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The Verification Problem

Given a system model M and a property P about the
model, tell whether M satisfies P or not.

@ Different kinds of system models. Here we are interested in
(idealized) programs.

@ Different kinds of properties: Safety, Temporal, Functionality
based, Performance based, etc. Here we are interested in
safety properties (“an unsafe/bad state is not reachable”). In
particular, “pre-post” properties.
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Example Program and Property

x := 0;
y = 0;
while (%) {
if (x <y)
X++;
else
yt++;
}
// assert y !=x - 1

How would one check that this program satisfies the given
assertion?
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Transition System Model

A transition system 7 is specified by (S, Sp, —), where:
@ S is a set of states
@ Sy C S is a set of initial states

@ —C S x S is the transition relation.
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Idea of Deductive Verification

Problem: Given a transition system . S
T = (S, So,—) and an set of unsafe o

states B C S, does an execution of \ .
T reach a state in B? % . °/

Find a set of states / such that
Q@ So C 1/ (initial states belong to

1) _
Q@ sclands— s, impliess’ €/ — / Do
(I is inductive wrt trans) \ .
© /N B =0 (I disjoint from Bad >~
states). .
Such an [ is called an adequate : "

inductive invariant.
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Idea of deductive verification

y
o—eo
x := 0;
y = 0;
while (x) {
if x <7y ':XSY/
X++; ®
else —o
yt+; Bad: y=x—-1
}

// assert y !'=x - 1

| is an adequate inductive invariant:
© so €/ (initial state belongs to /)
@ sc/lands— s, implies s’ €/ (I is inductive wrt trans)
© /N B =10 (I disjoint from Bad states).
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Floyd-Hoare Style of Program Verification

Robert W. Floyd: “Assigning meanings to programs” Proceedings

of the American Mathematical Society Symposia on Applied
Mathematics (1967)

C A R Hoare: "An axiomatic basis for computer programming”,
Communications of the ACM (1969).
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Floyd-Hoare Logic

A way of asserting properties of programs.

Hoare triple: {A}P{B} asserts that “Whenever program P is
started in a state satisfying condition A, if it terminates, it will
terminate in a state satisfying condition B."

Example assertion: {n >0} P {a = n+ m}, where P is the
program:
int a := m;
int x := 0;
while (x < n) {
a :=a+ 1;
X :=x + 1;

}
Inductive Annotation ( “consistent interpretation”) (due to
Floyd)
A proof system (due to Hoare) for proving such assertions.

A way of reasoning about such assertions using the notion of
“Weakest Preconditions” (due to Dijkstra).
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A Simple Programming Language

skip  (do nothing)

x := e (assignment)

if b then S elseT  (if-then-else)
while bdo S  (while loop)

S; T  (sequencing)
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Programs as State Transformers

@ Program state is a valuation to variables of the program:
States = Var — 7.
o View program P as a partial map [P] : States — States.

States

s: (x—2, y—10, z+— 3)

y =y + 1;
z :=x +y

t: (x—2, y— 11, z+ 13)
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Predicates on States

All States

States satisfying
Predicate A
Eg. 0<xAx<y
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Assertion of “Partial Correctness” {A}P{B}

{A}P{B} asserts that “Whenever program P is started in a state
satisfying condition A, either it will not terminate, or it will
terminate in a state satisfying condition B.”

All States

{10 <y}
y 1=y + 1;
zZ :=x +y

{x < z}
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Mathematical meaning of a Hoare triple

@ View program P as a relation on States (allows
non-termination as well as non-determinism)

[P] C States x States.

Here (s, t) € [P] iff it is possible to start P in the state s and
terminate in state t.

@ [P] is possibly non-determinisitic, in case we also want to
model non-deterministic assignment etc.

@ Then the Hoare triple {A} P {B} is true iff for all states s
and t: whenever s = A and (s, t) € [P], then t = B.

@ In other words Postpy([A]) € [B].
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Example programs and pre/post conditions

// Pre: 0 <= n
// Pre: true

int a := m;
if (a <= b) int x := 0;
min := a; while (x < n) {
else a :=a+1;
min := b; X :=x + 1;
¥

// Post: min <= a && min <= b
// Post: a=m+n
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Floyd style proof: Inductive Annotation

nEJTANi=1A8=0
i—-1

nEJTAIEI AisSn+IAS =2 g
J=1

i~1 n
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=1 Jj=1
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Inductive annotation based proof of a pre/post specification

@ Annotate each
program point / with
a predicate A;

@ Successive
annotations must be
inductive:

[SIIAD) € [Aial,
OR logically:
AiN[S] = Al

@ Annotation is
adequate:
Pre — A; and
A, = Post.

@ Adequate annotation
constitutes a proof of
{Pre} Prog {Post}.
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Example of inductive annotation
To prove: {y > 10}y := y+1; z := x+y {z > x}

y > 10

y =0

y =y +

y>21lAhz=x+y

z>x
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Example of inductive annotation

To prove: {y > 10}y := y+1; z := x+y {z > x}

y > 10
y=20

y =y +
y=>1

z = x +

y>21lAhz=x+y

T~

z>x
Logical proof obligations (VCs):
(y>10 = y>0)A((y>1Az=x+y) = z>x) A
((y>0ny =y+1AX =xn"Z=2) = y'>1) A
(y>1AZ =x+yAX =xA"y =y) = Yy >1AZ =x"+y)
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Exercise 1

Prove using Floyd-style annotation:

Pre: true
e
x :=0
Az
// Pre: true —Q
int x := 0;
while (x < 10) A Az
5 |
x i=x+ 1 Ag Post: x =10
// Post: x = 10 assume .
x < 10
Aq
x = x+1

Also write out the proof obligations (verification conditions).
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Exercise 2

Prove using Floyd's inductive annotation:
{n>1} P {a=n!},

where P is the program:

X := n;

a := 1;

while (x > 1) {
a = a * x;
x :=x -1

Assume that factorial is defined as follows:
nx(n—1)x---x1 if n>1
nl = 1 if n=0
-1 if n<O
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Exercise 2

Prove using Floyd's inductive annotation:
{n>1} P {a=n!},

where P is the program:

S1: x := n;

S2: a := 1;

S3: while (x > 1) {
S4. a := a * x;
S5: x :=x -1

Assume that factorial is defined as follows:
nx(n—1)x---x1 if n>1
nl = 1 if n=0
-1 if n<O
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Hoare's view: Program as a composition of statements

int a := m;
int x := 0;
while (x < n) {
a:=a+1;
X :=x + 1;

}
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Hoare's view: Program as a composition of statements

int a := m; S1: int a := m;

int x := 0; S2: int x := 0;

while (x < n) { S83: while (x < n) {
a :=a+1; a:=a+1;
X :=x + 1; X :=x + 1;

} ¥

Program is S1;82;83
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Proof rules of Hoare Logic

To be read as “If assertion above the line is true, the so is the
assertion below the line".

Axiom of Valid formulas

A

provided “= A" (i.e. Ais a valid logical formula, eg.
x>10 = x >0).

Skip

{A} skip {A}
Assignment

{Ale/x]} = = o {A}



Hoare Logic
00®00000

Proof rules of Hoare Logic

If-then-else

{PAb} S{Q}, {PA-b} T {Q}
{P} if b then S else T {Q}

While (here P is called a loop invariant)

{PAb} S {P}
{P} while b do S {P A —b}
Sequencing
{P} S {Q}, {@} T {R}
{P} S;T {R}
Weakening

P= Q {Q}S{RLR=T
{PySAT}
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Loop invariants

A predicate P is a loop invariant for the

while loop:
while (b) { i
S
}
if {P Ab} S {P} holds. b
If P is a loop invariant then we can infer s
that:

{P} while b do S {P A —b}
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Some examples to work on

Use the rules of Hoare logic to prove the following assertions:
Q {x>3}x :=x+2 {x>5}
Q@ {(y <0)A(-1<x)}if (y <0) then x:=x+1 else x:=y
{0<x}
O {x <0} while (x <5) dox :=x+1 {x=6}
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Example proof using Hoare Logic
Q {(n>0}S1 {n>0Aa=m}

Q (n>0na=m}S2 {n>0Aa=mAx=0} S1: int a := m;
Q .. S2: int x := 0;

// pre: n >= 0

S3: while (x < n) {
S4: a :=a+ 1;
S5: X :=x + 1;

Q {(a=m+xA0<x<nAx<n}S4S5
{a=m+xA0<x<n} (From ...)

Q {a=m+xn0<x<n}S3 }
{a=m+xA0<x<nAx>n} (From While // post: a=m+n
rule, 4)

Program is S1;S2;83
@ {n>0}51;52 {n>0Aa=mAx=0} (From rogram !

Seq rule, 1 and 2)

@ n>0Aa=mAx=0) = (a=m+xA0<
x < n) (From logical axiom)

Q {n>0}5S1;52 {a=m+xA0<x<n} (From
Weakening rule, 6 and 7)

© {n>0} (51;52);S3
{a=m+xAN0<x<nAx2>n} (From Seq
rule, 8, 5)

@ (a=m+xA0<x< nAx>n) = (a=m+n)

@ {n>0} (S1;52);S3 {a= m+ n} (From
Weakening rule, 9, 10).
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Exercise

Prove using Hoare logic:
{n>1} P {a=n!},

where P is the program:

X := n;

a := 1;

while (x > 1) {
a = a * x;
x :=x -1

Assume that factorial is defined as follows:
nx(n—1)x---x1 if n>1
nl = 1 if n=0
-1 if n<O
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Exercise

Prove using Hoare logic:
{n>1} P {a=n!},

where P is the program:

S1: x := n;

S2: a := 1;

S3: while (x > 1) {
S4. a := a * x;
S5: x :=x -1

Assume that factorial is defined as follows:
nx(n—1)x---x1 if n>1
nl = 1 if n=0
-1 if n<O
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Soundness and Completeness

Soundness: If our proof system proves {A} P {B} then
{A} P {B} indeed holds.

Completeness: If {A} P {B} is true then our proof system can
prove {A} P {B}.

@ Floyd proof style is sound since any execution must stay
within the annotations. Complete because the “collecting” set
is an adequate inductive annotation for any program and any
true pre/post condition.

@ Hoare logic is sound, essentially because the individual rules
can be seen to be sound.

@ For completness of Hoare logic, we need weakest
preconditions.
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Weakest Precondition WP(P, B)

WP(P, B) is “a predicate that describes the exact set of states s
such that when program P is started in s, if it terminates it will

terminate in a state satisfying condition B."
All States
WP(P, B)

G {10 <y}

y 1=y +1;
X+y;

{x <z}
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Exercise: Give “weakest” preconditions

o {7 }x :=x+2 {x>5}
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Exercise: Give “weakest” preconditions

QO { x>3}x :=x+2 {x>5}

Q
{7 }
if (y < 0) then x := x+1 else x =y
{x >0}
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Exercise: Give “weakest” preconditions

QO { x>3}x :=x+2 {x>5}

{(y<O0Ax>-1)V(y>0)}
if (y < 0) then x := x+1 else x =y
{x >0}

o {7 } while (x <5) do x :=x+1 {x =6}
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Exercise: Give “weakest” preconditions

QO { x>3}x :=x+2 {x>5}

{(y<O0Ax>-1)V(y>0)}
if (y < 0) then x := x+1 else x =y
{x >0}

© { x <6} while (x <5)dox:=x+1 {x=06}
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Exercise: How will you define WP(P, B)?

All States
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Exercise: How will you define WP(P, B)?

All States

WP(P, B) = {s | Vt[(s, t) € [P] implies t |= B}
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Using weakest preconditions to partially automate inductive proofs

Weakest preconditions give us a way to:

@ Check inductiveness of annotations
{A,} S; {Ai+1} iff A;, — WP(S,‘,AH_]_)

@ Reduce the amount of user-annotation needed

e Programs without loops don’t need any user-annotation
o For programs with loops, user only needs to provide loop
invariants
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Checking {A} P {B} using WP

y>10

y>-1

y =y +

zZ>X

Check that
(y >10) = WP(P,z > x)
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WP rules

@ Hoare's rules for skip, assignment, and if-then-else are already
WP rules.

@ For Sequencing:

WP(S;T, B) = WP(S, WP(T, B)).
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Weakest Precondition for while statements

@ We can “approximate” WP(while b do c¢).

o WP;(w,A) = the set of states from which the body c of the
loop is either entered more than i times or we exit the loop in
a state satisfying A.

o WRP; defined inductively as follows:

WPy, = bVA
WPi,1 = (=bAA)V(bAWP(c, WP;))

@ Then WP(w, A) can be shown to be the “limit" or least
upper bound of the chain WPq(w, A), WP1(w,A),...in a
suitably defined lattice (here the join operation is “And” or
intersection).
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lllustration of WP; through example

Consider the program w below:

while (x > 10) do
x:=x-1

@ What is the weakest precondition of w with respect to the
postcondition (x < 0)7?

e Compute WPy(w, (x <0)), WP1(w,(x <0)), ....
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lllustration of WP; through example

Consider the program w below:

while (x > 10) do
x:=x-1

@ What is the weakest precondition of w with respect to the
postcondition (x < 0)7?

e Compute WPy(w, (x <0)), WP1(w,(x <0)), ....

wp3
wpy

WPg

0 10

Postcondition x < 0
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Automating checking of pre-post specifications for a program

To check:

{y > 10}

y =y +1;
zZ ;=X +Yy;

{x <z}

Use the weakest precondition rules to generate the verification
condition:
(y >10) = (y > —1).

Check the verification condition by asking a theorem prover / SMT
solver if the formula

(y > 10) A =(y > —-1).

is satisfiable.
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What about while loops?

Pre: 0 <= n

int a := m;
int x := 0;
while (x < n) {
a :=a+1;
X :=x + 1;
¥

Post: a=m + n
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Adequate loop invariant

What is a “good” loop invariant for this program?

x := 0;
while (x < 10) {
if (x >= 0)

x = x + 1;
else
x :=x - 1;

}

assert (x <= 11);
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Adequate loop invariant

Canonical Not—inv Inv,not—ind Inv,ind,not—adeq Inv,ind,adeq
Invariant
x := 0;
while (x < 10) { 0Sx<10 5<x 1< x 0< x<12 0< x<11
if (x >= 0)
X = x + 1; -
else 510
X = x - 1;
}

assert (x <= 11);

v

10 5 10 5 10 5 10
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Adequate loop invariant

while (x < n) {

An adequate loop invariant needs to satisfy:
@ {n>0}a:=m; x :=0
WS onaem ta=m+xAx<n}

- @ {a=m+xAx<nAx<n}a :=atl;
x 1= x+1 {a=m+xAx<n}.

@ {a=m+xAx<nAx2>n} skip
a=m+xAx<n
= {a=m+n}.

Verification conditions are generated
accordingly.
Note that a = m + x is not an adequate loop

invariant.
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Generating Verification Conditions for a program

assume Pre

S1 The following VCs are generated:

: . @ Pre A[Si] = InV/
<—— invariant |Inv Or: Pre — WP(Sl,InV)

@ InvAbA[S)] = Inv/
Or: (Inv A b) = WP(Sz, Inv)

@ /nv A—-bA[S3] = Post’
Or: Inv A —-b = WRP(S3, Post)

while (b) {

S

S3

assert Post
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Relative completeness of Hoare logic

Theorem (Cook 1974)

Hoare logic is complete provided the assertion language L can
express the WP for any program P and post-condition B.

Proof uses WP predicates and proceeds by induction on the
structure of the program P.

@ Suppose {A} skip {B} holds. Then it must be the case that
A = B is true. By Skip rule we know that {B} skip {B}.
Hence by Weakening rule, we get that {A} skip {B} holds.

@ Suppose {A} x := e {B} holds. Then it must be the case
that A = B[e/x]. By Assignment rule we know that
{Ble/x]} x := e {B} is true. Hence by Weakening rule, we
get that {A} x := e {B} holds.

@ Similarly for sequencing S;T.

@ Similarly for if-then-else.
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Relative completeness of Hoare logic

@ Suppose {A} while b do S {B} holds. Let
P = WP(while b do S,B).

o Then it is not difficult to check that P is a loop invariant for
the while statement. l.e {P A b} 8 {P} is true. (Exercise!)

e By induction hypothesis, this triple must be provable in Hoare
logic. Hence we can conclude using the While rule, that
{P} while b do S {P A —b} is true.

o But since P was a valid precondition, it follows that
(P A—=b) = B. Since P was the WP, we should have
A = P.

o By the weakening rule, we have a proof of
{A} while b do S {B}.
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Conclusion

@ Features of this Floyd-Hoare style of verification:

o Tries to find a proof in the form of an inductive annotation.

o A Floyd-style proof can be used to obtain a Hoare-style proof;
and vice-versa.

o Reduces verification (given key annotations) to checking
satisfiability of a logical formula (VCs).

o Is flexible about predicates, logic used (for example can add
quantifiers to reason about arrays).

@ Main challenge is the need for user annotation (adequate loop
invariants).

@ Can be increasingly automated (using learning techniques).
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