y2 are satisfying (5) in a given model
and the interval ofx generated byy1 andy2 beπ1(x) and
π2(x). If π1(x) andπ2(x) are disjoint and consecutive in-
tervals then the interval¬r(π1)∧¬l(π2) must be nonempty
and there must not exist any instance ofy = y3 such that it

satisfy (5) and the intervalπ3 has any overlapping with the
interval¬r(π1) ∧ ¬l(π2) This can be stated in the formula
as follows:

∃y1

(

a(y1) ∧ 1 ≤ y1 ≤ 2.2 ∧ ∃y2

(

a(y2) ∧ 1 ≤ y2 ≤ 2.2

∧∃x(¬r(π1) ∧ ¬l(π2))∧

¬∃y3
(

a(y3) ∧ 1 ≤ y3 ≤ 2.2 ∧ ∃x(π3 ∧ ¬r(π1) ∧ ¬l(π2))
)

)

)

Thex present here can be eliminated using FM-elimination
technique to get an active formula. If the above formula is
satisfied, then every point in the interval of¬r(π1)∧¬l(π2)
satisfies (6) as in this interval (3) is not satisfied (becauseπ1

andπ2 are two consecutive intervals satisfying (3) and the
gap between them can not satisfy (3)). Finally, eliminating
x using FM-elimination, we getψ3

∃y1

(

a(y1) ∧ 1 ≤ y1 ≤ 2.2 ∧ ∃y2
(

a(y2) ∧ 1 ≤ y2 ≤ 2.2

∧(y1 + 0.2 < y2)

∧¬∃y3(a(y3) ∧ 1 ≤ y3 ≤ 2.2 ∧ y1 < y3 < y2)
)

)

(9)
If any timed word satisfies (9), then it satisfies (6) for all
points in the intervaly1 − 1 < x < y2 − 1.2.

Let y = y1 is satisfying (5) in a given model and the
interval ofx generated byy1 beπ1(x). If π1(x) is the last
interval ofx satisfying (3), then there must not exist any in-
stance ofy = y2 such that it satisfy (5) and the right bound-
ary of its interval ends afterπ1. Also we make sure that, the
interval from the right boundary ofπ1 to the right bound-
ary of interval[0, 1] is nonempty. This can be stated in the
formula as follows:

∃y1

(

a(y1) ∧ 1 ≤ y1 ≤ 2.2 ∧ fmx(¬r(π1) ∧ x ≤ 1)

∧¬∃y2
(

a(y2) ∧ 1 ≤ y2 ≤ 2.2 ∧ fmx(¬r(π1) ∧ r(π2))
)

)

If the above formula is satisfied, then every point in the in-
terval of¬r(π1) ∧ x ≤ 1 will satisfy (6) as in this interval
(3) is not satisfied (becauseπ1 is the last interval satisfying
(3)). Finally eliminatingx using FM-elimination, we getψ4

∃y1
(

a(y1) ∧ 1 ≤ y1 ≤ 2.2 ∧ y1 < 2
∧¬∃y2(a(y2) ∧ 1 ≤ y2 ≤ 2.2 ∧ y1 < y2)

) (10)

If any timed word satisfies (10), then it satisfies (6) for all
points in the intervaly1 − 1 < x ≤ 1.

Thus we can express (6) as the disjunction of active for-
mulae (7), (8), (9) and (10). The disjuncts above do not
contain the variablex. Nevertheless, for eachψi we have
an interval constraint forx which gives us the values ofx
satisfying formula (6).

As the final example, consider the following modified
version of (6):

∃x
(

0 ≤ x ≤ 1∧
¬∃y(a(y) ∧ x+ 1 ≤ y ≤ x+ 1.2) ∧ ∃z(b(z) ∧ x+ 1 ≤ z)

)

(11)

6

Herex is again a passive variable, but there are multiple
conjuncts under the scope ofx. Letϕ1 = ¬∃y(a(y) ∧ x+
1 ≤ y ≤ x + 1.2) andϕ2 = ∃z(b(z) ∧ z ≥ x + 1). The
above formula (11) is true iff there exists a pointx from
[0, 1] such that bothϕ1 andϕ2 are satisfied. But from the
second example, we know exact intervals in[0, 1] which
satisfyϕ1. We further ask, whetherϕ2 can be satisfied in
the intervals whereϕ1 is already satisfied. We know that
whenϕ1 is satisfied for0 ≤ x ≤ 1, one of theψ1, ψ2, ψ3 or
ψ4 is satisfied. Ifψ1is satisfied, then we check whetherϕ2

can be satisfied in the interval0 ≤ x ≤ 1. That is:

¬∃y(a(y) ∧ 1 ≤ y ≤ 2.2) ∧ ∃x(0 ≤ x ≤ 1 ∧ ϕ2))

Similarly, if ψ2 is satisfied, then we check whetherϕ2 can
be satisfied in the interval0 ≤ x < y1 − 1.2. That is:

∃y1
(

a(y1) ∧ 1 ≤ y1 ≤ 2.2 ∧ 1.2 < y1
∧¬∃y2(a(y2) ∧ 1 ≤ y2 ≤ 2.2 ∧ y2 < y1)
∧∃x(0 ≤ x < y1 − 1.2 ∧ ϕ2)

)

and so on. Now the problem became much simpler as we
need to eliminatex from formulae of the form∃x(π(x) ∧
ϕ2), which is similar to the method we adopted for the
first example. Eliminatingx from all the four cases using
FM elimination we get following formulae and their corre-
sponding intervals:

1.

¬∃y(a(y) ∧ 1 ≤ y ≤ 2.2) ∧ ∃z(b(z) ∧ 1 ≤ z)

The interval constraint for this is:0 ≤ x∧x ≤ 1∧x ≤
z − 1.

2.
∃y1

(

a(y1) ∧ 1 ≤ y1 ≤ 2.2 ∧ 1.2 < y1
∧¬∃y2(a(y2) ∧ 1 ≤ y2 ≤ 2.2 ∧ y2 < y1)
∧∃z(b(z) ∧ 1 ≤ z)

)

The interval constraint for this is:0 ≤ x ∧ x < y1 −
1.2 ∧ x ≤ z − 1.

3.

∃y1

(

a(y1) ∧ 1 ≤ y1 ≤ 2.2 ∧ ∃y2
(

a(y2) ∧ 1 ≤ y2 ≤ 2.2

∧(y1 + 0.2 < y2) ∧ ¬∃y3(a(y3) ∧ 1 ≤ y3 ≤ 2.2

∧y1 < y3 < y2) ∧ ∃z(b(z) ∧ y1 < z)
)

)

The interval constraint for this is:y1 − 1 ≤ x ∧ x <
y2 − 1.2 ∧ x ≤ z − 1.

4.
∃y1

(

a(y1) ∧ 1 ≤ y1 ≤ 2.2 ∧ y1 < 2
∧¬∃y2(a(y2) ∧ 1 ≤ y2 ≤ 2.2 ∧ y1 < y2)
∧∃z(b(z) ∧ y1 < z)

)

The interval constraint for this is:y1 − 1 ≤ x ∧ x ≤
1 ∧ x ≤ z − 1.

We can extend this technique for any number of con-
juncts by pushingx from conjuncts one by one, while
identifying the corresponding interval constraints simulta-
neously.

In Lemma 1 we use induction to formalize these ideas
and show that it is possible to eliminate passive variables
from any formula to derive an equivalent disjunction of ac-
tive formulae and corresponding interval constraints.

We recall that thequantifier depthof anFO formulaϕ
is the maximum number of quantifier nodes along any path
from root leaf in the formula tree forϕ. We say a quantified
variablex in aFOc formulaϕ in normal form, ispositively
quantifiedif in the formula tree ofϕ, the ∃x node is not
present in the subtree rooted at a¬∃y node. For example, in
the formula∃x(π(x)∧¬∃y(∃z(a(z)∧x < z < y))), onlyx
is positively quantified andy, z are not positively quantified
variables as they are under the scope of¬∃y. When a for-
mula is satisfied, all positively quantified variables assume
some value. For example, if formula (9) is satisfied, then
we can say what are the values taken by positively quanti-
fied variablesy1, y2 in the given model, where as we cannot
say anything abouty3 which is not positively quantified.

Finally, we introduce a new operator⊼ which is a slight
modification of∧ operator. Consider the following formula
α = ϕ ∧ ψ. Now assume we have an interval constraint
π(x) which relates the positively quantified variables ofϕ
andψ. If we want to forceα to evaluate to true only when
π(x) is satisfied, we write it asα′ = ϕ ⊼ ψ ⊼ π(x) and
this expression will rearrange the brackets ofϕ andψ such
that all the positively quantified variables of those will be
accessible toψ. Consider this example formula

∃y(a(y) ∧ 1 ≤ y) ⊼ ∃z(a(z) ∧ z = 2)) ⊼ ∃x(y ≤ x ≤ z)

If we replace⊼ by ∧ this formula becomes invalid, since
y, z are outside the scope ofx, but⊼ actually pullsy, z into
the context ofx. Above formula is equivalent to

∃y
(

a(y) ∧ 1 ≤ y ∧ ∃z
(

a(z) ∧ z = 2 ∧ ∃x(y ≤ x ≤ z)
)

)

.

Formally this operator is defined inductively on the struc-
ture ofϕ as follows:

a(x) ⊼ ψ = a(x) ∧ ψ
g ⊼ ψ = g ∧ ψ
¬ϕ′

⊼ ψ = ¬ϕ′ ∧ ψ
∃x(ϕ′) ⊼ ψ = ∃x(ϕ′

⊼ ψ)
(ϕ1 ∧ ϕ2) ⊼ ψ = (ϕ1 ⊼ ϕ2) ⊼ ψ
(ϕ1 ∨ ϕ2) ⊼ ψ = (ϕ1 ⊼ ψ) ∨ (ϕ2 ⊼ ψ)

Lemma 1 Let ψ be a formula of the form∃x(π(x) ∧ α)
whereπ(x) is an interval constraint forx andα is a con-
junction of active formulae in∃-normal form or in negated
∃-normal form. Then

7

• we can eliminatex fromψ and give an equivalent for-
mula of the form

∨

i µi where eachµi is in active nor-
mal form and does not containx.

• Further, for eachµi we have an interval constraint
πi(x) containing the positively quantified variables
yi
1, y

i
2, . . . , y

i
ki

of µi such that:σ, I[t/x] |= π(x) ∧ α
iff for somei, σ, I |= µi with valuesv1, v2, . . . , vki

for
yi
1, y

i
2, . . . , y

i
ki

such thatI[t/x, v1/yi
1, . . . , vki

/yi
ki

] |=
πi.

Proof We proceed by induction on the quantifier depthd of
α.

Base case: For the base case of the induction we have
d = 0. Thusψ is of the form∃xπ(x). The equivalent
formula isfmx(π) and interval constraint isπ(x) itself.

Induction step: Letα have quantifier depthd+ 1. Soα
is of the formα1 ∧ · · · ∧ αn where eachαi is an active for-
mula in∃-normal form or negated∃-normal form, of depth
at mostd+ 1. We now proceed by induction on number of
conjunctsn of α.

Base case with single conjunct: First we consider the
base case wheren = 1. Hereψ is either of the form
∃x(π(x)∧β) or∃x(π(x)∧¬β) whereβ = ∃y(a(y)∧δ∧γ).
Let us writeδ asδ′(x, y)∧δ′′(y), whereδ′(x, y) are the con-
straints inδ containingx. We treat these two cases below.

Single positive conjunct case: In this case,ψ =
∃x(π(x)∧β) = ∃x(π(x)∧∃y(a(y)∧δ′(x, y)∧δ′′(y)∧γ)).
This formula is equivalent to

∃y(a(y) ∧ δ′′(y) ∧ ∃x(π(x) ∧ δ′(x, y) ∧ γ)).

Sinceγ has quantifier depthd or less, by induction hy-
pothesis∃x(π(x) ∧ δ′(x, y) ∧ γ) can be translated to∨iµi

with interval constraintsπi. The final formula is then
∃y(a(y) ∧ δ′′(y) ∧ (∨iµi)), which is equivalent to

∨i(∃y(a(y) ∧ δ
′′(y) ∧ µi)).

Let µ′
i = ∃y(a(y) ∧ δ′′(y) ∧ µi). We prove that the

corresponding interval constraint forx for eachi is πi(x)
itself.

(→): Supposeσ, I[t/x] |= π ∧ β and the value of
positively quantified variabley be t1. This implies that
σ, I[t/x, t1/y] |= π ∧ δ′(x, y) ∧ γ. By induction hypoth-
esis, for somei, σ, I[t1/y] |= µ′

i andI[t/x, t1/y] |= πi. At
y = t1, a(t1)∧ δ

′′(t1) is satisfied, which implies,µ′
i is also

satisfied aty = t1.
(←): Supposeσ, I |= µ′

i with positively quantified vari-
abley taking valuet1, then,σ, I[t1/y] |= µi. By induc-
tion hypothesis, for everyt such that ,I[t/x, t1/y] |= πi

σ, I[t/x, t1/y] |= ∃x(π(x) ∧ δ′(x, y) ∧ γ). Since aty =
t1, a(t1) ∧ δ

′′(t1) is satisfied,σ, I[t/x] |= π ∧ β.
Single negative conjunct case: In this case,ψ =

∃x(π(x)∧¬β) = ∃x(π(x)∧¬∃y(a(y)∧δ′(x, y)∧δ′′(y)∧

γ)). Let ψ′ = ∃x(π(x) ∧ β)) which falls into the previ-
ous case and we can give an equivalent formula∨iµ

′
i with

corresponding interval constraintsπi(x).
For this formula to hold true for anyσ in an interpreta-

tion for all the free variables, we must be able to identify
the gaps in the interval defined byπ(x) whereψ′ is not sat-
isfied. If ψ′ is not at all satisfied in the given model, then
whole of the interval corresponding toπ(x) satisfyψ. If
not, we identify the gaps between the intervalsπi(x) where
ψ′ is satisfied. As discussed, there can be 3 different gaps,
one before the beginning of the first interval satisfyingψ′,
two the gap from the right boundary of one interval to the
left boundary of another interval where those two are con-
secutive intervals satisfyingψ′ and the third one is the in-
terval gap from the last interval satisfyingψ′ to the end of
interval defined byπ.

We use the interval constraints which define the ordering
of the intervals (explained in the preliminaries section) to
identify the first, consecutive and the last intervalsπi(x) in
π(x). For simplicity, when we use these interval constraints
in the equivalent expressions (12),(13), (14),(15) we assume
thatx is eliminated from these constraints using the Fourier-
Motzkin elimination method.

Letµ′
i be the formula obtained by replicating formulaµi,

but renaming every positively quantified variabley of µi by
y′. If y1, . . . yn are the positively quantified variables ofµi,
µ′

i = µi[y
′
1/y1, . . . y

′
n/yn]. If πi is the constraint ofµi, then

π′
i is the constraint ofµ′

i, obtained by renaming positively
quantified variables inπi.

We prove thatψ is equivalent to the disjunction of the
following formulae, with the corresponding interval con-
straints:

1.
fmx(π)

∧

i

¬µi. (12)

The interval constraint isπ(x).

2.

∨

i

(

µi ⊼ fmx(l(π) ∧ ¬l(πi))

⊼
∧

j ¬
(

µ′
j ⊼ fmx(l(πj) ∧ ¬l(πi))

)

)

.
(13)

The interval constraint for each formula(i) is: l(π) ∧
¬l(πi).

3.

∨

i

∨

j

(

µi ⊼ µj ⊼ fmx(¬r(πi) ∧ ¬l(πj))⊼

∧

k ¬
(

µ′
k ⊼ fmx(πk ∧ ¬r(πi) ∧ ¬l(πj))

)

)

.
(14)

The interval constraint forx for the (i, j)-th disjunct is:
¬r(πi) ∧ ¬l(πj).

8

4.

∨

i

(

µi ⊼ fmx(¬r(πi) ∧ r(π))

⊼
∧

j ¬
(

µ′
j ⊼ fmx(¬r(πi) ∧ r(πj)))

)

)

.
(15)

The interval constraint for each formula(i) is: ¬r(πi)∧
r(π).

(→) Supposeψ is satisfied atx = t for someσ and
for some interpretationI, thenψ′ is not satisfied atx =
t. Consider the intervalsπi(x) andπj(x) which satisfyψ′

whereπi(x) ends beforex = t and no other interval ends
afterπi(x) and beforet. Similarly πj(x) starts afterx = t
and no other interval starts aftert and beforeπj(x). Now
every point in the interval¬r(πi)∧¬l(πj) includingt does
not satisfyψ′ and hence satisfyψ. This implies, (14) is true
and I[t/x, I] |= ¬r(πi) ∧ ¬l(πj), whereI represents the
interpretation for the positively quantified variables ofµi

andµj .
But in the intervalπ we may not be able to find outπi(x)

or πj(x) or both. This is handled by formulae (13), (15),
(12) and their corresponding interval constraints.

(←)Let x = t satisfy the equation (14) for someσ and
for some interpretationI. Then,t ∈ ¬r(πi) ∧ ¬l(πj) and
in this interval,µi is false for alli. This impliesψ′ is false
atx = t andψ is true at that point. Similar argument holds
true when any of the (12), (13) and (15) holds true atx = t.

Multiple conjuncts: Consider formulae of the form
ψ = ∃x(π ∧ α1 ∧ α2). By the second induction hypoth-
esis we know that∃x(π∧α1) can be written as∨i(µi) with
corresponding interval constraintsπi(x). We can prove that

∃x(π ∧ α1 ∧ α2) =
∨

i

(

µi ⊼ ∃x(πi ∧ α2)
)

.

(→) If x = t satisfies L.H.S. for anyσ and for any inter-
pretationI, then it should satisfyπ ∧ α1, which impliesµi

is satisfied andσ, I[t/x] |= πi for somei. Sincet must also
satisfyα2, t will satisfy R.H.S.

(←) If x = t satisfies R.H.S., thenσ, I[t/x] |= πi, it will
satisfyπ ∧ α1. But t also satisfiesα2 which implies it will
satisfy L.H.S.

Consider the formulae of the form
∨

i

(

µi⊼∃x(πi∧α2)
)

.

From the single conjunct case, we know that it is possible
to write the formulae of form∃x(πi ∧ α2) as

∨

j(νi,j) with
corresponding interval constraintsδi,j(x). By expanding
over∨s, we get
ψ =

∨

i

∨

j(µi ⊼νi,j) with a corresponding interval con-
straintδi,j(x).

It is possible to extend this to any number of disjunctsαi

in ψ. 2

We can now prove our main theorem.

Theorem 2 The logicsFOc(<,+) and FOpw (<,+) are
expressively equivalent.

Proof As noted in the beginning of this section, it is suf-
ficient to show that we can express everyFOc(<,+) for-
mulaϕ by an equivalent activeFOc(<,+) formula. Any
FOc formulaϕ can be written as a boolean combination of
∃-normal form formulae. Since translation is intact across
the boolean operations, it is sufficient if we can eliminate
all the passive variables from formulae in∃-normal form.
Consider the formula tree of a formula in∃-normal form.
Identify those nodes which are passive and having only
active nodes as ancestors. It is easy to see that, if we
can eliminate passively quantified variables from each of
these trees rooted at these nodes, translation is complete.
Now consider any specific node(N), which is of the form
ψ = ∃x(π(x) ∧

∧

i≤t νi).
We argue that it is possible to convert any passively

quantified formula of the formψ, into an equivalent for-
mula with finite disjunction of active formulae. We prove
this based on induction on number of passive variablesn in
the tree rooted underN .

As a base case, ifn = 1, the passive variable must be
x itself and by Lemma 1, we can convert this formula into
an equivalent formula which is a finite disjunction of ac-
tive formulae. By induction, it is possible to convert any
formula withn < r passive variables into an equivalent for-
mula with finite disjunction of active formulae. Considerψ
with n = r number of passive variables. Sincex itself is a
passive variable andx is a free variable in each ofνi, they
will have utmostr − 1 passive variables. But by induction
eachνi can be expressed as finite disjunction ofµj ’s , which
are active formulae. Then we can normalise the tree below
∃x node and write the expression,

∨

i≤t,j≤v

∃x
(

π(x) ∧ µ′
i,j

)

(16)

where each of theµ′
i,j is in ∃-normal form. Sincex is the

only passive variable in all of the above, using Lemma 1,
we can translate (16), to disjunction of active formulae.2

6 Complexity of Translation

In the second step of the normalization procedure size
of the formula can increase exponentially. The translation
of FOc sentence in normal form to aFOpw sentence can
take exponential space. In the FM method, eliminating a
quantified variable in general leads to a quadratic increase
in the number of constraints, i.e. if there arem constraints
prior to the elimination, there could beO(m2) constraints
after elimination. Thus elimination ofk quantifiers could
increase the size of constraint set toO(m2k

). The transla-
tion of formulae of the form ofψ = ∃x(π(x) ∧ ¬β) in-
troduces four formulae where each one is proportional to
the length of the input formula. This also contributes to the
exponential growth of the translated formula.

9

7 Equivalence of semantics for TPTLS

We recall that the formulae ofTPTLS [2] over the al-
phabetΣ, are defined by the syntax

θ ::= a | g | ¬θ | (θ ∨ θ) | (θUθ) | (θSθ) | x.θ,

wherea ∈ Σ, x is a variable inVar , andg is a simple con-
straint. We first define thepointwisesemantics forTPTLS .
Let θ be aTPTLS formula. Letσ = (α, τ) be a timed
word overΣ, let i ∈ N, and letI be an interpretation for
variables. Then the satisfaction relationσ, i, I |=pw θ is
defined (omitting boolean operators) as:

σ, i, I |=pw a iff α(i) = a
σ, i, I |=pw g iff I |= g
σ, i, I |=pw ¬θ iff σ, i, I 6|=pw θ
σ, i, I |=pw θ ∨ η iff σ, i, I |=pw θ or σ, i, I |=pw η
σ, i, I |=pw θUη iff ∃k : k > i s.t. σ, k, I |=pw η and

∀j : i < j < k : σ, j, I |=pw θ
σ, i, I |=pw θSη iff ∃k : 0 ≤ k < i s.t. σ, k, I |=pw η

and ∀j : k < j < i, σ, j, I |=pw θ
σ, i, I |=pw x.θ iff σ, i, I[τ(i)/x] |=pw θ

For thecontinuoussemantics forTPTLS , the satisfac-
tion relationσ, t, I |=c θ (wheret ∈ R≥0) defined as:

σ, t, I |=c a iff ∃i : α(i) = a and τ(i) = t
σ, t, I |=c g iff I |= g
σ, t, I |=c ¬θ iff σ, t, I 6|=c θ
σ, t, I |=c θ ∨ η iff σ, t, I |=c θ or σ, t, I |=c η
σ, t, I |=c θUη iff ∃t′ : t′ > t s.t. σ, t′, I |=c η and

∀t′′ : t < t′′ < t′, σ, t′′, I |=c θ
σ, t, I |=c θSη iff ∃t′ : 0 ≤ t′ < t s.t. σ, t′, I |=c η

and ∀t′′ : t′ < t′′ < t, σ, t′′, I |=c θ
σ, t, I |=c x.θ iff σ, t, I[t/x] |=c θ

We use the standard syntactic abbreviations of3,3- ,2
and 2- for temporal logic, defined in a way that they are
“reflexive”. Thus, we define3θ = θ ∨ (⊤Uθ), 3- θ =
θ ∨ (⊤Sθ), 2θ = ¬3¬θ, 2- θ = ¬3-¬θ. We note that in
the logicTPTLS , it is possible to express bothU andS
operators using3 and3- operators in both the continuous
and pointwise semantics.

θUη ≡ x.3y.(η ∧ x < y ∧2- z.(x < z ∧ z < y ⇒ θ))
θSη ≡ x.3- y.(η ∧ y < x ∧2z.(y < z ∧ z < x⇒ θ)).

To see thatTPTLS and FO(<,+) are expressively
equivalent in the pointwise as well as continuous seman-
tics, we first note that going fromTPTLS to FO(<,+) is
a standard translation. In the other direction, we translate
anFO(<,+) sentenceϕ, to an equivalent closedTPTLS

formula fo-tptl(ϕ) as follows. We first transformϕ into
its normal form as given in Theorem(1). In the translation

fo-tptl we essentially translate the∃ subformulae via the
rule:

fo-tptl(∃x(a(x) ∧ π(x) ∧ ν)) = 3x.(a ∧ π(x) ∧ fo-tptl(ν))∨
3-x.(a ∧ π(x) ∧ fo-tptl(ν)).

Hence, using Theorem 2, we have

Theorem 3 The pointwise and continuous versions of the
logic TPTLS are expressively equivalent.

8 Discussion

We have shown in this paper that the pointwise and con-
tinuous semantics of the logicFO(<,+) coincide. The
main technical contribution is a way to translate formulae
in FOc(<,+) to equivalent ones inFOpw (<,+). We note
that our results also hold for the logic with general linear
constraints of the forma1x1 + a2x2 + · · · + anxn ∼ c
(which we could denote byFO(<,+)). The only reason
we chose to work with simple constraints was to be able to
deduce the result forTPTLS which is defined with such
constraints.

In future work we need to investigate further the com-
plexity of our translation procedure in terms of both upper
and lower bounds. Also it would be interesting to answer
the question of relative expressiveness of the pointwise and
continuous semantics for the logicTPTL without the since
operator.

References

[1] R. Alur, T. Feder, and T. A. Henzinger. The benefits of relax-
ing punctuality.J. ACM, 43(1):116–146, 1996.

[2] R. Alur and T. A. Henzinger. A really temporal logic.J. ACM,
41(1):181–204, 1994.

[3] P. Bouyer, F. Chevalier, and N. Markey. On the expressive-
ness of tptl and mtl. In R. Ramanujam and S. Sen, editors,
FSTTCS, volume 3821 ofLecture Notes in Computer Science,
pages 432–443. Springer, 2005.

[4] D. D’Souza and P. Prabhakar. On the expressiveness of mtl
in the pointwise and continuous semantics.STTT, 9(1):1–4,
2007.

[5] R. Koymans. Specifying real-time properties with metric tem-
poral logic.Real-Time Systems, 2(4):255–299, 1990.

[6] J. Ouaknine and J. Worrell. On the decidability of metric tem-
poral logic. InLICS, pages 188–197. IEEE Computer Society,
2005.

[7] P. Prabhakar and D. D’Souza. On the expressiveness of mtl
with past operators. In E. Asarin and P. Bouyer, editors,FOR-
MATS, volume 4202 ofLecture Notes in Computer Science,
pages 322–336. Springer, 2006.

[8] A. Schrijver.Theory of linear and integer programming. John
Wiley & Sons, Inc., New York, NY, USA, 1986.

10

Appendix

Lemma 2 Step 2 of normalization procedure terminates.

Proof Consider the formula tree ofϕ. Color a, ¬a andg
nodes green. Color∃ and¬∃ nodes red if the subtree rooted
at these nodes contains an∨ node, otherwise color it green.

Consider a red node∃α or ¬∃α which does not con-
tain any other red nodes in its subtree. The subtree ofα
is a combination of conjunctions and disjunctions of green
nodes. We treat each green node as an atomic node and
rewrite it in disjunctive normal form (DNF). After this step,
nodeα will be of the form∨iαi where eachαi does not
contain any∨ operator. We can pull these∨ operators us-
ing the equivalence∃x(α1 ∨ α2) ≡ (∃xα1) ∨ (∃xα2) and
¬∃x(α1 ∨ α2) ≡ (¬∃x(α1)) ∧ (¬∃x(α2)). The node will
look like∨i∃αi or∧i¬∃αi where each∃αi or¬∃αi is now
colored green.

We repeat the above procedure, till there are no red nodes
in the formula tree. In each step, we reduce one red node
and do not introduce any new red nodes. This implies the
procedure terminates. Finally, as desired all the nodes will
be green and all∨ operators are pulled up to the top of the
tree. 2

For a closed formulaθ in TPTLc
S we show how to give

a formulatptl -fo(θ) in FOc(<,+), which has a single free
variablez, such that for any timed wordσ, σ, t |=c θ if
and only ifσ, [t/z] |=c tptl -fo(θ). The translationtptl -fo
is defined inductively on the structure ofθ as follows:

tptl -fo(a) = a(z)
tptl -fo(g) = g
tptl -fo(¬θ′) = ¬tptl -fo(θ′)
tptl -fo(θ1 ∧ θ2)) = tptl -fo(θ1) ∧ tptl -fo(θ2)
tptl -fo(3θ′) = ∃x(x ≥ z ∧ tptl -fo(θ′[x/z]))
tptl -fo(3- θ′) = ∃x(x ≤ z ∧ tptl -fo(θ′[x/z]))
tptl -fo(x.θ′) = (tptl -fo(θ′))[z/x]

Now we can translate a closed formulaθ in TPTLc
S to

the FOc(<,+) sentenceϕ = ∃z(z = 0 ∧ tptl -fo(θ)), so
that we haveLc(θ) = Lc(ϕ).

11

