Interprocedural analysis: Sharir-Pnueli’s
functional approach

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

22 September 2023



Outline

o Functional Approach

© Example
e Iterative Approach

Q@ Exercises



Functional Approach

9000000000000 0000000O00000

Equation solving approach

In non-procedural case, we set up equations to capture JOP
assuming distributivity. Least solution to these equations gave us
exact/over-approx JOP depending on distributive/monotonic

framework.
xa = 0
xg = fi(xa)
Xc = xpUXg
xp = f(xc)

xe = fa(xp)
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Equations to capture JOP: why it works

@ We want JOP at N.

@ Suppose M is an intermediate
point such that all paths to N
pass through M.

@ If transfer functions are
distributive, then we can take
join over paths at point M, and

then join over paths from M to
N.




Functional Approach
00®0000000000000000000000

Equation solving: Problems with naive approach

@ Try to set up similar
equations for xy (JVP
at program point N).

@ How do we describe
xp in terms of x,7
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Instead try to capture join over paths first

@ Set up equations to capture join over complete paths.

@ Now set up equations to capture JVP using join over
complete path values.
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Notation

-=20 6
// ’/ 7
@ Root of procedure s —
p is denoted r,. o/
@ Exit (return) of
procedure p is «
denoted e,.
@ Sometimes use r;
1
for rmain- 4 ti=a*b 0
@ Assume WLOG that Y
N N M @]
main is not called. N SR
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Valid and complete paths

@ A path pin G’ is valid and complete if it is an

interprocedurally valid path in G’ and the associate call-string
is empty.

@ Denote the set of such valid and complete paths by /VPy(G’)
@ Thatis p € IVPo(G') iff p € IVP(G') and cs(p) = e.
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Example paths

An example valid path in IVP(r,1):

(S

|

Path “FGHLFKJMIJ" is valid and complete and is in IVPq(rp, J).
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Basic idea: Why join over complete paths help

An IVP path p from r; to N in procedure p can be written as § - n
where ¢ is in IVP(r1, rp), and 7 is in IVPq(rp, N).

p N

Path 7 is suffix after last pending call to procedure p was made.
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Join over valid and complete paths from r, to N

For a procedure p and node N in p, define:
Gryn i D — D

given by
Pron(d) = | ] fo(d)-

paths p€IVPo(rp,N)

®r,,n is thus the join of all functions f, where p is an
interprocedurally valid and complete path from r, to N.

We call ¢, v the Join over Valid and Complete Paths (JVCP)
from r, to N.
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Visualizing ¢,, n

p

5

L/‘ ¢rp,N(d)

d’

&

L/‘ ¢rp,N(d/)
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Using ¢,, n's to get JVP values

n

¢rp,N

Assuming distributivity of underlying transfer functions, JVP value
at N equals ¢,, v applied to JVP value at rp.
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Equations (1) to capture ¢, v

Yro,rp = ’dD (

YoN = funoyrp,m  (stmt)

Yo, N = Yrqeq © Yrp,M (Ca//)

Yo, N = YL U Yrp,M (_]Oln) call g
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Example: Available expressions analysis

@ 0 (not available)
°
°

Lattice for Av-Exp
analysis.

1 (available)

1
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Functions we will use for example analysis

e D={1,1,0}.
@ 0: D — D given by
1 - 1
0 — 0
1 — 0
e 1: D — D given by
1 - 1
0 — 1
1 — 1
e id : D — D given by
1 - 1
0 — 0
1 — 1

@ Ordering: 1 <id <0.
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Example: Equations (1) for ¢’s

ya,A
ya.B
YA, C
YA,P
YA,D
YAE

YF,F
YF,G
YF.K
YF.H
YF,Q
YF,I

YF.J

id
O0oyan
loyas
YF,J0YAC
loyap
idoyap

id

id o yr F
id o yr F
Ooyrc
YF,J O YF,H
loyre
Yri1UYyrk

IX
pead o,
read a,b

B
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Using ¢,, n's to get JVP values

n

¢rp,N

Assuming distributivity of underlying transfer functions, JVP value
at N equals ¢,, v applied to JVP value at rp.
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Equations (2) to capture JVP

x1 = do
Xrp = I—lcalls Ctop Xc
v = G, N(Xr,) for N € ProgPts(p) — {rp}-



Functional Approach
00000000000000000e0000000

Example: Equations for xy’s (JVP)

x¢ = ¢rc(xF)
xk = ¢rk(xF)
xH = ¢rH(xF)
xQq = ¢ra(xF)
xi = ¢r(xF

)
x; = ¢rs(xF).
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Example: Equations for xy’s (JVP)

x¢ = id(xF) Pe 1

xk = id(xF)

XH = O(XF) S

XQ = O(XF) \\N.\

X| = l(X/:) \\\\
x; = id(x)

Fig. shows values of ¢,, n's in bold.
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Solving a system of equations using Knaster-Tarski Theorem

Given equations (E;)

yi = fla,...,¥n)

Yn = fn(y17~--7)/n)

Consider a complete lattice (D, <) such that:
@ D is closed under each f;.
@ Each f; is a monotonic function on this lattice: if
(di,...,dn) < {e1,...,epn) then fi(di,...,dn) < fi(e1,...,en).
e Equivalently, the function F on (D", <) given by

F((dh,....dn) = (fi(d,....dn),... Fod, ... dn)),

is monotonic.

Then, by Knaster-Tarski, the function F on (D", <) has a LFP,
which coincides with the least solution (in D") to equations (Ej).
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Solving Eq (1) using Knaster-Tarski

e Consider lattice (F, <) of functions from D to D, obtained by
closing the transfer functions, identity, and f, : d — L under
composition and join. (Alternatively we can take F to be all
monotone functions on D.)

@ Ordering is f < g iff f(d) < g(d) for each d € D.

e (F,<)is also a complete lattice.

e f induced by Eq (1) is monotone on complete lattice (F, <).

o Sufficient to argue that function composition o is monotone
when applied to monotone functions.
o Join operation | | is monotone.

@ LFP / least solution (say yr n'S) exists by Knaster-Tarski.

@ Each yr’; n is necessarily monotonic.
b
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Correctness claim |

@ The least solution to Eq (1) dominates ¢, n's (i.e.

¢r,n < yy  for each N).

Q &, n's are the least solution to Eq (1) (i.e. ¢, n = y::,,N for
each N) when fyy's are distributive.
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Proof

© For part 1:

o Let g, v be any
monotone solution
to Eq (1).

e Sufficient to prove:
For each d € D,
and p an IVP, path
from r, to N,
£,(d) < g,n(d).

e Proof by induction
on length of path p.

@ For part 2: Prove that
¢r,,n's are a solution
to Eq (1), and hence
they will dominate the
least solution.
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Using Kildall to compute LFP

@ We can use Kildall's algo to compute the LFP of these
equations as follows.

o Initialize the value at all program points with RHS of the
constant equations (in this case id at entry of procedures), and
the bottom value (in this case f, ).

o Mark all values

o Pick a marked value at point say N, and “propagate” it (i.e.
for any node M in the LHS of an equation in which N occurs
in the RHS, evaluate M and join it with the existing value at
M). Mark as before in Kildall's algo.

@ Stop when no more marked values to propagate.

o Kildall's algo will compute y:;  if D is finite. Note that finite
height of (D, <) is not sufficient for termination.
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Correctness and Algo |l

Consider Eq (2)":

x1 = dy
Xrp = I—lcalls Ctop Xc
v = yp n(x) for N € N, — {r,}.

(Recall that ¥y, n's are the least solution of Eq (1).)

o f induced by Eq (2)" is a monotone function on the complete
lattice (D, <).
@ LFP / least solution (say xy's) exists by Knaster-Tarski.

JVP values are the least solution to Eq (2)' (i.e. JVPy = xy)
when fyn's are distributive. Otherwise JVPy < xj; for each N.

Kleene/Kildall's algo will compute x3,'s (assuming D finite).
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Example: Computing ¢, n's (y;;,v to be precise) using Kildall's algo

yaa = id

yaB = 0o YAA
yac = loyag
Yap = YFJOYAC
YAD = 1o YA,P
YAE = lIdoyap
yer = id

Yrc = IdoyrF
YFk = IdoyrF
yeH = 0oyrg
YF,Q = JYFJOYFH
year = loyrg

Yry = YriUYrk
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Example: Computing JVP values (x;'s to be precise)

0 /Xid

0(xa) .‘ -
xc = 1(xa) FB 3 s G¢ P
xp = 1(xa) .
xp = 1(xa) - an e H
xe = 1(xa) cl 1 H$ 0 »
XF = XcUxy .
x¢ = id(xF) Q0 .
xk = id(xF) = ar 2
XH = O(XF) ~o g Legq
xq = O0(xF) N Ma Jid
I - l(XF) - ST ret =

x; = id(xg).
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Example: Computing JVP values (x;'s to be precise)

—--20 ©
w0 ¥y i
5 = 00 o o] o/ (im0
xe = 10a) B¢ O S G¢ id
xp = 1(xa) il o 1
xp = 1(xa) - an e H
xe = 1(x / ' H ¢ 0
E (A) '//,’ \\\\\ 1 o ,'dK
XF = XcUxy . 1
x¢ = id(xF) v
xk = id(xF) g o= arg?
XH = O(XF) S ¢ Fe1 n
Yo = 00x) N M e
X/ = l(X/:) s . &
x; = id(xF). I B

ll
Fig shows initial (red) and final (blue) values.
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Example: Computing JVP values (x;'s to be precise)

- 6

xa = 0 //7F(¢)i%
Xg = O(XA) ’ ,’/ H r
Xc = l(XA) O, ,’/ G¢ ”
Xp = l(XA) ‘ “’ ’O
o = =

= ! H4 0
* Hoo T . < : c idK
XF = xclUxy ‘ L
x¢ = id(xF) io
xk = id(xF) AF = arh ’
xv = 0(xr) . : 1
xq = 0(xF) e My Jid
xi = 1(x¢) RN e
x; = id(xF). I B

Fig shows initial (red) and final (blue) values.
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Summary of functional approach

@ Uses a two step approach
© Compute ¢, n's (JVCPs for each function).
@ Compute x,'s (JVPs) at each point.
Summary of conditions: For each property (column heading), the
conjunction of the ticked conditions (row headings) are sufficient
to ensure the property.

| | Termination | Least Sol of Eq(2) > JVP | Least Sol of Eq(2)= JVP |

v

fpn's monotonic
Finite underlying lattice
fpn's distributive

v
v

v



Iterative Approach
©00000000000000000

Viewing ¢ computation as a table
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Iterative/ Tabulation Approach

@ Main idea: de-couple the propagation of function rows.

@ Maintain a table of values representing the current value of
¢r,,n for each program point N in procedure p.

@ Expand column for data value d in procedure p only if d is
reachable at r,.
@ Informally, at N in procedure p, the table has an entry d — d’
if we have seen
© valid paths p from r to r, with | | f,(do) = d, and
@ valid and complete paths ¢ from r, to N with | |5 f5(d) = d".
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Iterative/ Tabulation Approach

o Apply Kildall's algo with initial value of dy — dp at ry.

@ Propagating value d across a call to procedure p: (a) begin a
column for d at root of p if not already there; Also (b) if d is
mapped to d’ at the end of p, then propogate d’ to the return
site of the call.

@ Propagating across return nodes from procedure p: value d’
in column for d is propagated to each column at a return site
of a call to procedure p that has the value d in the preceding
entry.
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Example: Computing ¢'s iteratively: 1
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Example: Computing ¢’s iteratively: 2
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Example: Computing ¢’s iteratively: 3
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Example: Computing ¢’s iteratively: 4
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Example: Computing ¢’s iteratively: 5
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Example: Computing ¢’s iteratively: 6
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Example: Computing ¢’s iteratively: 7
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Example: Computing ¢’s iteratively: 8
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Example: Computing ¢’s iteratively: 9
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Example: Computing ¢’s iteratively: 10
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Example: Computing ¢’s iteratively: 11
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Example: Computing ¢’s iteratively: 12
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Example: Computing ¢’s iteratively: 13
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Example: Finally compute xy’s from ¢ values

At each point N take join of reachable ¢,, y values.
0

AY07
d
Be 0 —

o
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Correctness of iterative algo

@ lIterative algo terminates provided underlying lattice is finite.
@ |t computes the y;:?,v's (where y;';N’s are the least solution to
Eq (1)) “partially”: If it maps d to d’ # L then vy n(d) = d.

@ The JVP values it gives (say zy's) are such that
JVPN S zZN S X;\k/

(where x3,'s are the solution to Eq (2')).

@ If underlying transfer functions are distributive it computes
ér,,N's correctly (though partially), and the JVP values
correctly.

@ It thus computes an overapproximation of JVP for monotonic
transfer functions, and exact JVP when transfer functions are
distributive.
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Exercise 1: Iterative algo

Run the iterative algo to do constant propagation analysis for the
program below with initial value ().
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Exercise 2: Functional vs lterative algo

Run the functional and iterative algos to do constant propagation
analysis for the program below with initial value ():
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Comparing functional vs iterative approach

@ Functional algo can terminate even when underlying lattice is
infinite, provided we can represent and compose/join
functions “symbolically”.

@ lterative is typically more efficient than functional since it only
computes ¢, n's for values reachable at start of procedure.
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