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We consider a first-order logic with linear constraints
which can be interpreted naturally in both a pointwise or Figure 1. Timed word o
continuous way over timed words. We show that the two
interpretations of this logic coincide in terms of expressi
ness. As a consequence it follows that the pointwise and
continuous semantics of the logid®® T'L. with the since op-
erator [2] also coincide. We also exhibit a normal form for
formulae in these logics.

The Timed Temporal LogicI{PTL) of Alur and Hen-
zinger [2] is a well-known timed temporal logic for spec-
ifying real-time behaviours. The logic is interpreted over
timed words and extends classidal'l. with the “freeze”
quantifierz.0 which bindsz to the value of the current time
) point, along with the ability to constrain these time points
1 Introduction using linear constraints of the form~ y + c. For example

the formulaz.(Oy.(a Ay = « + 2)) says that with respect

Several real-time logics proposed in the literature have 0 the current time point, arevent occurs exactly two time
been interpreted over timed behaviours in two natural waysUnits later. Once again, the operator can be interpreted in
which have come to be called the “pointwise” and “con- & POINtwise or continuous manner.
tinuous” interpretations. These interpretations can e ca It is not difficult to see that for a typical timed logic the
ried out over the popular model of a timed word which continuous semantics is at least as expressive as the point-
is a sequence of actions along with their associated real-Wise one, since one can ask for a time point to be an action
valued time stamps. In the pointwise semantics formulae pointby assertiny/ s, a (whereX: is the set of possible ac-
may be asserted only at the discrete set of points wherelions) at each quantified time point. For the lo§id’L and
actions occur (the so called “action points”), while in the its variants there have been several results in the litexatu
continuous semantics formulae may be asserted at arbitraryvhich show that the continuous semantics is in fact strictly
time points. To illustrate these semantics, consider thpe po More expressive than the pointwise one [3, 4, 7]. Thus the
ular timed temporal logic Metric Temporal Logid/I(I'L) logics MTL, MTLs (MTL with the “since” operators),

[5, 1, 6], which extends thé& operator of classical.TL MTLg, (MTL with the S; operator), andIITL (MTL re-
with an interval index to allow formulae of the foréit/; 7, stricted to non-singular intervals), are all strictly mave
which says thaf is satisfied until a future time point where pressive in the continuous semantics than their pointwise
n is satisfied, and which lies at a distance that falls in the in- counterparts.

tervalI. Consider a timed word shown in Fig. 1 in which In this paper we consider the expressiveness of the point-
the first action is am at time 2, followed subsequently by wise and continuous interpretations of a natural first-orde
only b's. TheMTL formula< (< pja) (where® ;60 stands  logic with linear constraints which is interpreted overeith

for TU;0) asserts that there is a time potrftom which an words and is similar in flavour t&®'PTL. Thus the logic al-
actiona occurs in the future at a distance of 1. The formula lows atomic predicates of the fora{z) which says that an

is satisfied in the timed word in the continuous semantics, a-event occurs at time point, and constraints of the form
butnotin the pointwise semantics (essentially since there isx ~ y + ¢. The interpretation of the quantifié: depends

no action at time point 1). on the continuous or pointwise semantics: in the continuous



semantics it is interpreted as “there exists a time pojht  all timed words ovei.

while in the pointwise semantics it is interpreted as “there  We now introduce the linear constraints we use in this
exists araction pointz.” As an example, th€'O(<, +) for- paper, and some notation for manipulating them. We as-
mula3z(Jy(a(y) Ay = = + 1)) is satisfied in the example sume a supply of variable¥ar = {z,y,...} which we
timed wordo above in the continuous interpretation while will use in constraints as well as later in our logics. We

it is not satisfied in the pointwise semantics. use restricted linear constraints of the form~ y + ¢ or
Our main resultin this paper is that the expressiveness ofz ~ ¢, wherex andy are variables inVar, ~ is one of the
the logic in these two semantics coincide. The Idg@(< relations in{<,<,=,>,>}, andec € RU {c0}. We call
,+) can be seen to be expressively the samél'BRY'L these constraintsimple constraintsin general, we will al-
with the “since” modality, which we denofEPTLg. Thus low constraints to be boolean combinations of simple con-
our expressive equivalence result carries ovelI'Lg straints given by the syntak::= g | =d | §Ad | 0 V6, where

as well. To our knowledge these are the first instances ofg is a simple constraint.
real-time logics for which the pointwise and continuous se-  An interpretationfor variables is a map : Var — R.
mantics are known to be equally expressive. Fort € R andx € Var we will usel[t/z] to represent the
The main proof idea is to first go over to a normal form interpretation which sends to ¢, and agrees witfi on all
for FO(<, +) sentences in which all quantified subformu- other variables. When we are interested in a finite set of
lae are essentially of the forBw:(a(x) A © A v), wherea variables{z1, ..., x,} we will write [t,/x1,...,t,/z,] tO
is an action inX, 7 is a linear constraint involving;, and represent an interpretation that maps eacko ¢;. For an
v is a conjunction of formulae satisfying a similar restric- interpretationl and a constraint, we writell = § to mean
tion on quantified subformulae. This is similar in spirit to a that the constraint is satisfied in the interpretatidn and
normal form proposed for a sublogic @ TL in [3]. We define it in the expected way.
then show how to transform an arbitrary sentence in normal  We will use the notion of an “interval constraint” for a
form in FO(<, +) to a sentence ifrO(<, +) which uses  variablez, which is a constraint whose solution set for
only “active” quantifiers. We say that the formuba:y is given any interpretation for variables other thanforms
actively quantified ify is of the forma(z) A ¢ for some an interval. More precisely, anterval constrainffor x is a
actiona and formulay; and say it is “passively” quanti-  constraint of the formr; A,., wherer; is a positive boolean
fied otherwise. A sentence in which all quantifiers are ac- combination of simple constraints of the foem< = andr,
tive, is clearly equivalent to a pointwise formula. Thus, we is a positive boolean combination of simple constraints of
show how to eliminate passively quantified variables using the formz < e, where< stands for one of the relatiors
only actively quantified ones. As an example, the formula or <. We call 7; the “left boundary” ofr, and denote it
Jz(1 <z AJy(b(y) Az + 1 <y))is passively quantified. by i(7), andr, the “right boundary” ofr and denote it by
We can eliminater from it to get the equivalent actively (). It will be convenient to view the left boundary of an
quantified formulady(b(y) A 2 < y). interval constraint as a disjunction of conjunctions of sim
ple constraints, or equivalently as the “minimum of maxi-
mums” of each conjunct. Note that#f, andrs are two in-
terval constraints, them; A w5 is also an interval constraint,

o as it can be written ad(m1) A I(m2)) A (r(m1) A r(m2)).
LetN denote the set of non-negative integers, Brahd Letm; andm, be two interval constraints far. Then the

R> the set of reals and non-negative reals respectively. Byconstraintzrg — —r(m) A () is again an interval which

an mterv_al we will mean a convex subset[R),fapd denote spans from the right boundary af to the left boundary of
these using standard notation: for exanipl&) will denote 5. Note here that negation of right boundaryefbecomes
the set{t € R|1 <t <3}. " . a left boundary ofrs which begins from where intervad,

) For an alphabetd we denot_e _byA the set of 'nf" ends. If for some interpretation the intervalsandn, are
mtg words_overA. Let X be a finite alphabgt ,Of, gctlons, overlapping or the intervat, precedes, then this interval
which we fix for the rest of this paper. An (infiniténed i he empty. This is useful in forcing some ordering over
word o over is an element ofX2 x R)~ of the form intervals. For example consider a formula (from a generic

(_ao’to)(al’tl) ;atlsfy|ng the. conditions that: for each gt o rqer logic interpreted over the reals) of the form
i € N, t; < t;1 (strict monotonicity, and for each € R>q

there exists an € N such that < ¢; (progressivene$sFor Jy(p A 3z1)

convenience, we will also assume in this paper that 0.

We will sometimes represent the timed waerdabove asa Letm =y—1<z<y+landm =z—-2<z < z+2be
pair (o, 7), wherea = apay --- andr = oty ---. Thus two interval constraints far. Each value foy andz gives
«(i) andr (i) denote the action and the time stamp respec- us an interval of values far satisfyingmr; (and similarly
tively, in o at positioni. We write 7%.¢ to denote the set of  for 7). If we want to restrict ourselves to valuespand

2 Preliminaries



z such that the induced interval farin ; comes strictly
“before” that ofry, we can modify the formula as follows:

Fy(p A 3z(¢ A Jz(—r(m) A =l(m2))))
(e Az ATz(y+1l<zAhz<z-—2)))

In a similar manner, the interval constrailftry) A —i(72)
will be nonempty (i.e. have a nonempty solution set) iff
the interval induced byt starts strictly before the interval
induced byrs, and the interval constraintr(my) A r(m2)
will be nonempty iff the intervair; ends strictly before the
interval .

As a final piece of notation, we recall the well-known
Fourier-Motzkin method (see [8]) for eliminating variable
from constraints. Consider a conjunction of simple con-
straintsw. We assume for now that has no strict con-
straints. The constraints incan then be written as:

e, < z (ied{l,...,m1})
z < e (je{m +1,...,ma})
er < [ (kE{mg—l—L...,mg}),

where0 < m; < my < mg, and eacle; and f; are expres-
sions not containing:. The variablex can be eliminated
by taking the conjunction of the simple constraints below
which do not contain:

(ie {1,...,m1},j € {m1+1,...,m2}()1)
(ke {ms+1,...,ms}). @)

We denote this conjunction bym (7). The constraint
Jm,.(7) preserves the solution setofin that it is the pro-
jection of the solution set of to the variables inr other
thanz. More precisely, ifr, y1, ..., y, were the variables
in 7, then(ty/y1,...,tn/ys] is @ solution forfm,, () iff
there exists € R such thaft/z,t1/y1, ..., tn/yn] IS a SO-
lution to 7.

eigej
er < fi

wherea € ¥, x € Var, andg is a simple constraint.

The logic is interpreted over timed words over We
first define thecontinuoussemantics folFO(<, +). Letp
be a formula inFO(<, +). Leto = (a, 7) be a timed word
over X, and letl be an interpretation for variables. Then
the satisfaction relation, I |=. ¢ (read ‘o satisfiesp in the
interpretatiort in the continuous semantics”) is inductively
defined as:

o lkca(r) iff FieN: ali)=aand 7(z) =I(z)
olkEcg iff Ikg

o, 1= it o, ¢

olecvAp ff olkE.vYandolE.p
olkEcyvu iff olkE.vorolE.p

o lkE=.3zyp iff 3t eRso: o lt/z] = .

We say that formulae and« are (logically)equivalent
denotedy = 4, if for every timed wordo and for every
interpretatiori, we haver, I =, ¢ iff 0,1 . 9.

A variable x is said to occuffreein a formulay if it
has an occurrence outside the scope of a quaniifierA
sentencés a formula in which there are no free occurrences
of variables. Thus for a sentengethe interpretation plays
no role, and we write the satisfaction relation as sinaph
©. The timed language defined by BO (<, +) sentencep
in the continuous semantics is denotet{) and defined
to be{oc € T=¥ | 0 = ¢}. We denote this continuous
version of the logic byFO°(<, +).

In the pointwiseversion of the logic the quantification
is over action points in the timed word. The satisfaction
relation “=,,,” for the pointwise semantics is defined as
in the continuous case, except for the clause which is
defined as:

o1 ':p’w Jxep

The timed language defined by a sentepci the point-

if  3ieN: o, I[7(i)/2] Epw .

The method can be extended to the case when some ofyise semantics is defined to & (p) = {0 € T |

the constraints are strict, by writing < e; in (1) above
whenever at least one of thieh or j-th constraints is strict,
ande; < e; otherwise. It can also be extended to elim-
inate = from an interval constraint for z. For this we
first rewritel(7) andr(m) as a disjunction of conjunctg
andp; respectively, and then taking the disjunction of each

fma (i A pj).
3 Thelogic FO(<, +)

We now introduce the first-order logic of linear con-
straints we will be concerned with in this paper. The logic
is denoted?O(<, +) and its formulae are given by the fol-
lowing syntax:

a(@) | g - | (@Ap)| (V)| Iz,

P

o =pw ). We denote the pointwise version of the logic by
FOPY(<,+).

Our aim in this paper is to show that the logie®“(<
,+) andFOP" (<, +) are expressively equivalent, in the
sense that the class of timed languages definable by sen-
tences in the two logics coincide.

4 A normal form for FO(<, +) sentences

In this section we exhibit a normal form f&O (<, +)
sentences which will be useful in our proofs. BO(<, +)
formula is said to be id-normal formif it is of the form

Fz(a(x) A7(z) A a),

wherea € 3, 7(z) is an interval constraint far, anda is
a conjunction of formulae of the form or —), where each



1 is again in3-normal form. In addition, we allow any of 3. In this step we pull up from a subtree rooted at:a

the components(z) or « to be absent. We assume that all node, all nodes which are independentzpfnamely
the variables are distinct. nodes of the formb(y), —b(y) (with y # z), andg
The figure below shows an the formula tree of an exam- whereg does not contain. This is done by repeatedly
ple formula ind-normal form, and the structure of a formula applying the following equivalences starting from the
tree in normal form. lower most3z or -3z nodes:Jx(b(y) A a) = b(y) A
Fz(a) and—=3z(b(y) A a) = =b(y) V =Tz () (when
Jx x # y). We can use similar equivalences feb(y)
‘ % andg to pull them up the tree. Finally, we move all the
A . A= 5 newly generated’s up the tree using Step 2.
X
0<z<1 A * After this step, the subtrees rooted at edetnode is
/\ A a conjunction ofi(x), —a(z), 3, -3 andg(x) nodes.
Jy -3z
| | 9w) 4. We now update the formula tree with the following
A A a(z) 9(50 equivalencesa(z)Ab(z) = L, where L is the formula
A /\ 0 < 0 denoting “false,” andu(x) A —b(x) = a(x),
ay) =<y bz) v<z b(z) g(2) 9(w) whenevera,b € 3 with a # b. After this step the
only action-related nodes in a subtree rooted at-a
Figure 2. Formula tree of a formula in  3- node are a single action nodér) or a conjunction of
normal form, and (right) a depiction of a for- negation of actions of the formy , , —~a(z) for some
mula tree in normal form. ACX.
5. We now replace subtrees rooted=at nodes which
contain formulae of the formz (A .. 4, —a(z) ATA),
by a disjunction od and—3 subformulae which con-
Theorem 1 EveryFO(<, +) sentence can be transformed tain at most one action in their “immediate” subtree.
to an equivalent sentence tinormal form. This is described below. We can now pull the newly
generated/ nodes up the formula tree using Step (2).
Proof Let ¢ be anFO(<,+) sentence. Since is a sen- After this step the subtree rooted at evéynode con-
tence it must be a boolean combination of sentences of the  tains only conjunctions af(z), 3, =3, andg(z) nodes.
form Jz¢’. We transformy into an equivalent sentence in We can then collect the(z) nodes together to get a
3-normal form by carry out the following steps on its for- single conjunction of constraints(x). Thus finally
mula tree: each subtree rooted atzanode is in3-normal form,

and the resulting formula is i-normal form.

1. In every subtree rooted aBaode, push every: oper-
ator downwards ovey andA nodes. We stop pushing We now show how we can replace a formyeof the
when we reach & node or an “action” node of the form 3z(A ., —a(z) A 7(z) A «) by a disjunction of for-
form a(z). However we push negations all the way mulae in3-normal form. LetA(x) be shorthand for the
through the “g” nodes. After this step, the subtree be- formula\/ . , a(z). Theny = Jz(-A(z) A 7(x) A a).
low every3 node contains only conjunctions and dis- We claim thatp = 11 V 15 V 13 V 14 Where:
junctions ofa, —a, 3, -3, andg nodes.

Y1 = —Jw(A(x) Am(z)) Ade(r(z) A o)

2. In this step and the next we viewd as a single com- Yo = Fxy(Axy) Anle/x] A -3’ (A(z") A wla’ /2]
posite node in the formula tree. Pull all thés up- A <x)AFe(r(z) Ao <ap A a))
wards in the formula tree using the following iden- ¢35 = Jz;(A(z) A w[z /2] A 3z (A(z,) A 72, /2]
tities: a1 A (a2 V as) = (a1 A ag) V (a1 A az), A—=T2/ (A Arla’ Jx) Ay < @’ < xp)
Jr(anVaz) = (Fraq)V(3zas), and—=Jz(a; Vas) = A" (w[z" [x) Ny < 2" <z A @)))
(=3z(an))A(=3Fz(a2)). Using these identitieswe can ¢y, = Jz,.(A(x,) A wla, /2] A =32’ (A(z") A w2’ /x]
propagate all th& nodes upwards so that each subtree Az < ') AT (wlz” Jx) A < 2" N @)
rooted at ad node or—3 node contains only conjunc-
tions ofa, —a, 3, =3, andg nodes. It is not difficult to This translation can be justified using the figure be-
see that this step terminates (see the Appendix for anlow which shows the four cases corresponding to each
argument). 1, 19,13, 14 in clockwise order starting from the top left.



The formulayp is satisfied in a given timed word and inter-
pretation iff either there is nal-point in = and there is a
point inr satisfyinga (1, is satisfied), or there is a pointin
7 satisfyinga that occurs before the first-point in 7 (5

is satisfied), or between two consecutidepoints inm (v3

is satisfied), or after the last-point in 7 (4 is satisfied).

m1(2) a(y1)

| e !

Figure 3. Intervals of z where formula (3) is
satisfied.

a(y2)

normal form, and then essentially replace passively quanti

fied subformulae by equivalent actively quantified ones.
We will formally define our translation in Lemma 1. We

first illustrate the main ideas behind the translation using

We note that we make use of the progressiveness assumpséguence of examples of increasing complexity.

tion on timed words here: since the action timepoints are
progressive, the set of-points cannot be densein O

5 Expressive equivalence of FO° and FOP"

In this section our aim is to show that the logle®”" (<
,+) andFO°(<, +) are expressively equivalent. It is easy
to translate arFO?" (<, +) sentencep to an equivalent
FO°(<,+) sentence by simply replacing evefy:«) sub-
formula, by3z(\/ .5 a(z) A ¢'), wherey' is obtained by
similarly replacingd subformulae in).

In the converse direction, let us call &®°(<, +) for-
mulay actively quantifiedor simplyactive) if every 3 sub-
formula is of the formdz (a(z) A¢’), for some actiom € ¥
and formulay’. An activeFO°(<, +) sentence clearly de-

fines the same language of timed words, regardless of the

semantics being pointwise or continuous. Hence, our aim
in the rest of this section is to show how we can go from
an arbitrary formula irfO“(<, +) to an equivalent active
formula.

An arbitrary formula in the continuous semantics has the
advantage of being able to associate any valuR.ip to
its variables, whereas an actively quantified variable @an b
asserted only at the action points in a timed word. As an ex-
ample, consider the language of all timed words dveb},
where there is &in the interval1, 2] for which there is na
in the intervall0, 1] which is exactly a distance of one time
unit from it. This language can be expresse®@®‘ as:

Jr(-a(z) N0 <z Az <1AJylby) Ny=x+1)).

The same formula in the pointwise semantics however de-

fines only a strict subset of the above language. One can 2.

nonetheless give an equivalent formula in the pointwise se-
mantics, namely

Fy(b(y) ANl <y < 2A-Fz(a(z)AN0 < x < 1Ay = x+1)).

However we need a systematic way of doing this. The
method we propose is to first convert the given formula to

In the first example: is passively quantified:

3

The above formula is true iff there is a point fio, 1],
from which there is an actioa at a distance which lies in
[1,1.2]. We can rewrite the formula as follows:

Fx(0 <z <1ATylaly) Ae+1<y<z+1.2)).

Jyla(y) NFz(0 <z Ay—12<z<I1Az<y-—1)). (4)

Letw(z) betheconstraim <z Ay—12<z<1Az<
y — 1. We can obtain an active formula equivalent to the
formula (4) above:

Fy(a(y) N1 <y <22), (5)

by using the FM-elimination method to eliminatefrom
the interval constraint (). Observe that if (5) is satisfied
at somey = ¢, then every point in the intervalt/y] will
satisfy (3). Ify = 1.5 then the interval of will be [0.3, 0.5]
and ify = 2.1 then interval ofr will be [0.9, 1].

As the second example, consider the following modified
version of (3):

Jz(0<z<1A-Fylay) he+1<y<z+12)) (6)

We can make use of our elimination technique for for-
mula (3) to eliminate the passively quantified variable
from this formula. We first consider all “intervals” of
in [0,1] which satisfy (3) in the given model (the bracketed
region in the figure). The formula (6) is true in that model
iff there are some “gaps” ifD, 1] where formula (3) is not
satisfied. There can be the following four types of gaps:

1. Noz satisfies (3), so the whole @, 1] is a gap.

A gap from0 to the beginning of the “first” interval of
x satisfying (3).

A gap between two “consecutive” intervalsoatis-
fying formula (3).

4. Agap from the end of the “last” interval afsatisfying

(3)to1.



The formula (6) can be satisfied iff any of the above gaps satisfy (5) and the intervat; has any overlapping with the

exist and these gaps define the intervals tifat satisfy (6).
We will now give four formulaey, 15, 13 and, which
characterise the four cases above.

For the first case, there must be as in the interval
from [1, 2.2]. The formulay; below says this:

—Jyla(y) N1 <y <2.2). @)

The corresponding interval of valuesofvhich satisfy (6)
is0<z<1.

For case2 we need to characterise the first interval for
x where formula (3) is true. Lej; be a value fory which

interval —r(m) A —l(m2) This can be stated in the formula
as follows:

T (@) AL < 1 <2203 (alye) A1 < gp <22
AJx(=r(m) A =l(m))A
=3Jy3 (a(yg) ANl <y3 <22AFJx(rs A—r(m) A ﬂl(ﬂ'g)))))

Thex present here can be eliminated using FM-elimination
technique to get an active formula. If the above formula is
satisfied, then every point in the interval-of (71) A—[(72)
satisfies (6) as in this interval (3) is not satisfied (becayse

satisfies formula (5) in a given model. Let us denote the andr, are two consecutive intervals satisfying (3) and the

corresponding interval of generated by, by 71(z) =
mly1/y]. If m (2) is the firstinterval of: satisfying (3), then
there must not exist any valug for y such that it satisfies
formula (5) and the left boundary of its interva}(z) =
m[y2/y] starts beforer;. This can be stated as follows:

Jy1 (a(yl) ANl <y <22
A=TFya (aly2) A1 < yo < 2.2 A Tz (I(ma) A ﬂl(m)))).

The formuladz(I(m2) A—l(71)) evaluates to true iff the left
boundary ofr, starts beforer,. The variabler present here
can be eliminated using FM-elimination to get an active for-
mula. If the above formula is satisfied, then every point in
the interval of0 < = A —i(m) will satisfy (6) as in this in-
terval the formula (3) is not satisfied (becausds the first
interval satisfying the formula (3)). One issue still rermsi

if 71 starts from0 itself, then even if the above formula is
satisfied, the interval of points satisfying (6) may be empty
Incorporating this condition we get following formula:

31 (a(y) A1 < 1 224 fm, (0 < @ A=l(m)
A=TFya (aly2) A1 <y < 2.2 A fm (I(m2) A ﬁz(m))))

Here conditiorym,, (0 < x A—=i(m)) ensures that, the inter-
val from 0 to the left boundary ofr; is not empty. Finally
eliminating = using FM-elimination, we get the required
formulas:

i (aly) A1 <y <22A12 <y

8
A=Fya(a(y2) A1 <ys <22 Ay < y1)) ®

If any timed word satisfies the formula (8), then it satisfies
the formula (6) for all points in the interval < x < y; —
1.2.

Lety = y; andy = ys are satisfying (5) in a given model
and the interval of: generated by, andy, bem;(x) and
ma(x). If m1(x) andms(x) are disjoint and consecutive in-
tervals then the intervalr (7 ) A —i(m2) must be nonempty
and there must not exist any instanceyof y3 such that it

gap between them can not satisfy (3)). Finally, eliminating
2 using FM-elimination, we geps

31 (a(y) A< 1 <227 3pa(alye) AL < o <22
Ay +0.2 < y2)
A=Fys(a(ys) A1 <ys <2.2Ay <y3 < 2/2)))
9)
If any timed word satisfies (9), then it satisfies (6) for all
points intheinterval; — 1 < x < yy — 1.2.

Let y = y; is satisfying (5) in a given model and the
interval of z generated by, ber; (x). If () is the last
interval ofz satisfying (3), then there must not exist any in-
stance ofy = 1, such that it satisfy (5) and the right bound-
ary of its interval ends after;. Also we make sure that, the
interval from the right boundary af; to the right bound-
ary of interval[0, 1] is nonempty. This can be stated in the
formula as follows:

Jy1 (a(yl) ANl <y <22A fm, (—r(m) Ax < 1)
A=z (aly2) A1 < yo < 224 fm, (~r(m) Ar(m)))

If the above formula is satisfied, then every point in the in-
terval of —r(m1) A z < 1 will satisfy (6) as in this interval
(3) is not satisfied (becaussg is the last interval satisfying
(3)). Finally eliminatingr using FM-elimination, we geap,

Fyr(a(y) A1 <y <22A1 <2
A=TFya(a(ya) N1 < yo <22Ay; < yg))

If any timed word satisfies (10), then it satisfies (6) for all
points in the interval; — 1 < z < 1.

Thus we can express (6) as the disjunction of active for-
mulae (7), (8), (9) and (10). The disjuncts above do not
contain the variable:.. Nevertheless, for each; we have
an interval constraint for: which gives us the values of
satisfying formula (6).

As the final example, consider the following modified
version of (6):

dx (O <x<I1A

“Jylay) Az +1<y<a+1.2)A3z(b(z) Az +1<2))
(11)

(10)



Herex is again a passive variable, but there are multiple ~ We can extend this technique for any number of con-

conjuncts under the scope ®f Let v, = —Jy(a(y) Az + juncts by pushingz from conjuncts one by one, while

1 <y<axz+12)andy; = Iz(b(2) Az > =+ 1). The identifying the corresponding interval constraints sitaul
above formula (11) is true iff there exists a pointfrom neously.

[0, 1] such that bothp; and -, are satisfied. But from the In Lemma 1 we use induction to formalize these ideas
second example, we know exact intervals[inl] which and show that it is possible to eliminate passive variables

satisfy ;. We further ask, whethep, can be satisfied in ~ from any formula to derive an equivalent disjunction of ac-
the intervals wherep; is already satisfied. We know that tive formulae and corresponding interval constraints.

wheny; is satisfied fo) < x < 1, one of they, ¥, 13 or We recall that thequantifier depthof an FO formula ¢
1y is satisfied. Ifyis satisfied, then we check whethey is the maximum number of quantifier nodes along any path
can be satisfied in the intenval< x < 1. Thats: from root leaf in the formula tree faps. We say a quantified

variablez in aFO° formulay in normal form, ispositively
~Fyla(y) A1 <y <22)AJ2(0 <z <1Ap)) quantifiedif in the formula tree ofyp, the 3z node is not

Similarly, if v is satisfied, then we check whethey can present in the subtree rooted atay node. For example, in

be satisfied in the interval < 2 < y; — 1.2. That is: the formuladz(m(2) A=3y(3z(a(z) Az < z < y))), onlyz
is positively quantified ang, z are not positively quantified
Iy (a(y) A1 <y <22A12< variables as they are under the scope-8f. When a for-
A=TFyz(a(y2) N1 <ya <2.2Ay2 < 1) mula is satisfied, all positively quantified variables assum
ANz(0 <z <y —1.2A 902)) some value. For example, if formula (9) is satisfied, then

and so on. Now the problem became much simoler as Wewe can say what are the values taken by positively quanti-
- P P fied variables;, y2 in the given model, where as we cannot
need to eliminate: from formulae of the formdz(m(x) A

©2), which is similar to the method we adopted for the say anything abougs which is not positively guantified.

: Lo . Finally, we introduce a new operatarwhich is a slight
first example. Eliminating: from all the four cases using e . .

AR . . modification ofA operator. Consider the following formula
FM elimination we get following formulae and their corre-

sponding intervals: a =@ /\ 1. Now assume we have an _interva! constraint
' m(z) which relates the positively quantified variablesyof
1. andq. If we want to forcen to evaluate to true only when
m(x) is satisfied, we write it as&’ = ¢ A ¥ A 7(x) and
—Jylaly) N1 <y <2.2) A3z(b(2) A1 < 2) this expression will rearrange the bracketseadind such
that all the positively quantified variables of those will be

The interval constraint forthis i < x Ax < 1Az < . . .
accessible t@). Consider this example formula

z—1.
2. Fylay) N1 <y)ATz(a(z) ANz=2))ATFz(y <z < z)
Fyi(alyi) N1 <y <2201.2<y;
A—Fya(a(y2) A1 < ys <2.2Ay2 < y1) If we replacen by A this formula becomes invalid, since
ATz(b(z) A1 < 2)) y, z are outside the scope of butA actually pullsy, z into

The interval constraint for this i) < z A z < y; — the context ofc. Above formula is equivalent to

12N < z-—1.
Ely(a(y)/\l§y/\§|z(a(z)/\z:2/\5|m(y§z§z))).

3.
Formally this operator is defined inductively on the struc-
1 (a(yl) A<y <220 3y(aly) A<y 220 4 of ¢ as follows:
Ay +0.2 <y2) A-Fys(alys) N1 <yz <22
Ay < ys <y2) AJz(b(z) Ay < z))) a(f) AY = a(z) Ny
gAY = gAY
The interval constraint for thisisj; — 1 < z Az < =" A = ¢ A
Yo — 12N <z —1. Ja(¢') Ay = Jx(¢' AY)
(prAp2) Ay = (p1Apa) Ay
4. (p1Ve) A = (p1AY)V(p2Ad)

Fy(ay) A1 <y <2245 <2

A-Fy2(aly2) A1 < yo 22 Ay1 <y2) Lemmal Let be a formula of the formdz(r(z) A )

Nz (b(z) Ay < 2)) wherer(z) is an interval constraint for: and « is a con-
The interval constraint for thisigy; — 1 <z Az < junction of active formulae ia-normal form or in negated
1INz <z-—1. J-normal form. Then



e we can eliminate: from and give an equivalent for-
mula of the form\/, 1; where eacly; is in active nor-
mal form and does not contain

e Further, for eachy; we have an interval constraint
m;(x) containing the positively quantified variables
Y5, Y5, - - yp of p; such that:o, I[t/z] |= w(x) A o
iff for somei, o, I E p; with valuesvy, va, . . ., vy, for

Yis Y3, - - Yy, Suchthatllt/z, vi/y5, ... vk, /Y]

;.

Proof We proceed by induction on the quantifier degibf
.

Base case: For the base case of the induction we have

d = 0. Thusz is of the form3zn(z). The equivalent
formula isfm, (7) and interval constraint is(x) itself.
Induction step: Let o have quantifier deptti+ 1. So«
is of the forma; A - -+ A o, Where eachy; is an active for-
mula in3-normal form or negated-normal form, of depth

at mostd + 1. We now proceed by induction on number of

conjunctsn of a.

Base case with single conjunct: First we consider the
base case where = 1. Here) is either of the form
Jz(mw(x)AB) or 3x(w(x) A—F) wheres = Jy(a(y) AdAY).
Let us writed asd’(x, y) Ad” (y), whered'(z, y) are the con-
straints ind containingz. We treat these two cases below.

Single positive conjunct case: In this case,yy =
Jz(m(x) AB) = Fz(m(z) ATy (a(y) A& (z, y) A" (y) AY)).-
This formula is equivalent to

Fy(aly) A" (y) A Fa(r(z) A (x,y) A7)

Since~y has quantifier deptld or less, by induction hy-
pothesisdz(w(x) A 6'(z,y) A ) can be translated ta; 11;
with interval constraintst;. The final formula is then
Fy(aly) A 6" (y) A (Viu;)), which is equivalent to

Vi(3y(aly) A 6" (y) A pa))-

Let u; = Jy(aly) A 8" (y) A ;). We prove that the
corresponding interval constraint ferfor eachi is m;(x)
itself.

(—): Supposeo,I[t/z] = = A and the value of
positively quantified variable) be ¢;. This implies that
o, I[t/z,t1/y] = 7™ A& (z,y) A . By induction hypoth-
esis, for some, o,1[t1/y] = 1) andl[t/x,t1/y] = m. At
y = t1, a(t1) N 6" (t1) is satisfied, which impliegy; is also
satisfied ayy = ¢;.

(«): Supposer, I = p) with positively quantified vari-
abley taking valuety, then,o,I[t;/y] &= p;. By induc-
tion hypothesis, for every such that [I[t/z,t1/y] E
o I[t/x,t1/y] E Jx(r(x) A (z,y) Av). Since aty =
t1, a(ty) A 6" (t1) is satisfiedg, I[t/x] = m A S.

Single negative conjunct case: In this case,yy =
e (m () AB) = Fa(m(x) A~3y(aly) A8 (2,9) A" (y) A

7). Lety’ = Jx(w(x) A 5)) which falls into the previ-
ous case and we can give an equivalent formwla, with
corresponding interval constraintg(z).

For this formula to hold true for any in an interpreta-
tion for all the free variables, we must be able to identify
the gaps in the interval defined byx) wheret’ is not sat-
isfied. If ¢’ is not at all satisfied in the given model, then
whole of the interval corresponding to(x) satisfy . If
not, we identify the gaps between the intervalé:) where
" is satisfied. As discussed, there can be 3 different gaps,
one before the beginning of the first interval satisfyifig
two the gap from the right boundary of one interval to the
left boundary of another interval where those two are con-
secutive intervals satisfying’ and the third one is the in-
terval gap from the last interval satisfying to the end of
interval defined byr.

We use the interval constraints which define the ordering
of the intervals (explained in the preliminaries sectiam) t
identify the first, consecutive and the last interval&r) in
m(x). For simplicity, when we use these interval constraints
in the equivalent expressions (12),(13), (14),(15) wemssu
thatz is eliminated from these constraints using the Fourier-
Motzkin elimination method.

Let } be the formula obtained by replicating formulg
but renaming every positively quantified variallef .; by
y'. If y1,...y, are the positively quantified variables of,
wh = iyl /y1s - -yl /yn]. If m; is the constraint ofi;, then
7. is the constraint of:;, obtained by renaming positively
guantified variables im;.

We prove that) is equivalent to the disjunction of the
following formulae, with the corresponding interval con-
straints:

1.
fmo(7) [\ =i (12)
The interval constraint is ().
2.
Ve (17 i) A 1(r0)
(13)
s (7 i 0m) A7) )
The interval constraint for each formulp(s: ((7) A
ﬂl(ﬂ'i).
3.

Vi \/j (,ui A A fmg (=r(mg) A =l(m;))A
N ﬂ(u;@ A fmg (m A= () A ﬁZ(ﬁj)))).

The interval constraint far for the @, 7)-th disjunctis:
—r(m) A =l(my).

(14)



v, (ui R fimy (<) A ()

(15)
R (7 i o) A () ).
The interval constraint for each formulis: —r(m;) A
r(m).

(—) Supposey is satisfied atz = ¢ for someos and
for some interpretatiod, then)’ is not satisfied ar =
t. Consider the intervals;(x) andr;(x) which satisfyy’
wherer;(z) ends beforec = ¢ and no other interval ends
afterm;(x) and before. Similarly 7, (x) starts afterr = ¢
and no other interval starts afteland beforer;(x). Now
every point in the intervahr(m;) A —{(n;) includingt does
not satisfy)’ and hence satisfy. This implies, (14) is true
andl[t/z,I] = —r(m;) A =l(mj), wherel represents the
interpretation for the positively quantified variables ;qf
andy;.

But in the intervalr we may not be able to find out ()
or m;(x) or both. This is handled by formulae (13), (15),
(12) and their corresponding interval constraints.

(«)Let 2 = t satisfy the equation (14) for sonseand
for some interpretatiof. Then,t € —r(m;) A =i(7;) and
in this interval,y; is false for alli. This impliesy’ is false
atx = ¢ andv is true at that point. Similar argument holds
true when any of the (12), (13) and (15) holds true at ¢.

Multiple conjuncts. Consider formulae of the form
v = FJz(w A a1 A az). By the second induction hypoth-
esis we know thallz(w A o1 ) can be written as/; (;) with
corresponding interval constraintg(x). We can prove that
Jz(m Ao Aag) =V, (,ui A Jx(m; A a2)>.

(—) If = t satisfies L.H.S. for any and for any inter-
pretationl, then it should satisfyt A 1, which impliesy;
is satisfied and, I[t/x] |= m; for somei. Sincet must also
satisfyas, t will satisfy R.H.S.

(<) If z =t satisfies R.H.S., them I[t/x] |= m;, it will
satisfym A «q. Butt also satisfiesr, which implies it will
satisfy L.H.S.

Consider the formulae of the forly, (uﬂﬂx(m/\ag) )

Proof As noted in the beginning of this section, it is suf-
ficient to show that we can express evéi®“(<, +) for-
mula ¢ by an equivalent active€O°(<, +) formula. Any

FO° formula can be written as a boolean combination of
3-normal form formulae. Since translation is intact across
the boolean operations, it is sufficient if we can eliminate
all the passive variables from formulae #normal form.
Consider the formula tree of a formula #inormal form.
Identify those nodes which are passive and having only
active nodes as ancestors. It is easy to see that, if we
can eliminate passively quantified variables from each of
these trees rooted at these nodes, translation is complete.
Now consider any specific nod€], which is of the form

¢ =Jz(m(@) A N\i<, vi)-

We argue that it is possible to convert any passively
qguantified formula of the form), into an equivalent for-
mula with finite disjunction of active formulae. We prove
this based on induction on number of passive variablies
the tree rooted undey.

As a base case, #t = 1, the passive variable must be
x itself and by Lemma 1, we can convert this formula into
an equivalent formula which is a finite disjunction of ac-
tive formulae. By induction, it is possible to convert any
formula withn < r passive variables into an equivalent for-
mula with finite disjunction of active formulae. Consider
with n = r number of passive variables. Sincétself is a
passive variable and is a free variable in each of, they
will have utmostr — 1 passive variables. But by induction
eachy; can be expressed as finite disjunction@® , which
are active formulae. Then we can normalise the tree below
Ja node and write the expression,

\/ EIx(w(x) A u;j)

i<t,j<v

(16)

where each of the; ; is in 3-normal form. Sincer is the
only passive variable in all of the above, using Lemma 1,
we can translate (16), to disjunction of active formulag.

6 Complexity of Trandation

In the second step of the normalization procedure size

From the single conjunct case, we know that it is possible of the formula can increase exponentially. The translation

to write the formulae of formiz(m; A a2) asV/;(v; ;) with
corresponding interval constrainds;(xz). By expanding
overvs, we get

¢ =V, V, (i Av; ;) with a corresponding interval con-
straintg; ;(x).

It is possible to extend this to any number of disjunets
in . O

We can now prove our main theorem.

Theorem 2 The logicsFO“(<, +) and FOP"(<,+) are
expressively equivalent.

of FO° sentence in normal form to BO”” sentence can
take exponential space. In the FM method, eliminating a
quantified variable in general leads to a quadratic increase
in the number of constraints, i.e. if there areconstraints
prior to the elimination, there could &@(m?) constraints
after elimination. Thus elimination of quantifiers could
increase the size of constraint SeIO()ka). The transla-
tion of formulae of the form ofy = Jx(n(z) A —f) in-
troduces four formulae where each one is proportional to
the length of the input formula. This also contributes to the
exponential growth of the translated formula.



7 Equivalence of semanticsfor TPTLg

We recall that the formulae afPTLg [2] over the al-
phabet, are defined by the syntax

0u=alg|-0]0V0)|(OUB) | (0S6) |,

wherea € ¥, x is a variable inVar, andg is a simple con-
straint. We first define thpointwisesemantics fol'PTLg.
Let § be aTPTLgs formula. Leto = («,7) be a timed
word overy, leti € N, and letl be an interpretation for
variables. Then the satisfaction relationi,I =,, 6 is
defined (omitting boolean operators) as:

0,5, 1 FEpw a iff a(i)=a

0,0, 1 Epw g if TEg

001 Epy ~0 iff 0,01 e 0

0,0, Epw 0V iff 0,0, 1=y, Qoro,i, =, n

0,4, |Epw 0Un iff 3k k>ist ok, 1 |=p, nand
Viti<j<k:o,5,1Ep0

0,0, L Epy 0SSy iff Fk: 0<k<ist.oklE=pn
andVj: k< j<i,oflEp,0

0,4, 1 Epy .0 ifft 0,4, 1[7(9)/z] =pw 6

For thecontinuoussemantics fofflPTLg, the satisfac-
tion relationo, ¢,I =, 6 (wheret € R>) defined as:

o, E.a iff Fi:a@i)=aand7(i)=1t

a, taH ':C g lff H }Z g

o,t,1 =, 0 ifft o, t, 1.0

ot,IE=.0vn iff o t,Ik.0o0rotlE.n

o, t, 1= 0Un it 3 ¢ >tst. ot/ =.nand
Yt <t <t ot =, 0

o, t,1E.0Sy i F:0<t <tst.ot Ik
and V" : ¢/ <t < t,0,t" 1=, 0

o,t, 1= x.0 ift o, 1t/x] E. 0

We use the standard syntactic abbreviation®o®, O
and & for temporal logic, defined in a way that they are
“reflexive”. Thus, we defineCd = 0 v (TUG), S0 =
0V (TSH), 06 = ~O—0, @30 = =&-0. We note that in
the logicTPTLg, it is possible to express bofli and .S
operators using> and < operators in both the continuous
and pointwise semantics.

0Un =x.0y.mAz<yABz(z<zAz<y=10))
0Sn =z.Qy.nAhy<azADz(y<zAhz<xz=0)).

To see thatTPTLg and FO(<,+) are expressively
equivalent in the pointwise as well as continuous seman-
tics, we first note that going frolPTLg to FO(<, +) is
a standard translation. In the other direction, we traaslat
anFO(<, +) sentencep, to an equivalent close’PTLg
formula fo-tptl(y) as follows. We first transfornp into
its normal form as given in Theorem(1). In the translation
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fo-tptl we essentially translate thé subformulae via the
rule:

fo-tptl(Fz(a(x) Am(z) Av)) = Ox.(a A w(x) A fo-tptl(v))V
Sx.(a ANw(z) A fo-tptl(v)).
Hence, using Theorem 2, we have

Theorem 3 The pointwise and continuous versions of the
logic TPTLg are expressively equivalent.

8 Discussion

We have shown in this paper that the pointwise and con-
tinuous semantics of the logiEO(<, +) coincide. The
main technical contribution is a way to translate formulae
in FO°(<, +) to equivalent ones ilfO?" (<, +). We note
that our results also hold for the logic with general linear
constraints of the fornau,zy + asxs + -+ + apx, ~ ¢
(which we could denote by O(<,+)). The only reason
we chose to work with simple constraints was to be able to
deduce the result fafPTLg which is defined with such
constraints.

In future work we need to investigate further the com-
plexity of our translation procedure in terms of both upper
and lower bounds. Also it would be interesting to answer
the question of relative expressiveness of the pointwiske an
continuous semantics for the logitP TL without the since
operator.
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Appendix

Lemma 2 Step 2 of normalization procedure terminates.

Proof Consider the formula tree @f. Colora, —a andg
nodes green. Colat and—3 nodes red if the subtree rooted
at these nodes contains @mode, otherwise color it green.

Consider a red nodéa or -3« which does not con-
tain any other red nodes in its subtree. The subtree of
is a combination of conjunctions and disjunctions of green
nodes. We treat each green node as an atomic node and
rewrite it in disjunctive normal form (DNF). After this step
nodea will be of the formV,;«; where eachy; does not
contain anyv operator. We can pull these operators us-
ing the equivalenc@z(a; V az) = (zay) V (3xas) and
—Jz(ay V ag) = (—3z(aq)) A (-3z(az)). The node will
look like VV;3ay; or A;—Ja; where eacha; or —3ay; is now
colored green.

We repeat the above procedure, till there are no red nodes
in the formula tree. In each step, we reduce one red node
and do not introduce any new red nodes. This implies the
procedure terminates. Finally, as desired all the nodds wil
be green and al operators are pulled up to the top of the
tree. O

For a closed formuld in TPTLS we show how to give
a formulatptl-fo(0) in FO°(<, +), which has a single free
variable z, such that for any timed word, o,¢ =, 6 if
and only ifo, [t/z] . tptl-fo(#). The translationpti-fo
is defined inductively on the structure as follows:

tptl-fo(a) = a(z)

tptl-fo(g) =y

tptl-fo(—0") = —iptl-fo(8)

tptl-fo(61 A 02)) = tptl-fo(61) A tptl-fo(h2)
tptl-fo (") = Ja(z > z A tptl-fo(0'[z/z]))
tptl-fo(0") = Jx(z < z Atptl-fo(0'[z/z]))
tptl-fo(x.0") = (tptl-fo(0"))[z/x]

Now we can translate a closed form#lan TPTLS to
the FO°(<, +) sentencep = Jz(z = 0 A tptl-fo(h)), so
that we have.©(0) = L¢(p).
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