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Handling programs with procedure calls

How would we extend an abstract interpretation to handle
programs with procedures?

main(){ £0O{ gO{
x := 0; X 1= x+1; £0O;
£0; return; return;
gO; } }
print x;

}
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Handling programs with procedure calls

How would we extend an abstract interpretation to handle
programs with procedures?

main(){ £0O{ gO{
x := 0; X 1= x+1; £0O;
£0; return; return;
gO; } }
print x;

}

Question: what is the collecting state before the print x
statement in main? Answer: x — 2.
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Handling programs with procedure calls

o Add extra edges

o call edges: from
call site (call
p) to start of
procedure p

o ret edges: from
return statement
(in p) to point
after call sites
(call p) (“ret
sites”).
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Handling programs with procedure calls

@ Assume only global
variables.

@ Transfer functions
for call /return
edges?
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Handling programs with procedure calls

f g
@ Assume only global PloN oN
. // ) J N
variables. Fy .
i D x:=x+1 * \“~—» N
@ Transfer functions - - \
for call/return ¢ LN
2 . ret L ret
edges.. Identity P _
function L
@ Now compute JOP - X

in this extended
control-flow graph.
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Problem with JOP in this graph

Ex. 1. Actual collecting
state at C7

f g
70. O\
F¢ [N
«H N
G¢ N
| S Y
ret /’ ret /
E —
_e--
L.
Pt




Motivation
000®000000

Problem with JOP in this graph

Ex. 1. Actual collecting
state at C? {x — 2}.
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Problem with JOP in this graph

Ex. 1. Actual collecting
state at C? {x — 2}.

Ex. 2. JOP at C using f g
collecting analysis? 1?3)\ e
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Problem with JOP in this graph

Ex. 1. Actual collecting
state at C? {x — 2}.

Ex. 2. JOP at C using f g
coIIectilng anal32/sis? E% : o\\
L. H N
éx H} e o ¢
@ JOP is sound but ret I’ e ;
very imprecise. E —
@ Reason: Some h WL
paths don't - K

correspond to
executions of the
program: Eg.
ABDFGILC.
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Problem with JOP in this graph

Ex. 1. Actual collecting
state at C? {x — 2}.

Ex. 2. JOP at C using f g
collecting analysis? //?% Lo
{x—=1 x—=2 x— JH ﬁ
b X=X Tt---Jca N
o ,
@ JOP is sound but ret R ;
very imprecise. E —
@ Reason: Some L.
paths don't - K

correspond to
executions of the
program: Eg.
ABDFGILC.
What we want is Join over “Interprocedurally-Valid” Paths (JVP).
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Interprocedurally valid paths and their call-strings

@ Informally a path p in the extended CFG G’ is
inter-procedurally valid if every return edge in p “corresponds”
to the most recent “pending” call edge.

@ For example, in the example program the ret edge E
corresponds to the call edge D.

@ The call-string of a valid path p is a subsequence of call edges
which have not been “returned” as yet in p.

@ For example, cs(ABDFGEKJHF) is “"KH".
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Interprocedurally valid paths and their call-strings

@ A path p = ABDFGEKJHF in IVPg: for example program:

@ Associated call-string cs(p) is KH.
e For p = ABDFGEK cs(p) = K.
e For p = ABDFGE cs(p) = e.
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Interprocedurally valid paths and their call-strings

More formally: Let p be a path in G’. We define when p is
interprocedurally valid (and we say p € IVP(G’)) and what is its
call-string cs(p), by induction on the length of p.

@ If p =€ then p € IVP(G’). In this case cs(p) = e.
o If p=p'- N then p € IVP(G') iff p/ € IVP(G’) with
cs(p’) =~y say, and one of the following holds:
@ N is neither a call nor a ret edge.
In this case ¢s(p) = .
Q N is a call edge.
In this case cs(p) = - N.
© N is ret edge, and « is of the form ~' - C, and N corresponds
to the call edge C.
In this case cs(p) = 7.

@ We denote the set of (potential) call-strings in G’ by I'. Thus
I = C*, where C is the set of call edges in G'.
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Join over interprocedurally-valid paths (JVP)

@ Let P be a given program, with extended CFG G'.

o Let path; y(G’) be the set of paths from the initial point / to
point N in G'.

o Let A= ((D, <), fun, do) be an abstract interpretation for P.

@ Then we define the join over all interprocedurally valid paths
(JVP) at point N in G’ to be:

| | fo(do)-

p € path; y(G")NIVP(G’)
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Sharir and Pnueli’s approaches to interprocedural
analysis

Micha Sharir and Amir Pnueli: Two approaches to interprocedural
data flow analysis, in Program Flow Analysis: Theory and
Applications (Eds. Muchnick and Jones) (1981).
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One approach to obtain JVP: Call-Strings

Find JOP over
same graph, but
modify the abs int.

Modify transfer
functions for
call/ret edges to
detect and
invalidate invalid
edges.

Augment

underlying data
values with some

information for this.

Natural thing to
try: “call-strings” .

main

call £

call g|--___

print

>
o A
<]4 i é.<]
L\ A -
X '\ |
\ \\
\\ \\ \\
\ ' N
\ \ N
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Overall plan

@ Define an abs int A’ which extends
given abs int A with call-string data.

@ Show that JOP of A’ on G’ coincides
with JVP of A on G'.

@ Use Kildall (or any other technique) to
compute LFP of A" on G’. This value
over-approximates JVP of A on G’.

LFP(G’, A")
[ ]

JOP(G', A') JVP(G’, A)
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Call-string abs int A’: Lattice (D', <')

@ Elements of D' are maps £: T — D

€ =1 e | oo
£

do dp d2 d3

@ Ordering on D’: <’ is the pointwise extension of < in D.
That is

& < & iff for each v € T, &1(7) < &(7).

€ 1 c1cp c1cpcn
§ ’
: / / / /
do dy dy d3
€ < e | o

do dq da d3
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Call-string abs int A’: Lattice (D', <')

@ Induced join is:

€ 5% c1cp c1cpcp
[SRERS

to L eqdy L eg [dp Liey [d3 Lleg

i

€ 1 o c1eoc € c1 1o i
&1 &
do dq d3 d3 € er e 3
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Call-string abs int A’: Lattice (D', <')

@ Induced join is:

€ = cicp | cpec

[SRERS

to L eqdy L eg [dp Liey [d3 Lleg

T T

€ 1 o c1eoc € c1 1o i
&1 &
do dq d3 d3 € er e 3

@ Check that (D', <) is also a complete lattice.
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Meaning of abstract values in A’

@ A call-string table & at program point N represents the fact
that, for each call-string 7, and each concrete state s in
v4(£(7y)), there may be an execution following a path with
call-string ~, leading to s at N.

@ The transfer functions of A’ should keep this meaning in mind.

12

— €| alaefedg
L ~_ Prog Pt M

dg | dp | dp | &3

d
~.4(do) A ()

va(d)

€ c1 |c1e 1000y Prog Pt N

? ? ? ?
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Call-string abs int A’: Initial value &

@ Initial value &g is given by

| do ify=ce¢
So(7) = { 1 otherwise.

€ 1 c1cp cjepcp
o
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Call-string abs int A’: transfer functions

Transfer functions for non-call/ret edge N:

fiun(€) = fun o €.

Transfer functions for call edge N:

/ _ ) ify=9"-N
fun(€) = Ay { 1 otherwise
@ Transfer functions for ret edge N whose corresponding call
edge is C:
fun (&) = Av-€(v - €)

Transfer functions f},, is monotonic (distributive) if each fyy
is monotonic (distributive).
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H /
Transfer functions f,,,, for example program

@ Non-call/ret edge B:

&g = fapoéa.

o Call edge D:

@ Return edge E:

ée(r) = &6(1 D).

otherwise - Lo
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Exercise 1

Let A be the standard collecting state analysis. For brevity, represent a set of concrete
states as {0, 1} (meaning the 2 concrete states x — 0 and x — 1). Assume an initial
value dy = {0}.
Show the call-string tagged abstract states (in the lattice .A’) along the paths

@ ABDFGEKJHFGIL (interprocedurally valid)

@ ABDFGIL (interprocedurally invalid).

main f
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Correctness claim

Assumption on A: Each transfer function satisfies fyn(L) = L.

Let N be a point in G'. Then

JVPA(N) = |_| JOP4(N)(%).

yer

Proof: Use following lemmas
to prove that LHS dominates
RHS and vice-versa.

IVP Paths reaching N Paths reaching N
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Correctness claim: Lemma 1

Let p be a path in IVPg/. Then

o fo(do) ify = cs(p)
fp(fo) = A7 { 1 otherwise.

1 cs(p) | c1coep

Proof: by induction on the length of p.
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Correctness claim: Lemma 2

Let p be a path not in /VPg/. Then

f1(€0) = Ay.L.

€ =1 o e

L L L L

Proof:
@ p must have an invalid prefix.
@ Consider smallest such prefix o - N. Then it must be that « is
valid and N is a return edge not corresponding to cs(«).
@ Using previous lemma it follows that £ ,(&o) = Avy.L.

@ But then all extensions of « along p must also have transfer
function A\y.L.
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Exercise 2

Use Kildall's algo to compute the LFP of the A’ analysis for the
example program. Start with initial value dp = {0}.

g
O\\\
J .
H i

main f
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Exercise 2

Use Kildall's algo to compute the LFP of the A’ analysis for the
example program. Start with initial value dp = {0}.

main f g
€ O\\\
{0} L AN
H 8
€ K
{0} \
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Exercise 2

Use Kildall's algo to compute the LFP of the A’ analysis for the
example program. Start with initial value dp = {0}.

main f g
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Exercise 2

Use Kildall's algo to compute the LFP of the A’ analysis for the
example program. Start with initial value dp = {0}.

main f g
€ O\\\
{0} L AN
H 8
€ \\
{0y \
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Computing JOP for abs int A’

@ Problem is that D’ is infinite in general (even if D were
finite). So we cannot use Kildall's algo to compute an
over-approximation of JOP (it may not terminate when the
program has recursive procedures).
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Available expressions

@ An expresssion (like
“ax b") is available
along an execution if

Ai
there is a point where 1 S 7
read a,b / / 7
B

the expression is P
evaluated and thereafter o, G‘v+
none of the constituent
variables (like a and b)

are written to. 3 N 9
=7 “Ycall p
call p |~

@ An expression is available

at a point N in a 10
. t:=a*b
program, if along every i y
execution reaching N, M« j)
the expression is Ne. R
i \ 11
available. oo 1 ret

@ Is a* b available at
program point D7
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Available expressions

@ An expresssion (like
“ax b") is available
along an execution if

Ai
there is a point where 1 S 7
read a,b / / 7
B

the expression is P
evaluated and thereafter o, G‘v+
none of the constituent
variables (like a and b)

are written to. 3 N 9
=7 “Ycall p
call p |~

@ An expression is available

at a point N in a 10
. t:=a*b
program, if along every i y
execution reaching N, M« j)
the expression is Ne. R
i \ 11
available. oo 1 ret

@ Is a* b available at
program point D7 Yes.
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Available expressions analysis

@ 0 (not available)
@ 1 (available)
o L

Lattice for Av-Exp analysis for
axb.

@ “0" concretizes to the
set States x {A, NA};
while “1" concretizes to
States x {A}. “L"
concretizes to ().

@ JOP of analysis says
a* b is not available at
program point N.
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Available expressions analysis

@ 0 (not available)
@ 1 (available)
o L

Lattice for Av-Exp analysis for
axb.

@ “0" concretizes to the
set States x {A, NA};
while “1" concretizes to
States x {A}. “L"
concretizes to ().

@ JOP of analysis says
a* b is not available at
program point N.

@ JVP says it is available.
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Computing JOP for abs int A’

@ We give two methods to bound the number of call-strings we
need to consider, when underlying lattice (D, <) is finite.
o Give a bound on largest call-string needed.
o Use “approximate” call-strings.
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Bounded call-string method for finite underlying
lattice D

@ Possible to bound length of call-strings [ we need to consider.

@ For a number /, we denote the set of call-strings (for the given
program P) of length at most /, by I'}.

@ Define a new analysis A" (M-bounded call-string analysis) in
which call-string tables have entries only for Iy, for a certain
constant M, and transfer functions ignore entries for
call-strings of length more than M.

e We will show that JOP(G’, A”) = JOP(G', A').

LFP(G’, A")
LFP(G’, A") °
o/
ﬁ [ ] [ ]

JOP(G', A") JOP(G', A') JVP(G’, A)
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LFP of A" is more precise than LFP of A’

Consider any fixpoint V/ (a vector of tables) of A’.

Truncate each entry of V'’ to (call-strings of) length M, to get
V7.

Clearly V'’ dominates V”.

Further, observe that V" is a post-fixpoint of the transfer
functions for A",

By Knaster-Tarski characterisation of LFP, we know that V"
dominates LFP(A”).

LFP(G’, A")
LFP(G’, A") °
[ )
ﬁ [ ] [ ]

JOP(G', A") JOP(G', A') JVP(G’, A)
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Sufficiency (or safety) of bound

Let k be the number of call sites in P.
Claim

For any path p in IVP(r1, N) with a prefix g such that
lcs(q)| > k|D|?> = M there is a path p’ in IVP(r1, N) with
les(q')| < M for each prefix g of p/, and f,(do) = fy(dp).

Paths with bounded call-strings

N
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Proving claim

For any path p in IVP(ry, N) such that for some prefix g of p,
les(q)| > M = k|D|?, there is a path p’ in IVPr,,(r1, N) with
for (do) = fp(db).

o Sufficient to prove:

For any path p in IVP(ry, N) with a prefix g such that
les(q)| > M, we can produce a smaller path p" in IVP(r1, N) with

for (do) = f5(do).

e ..since if |p| < M then p € IVPr,,.
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Proving subclaim: Path decomposition

A path p in IVP(r1, n) can be decomposed as

pill(er rpo)llp2ll(c2; rs)llosll - - - [ (cj1, 7)) -

where each p; (i <) is a valid and complete path from rp; to ¢;,
and p; is a valid and complete path from rp, to n. Thus

C1,...,Cj—1 are the unfinished calls at the end of p.
4
30—
) < P4
] P3
1 @ o
! P2
0
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Proving subclaim

Let po be the first prefix of p where |cs(po)| > M.

Let decomposition of pg be

pll(er, r,)llp2ll(e2, rs)llosll - - - Ml (¢—1, 7))l -

Tag each unfinished-call c in pg by (c, fg.c(db), fg.cqre(db))
where e is corresponding return of ¢ in p.

If no return for c in p tag with (c, fg.c(do), L).
Number of distinct such tags is k - |D|?.

So there are two calls gc and gcq’c with same tag values.
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Proving subclaim — tag values are |

,,,,,,,,,,,,,,, Procedure F
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Proving subclaim — tag values are not |

ffffffffff ----ProcF
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Approximate (suffix) call-string method

We assume WLOG that the main procedure does not call itself.

Idea:

@ Consider only call-strings of length </, for some 1 < /.

@ For | = 2, call-strings can be of the form “c;" or “c1” etc,
but not “cicrc3”. So each table € is now a finite table.

@ Transfer functions for non-call/ret edges remain same.

@ Transfer functions for call edge C: Shift each v entry to v - C
if |7 C| < [; else shift it to ' - C where 7 is of the form A -~/
for some call A.

@ Transfer functions for ret edge N:

Consider each v of the form o/ - C, where N corresponds to
call edge C. Let the first call in v be from some procedure p.
If there exists a call to procedure p, then shift « entry to

A -+, for each call A to procedure p.

If there are no calls to procedure p (in which case p must be
main) shift ~ entrv to ~/
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From Sharir-Pnueli 1981, p136 of typed version

string. As long as the length of a call string is less than j
update it as in Section 4. However, if g is a call string of
length j, then, when appending to it a call edge, discard the first
component of q and add the new call block to its end. When append-
ing a return edge, check if it matches the last call in g and, if
it does, cdelete this call from g and add to its start all possible

call blocks which call the procedure containing the first call in g.

This approximation may be termed a call-string suffix approximation.
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Correctness

@ Define a syntactically feasible call-string ~y in program P to be
any string in the regular language corresponding to the
potential calls sequences in P.

@ Concrete executions (nstate’) are call-string tagged concrete
states.

@ Concretization Yapprox Of an approximate call-string table ¢ is
the union (over entries o — d in £) of concrete states in
~va(d) tagged with all syntactically feasible call-strings with
suffix a.
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Exercise: approximate call-strings

Assume approximate call-string length of 2. Use Kildall's algo to
compute the £ table values for the example program. Start with

initial value dp = 0.
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Exercise: approximate call-strings

Assume approximate call-string length of 2. Use Kildall's algo to
compute the £ table values for the example program. Start with

initial value dp = 0.
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Exercise: approximate call-strings

Assume approximate call-string length of 2. Use Kildall's algo to
compute the £ table values for the example program. Start with

initial value dp = 0.
6

onm
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Exercise: approximate call-strings

Assume approximate call-string length of 2. Use Kildall's algo to
compute the £ table values for the example program. Start with

initial value dp = 0.
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Exercise: approximate call-strings

Assume approximate call-string length of 2. Use Kildall's algo to
compute the £ table values for the example program. Start with

initial value dp = 0.
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