Lattices and the Knaster-Tarski Theorem

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

07, 09 August 2023

Outline

Why study lattices

- Why study lattices
- 2 Partial Orders
- 3 Lattices
- Master-Tarski Theorem
- Computing LFP

What a lattice looks like

Why study lattices

•00000

Subsets of $\{1, 2, 3\}$, "subset"

 $\begin{array}{c} \mathsf{Odd/even, \ "contained} \\ \mathsf{in"} \end{array}$

Why lattices?

- Natural way to obtain the "collecting state" at a point is to take union of states reached along each path leading to the point.
- With abstract states also we want a "union" or "join" over all paths (JOP).

Why fixpoints?

- Guaranteed to safely approximate JOP (* Conditions apply).
- Easier to compute than JOP.
- Knaster-Tarski theorem tells us about the existence of fixpoints and their structure in a lattice.

What values can this program print when input values are odd p and even q?

```
1. while (p > q) {
2.
     p := p+1;
3.
     q := q+2;
```

Why study lattices

000000

Motivation: Interpreting a program with even/odd abstract values

A concrete execution with p=3 and q=2.

Join over all paths reaching line 4.

000000

Motivation: Interpreting a program with even/odd abstract values

```
while (p > q) {
2.
      p := p+1;
3.
      q := q+2;
4.
    print p;
```


Why Fixed Points?

- JOP not always possible to compute
- LFP guaranteed to conservatively approximate JOP
- More efficient to compute LFP

Transfer function for p:=p+q

Partial Orders

- Usual order (or total order) on numbers: $1 \le 2 \le 3$.
- Some domains are naturally "partially" ordered:

Partial orders: definition

- A partially ordered set is a non-empty set D along with a partial order ≤ on D. Thus ≤ is a binary relation on D satisfying:
 - \leq is reflexive $(d \leq d \text{ for each } d \in D)$
 - \leq is transitive $(d \leq d')$ and $d' \leq d''$ implies $d \leq d''$
 - \leq is anti-symmetric ($d \leq d'$ and $d' \leq d$ implies d = d').

Binary relations as Graphs

Why study lattices

We can view a binary relation on a set as a directed graph. For example, the binary relation

$$\{(a, a), (a, b), (b, c), (b, e), (d, e), (d, c), (e, f)\}$$

can be represented as the graph:

Partial Order as a graph

A partial order is then a special kind of directed graph:

- Reflexive = self-loop on each node
- Antisymmetric = no 2-length cycles
- Transitive = "transitivity" of edges.

Graph representation

Hasse-diagram representation

Upper bounds etc.

Why study lattices

In a partially ordered set (D, \leq) :

- An element $u \in D$ is an upper bound of a set of elements $X \subseteq D$, if $x \le u$ for all $x \in X$.
- u is the least upper bound (or lub or join) of X if u is an upper bound for X, and for every upper bound y of X, we have u ≤ y.
 We write u = | | X.
- Similarly, $v = \prod X$ (v is the greatest lower bound or glb or meet of X).

Lattices

- A lattice is a partially order set in which every pair of elements has an lub and a glb.
- A complete lattice is a lattice in which every subset of elements has a lub and glb.

Lattices

- A lattice is a partially order set in which every pair of elements has an lub and a glb.
- A complete lattice is a lattice in which every subset of elements has a lub and glb.
- Examples below are all complete lattices.

More lattices

• Example of a partial order that is not a lattice?

Example of a partial order that is not a lattice?

Why study lattices

Example of a partial order that is not a lattice?

"Simplest" example of a partial order that is not a lattice?

Example of a partial order that is not a lattice?

"Simplest" example of a partial order that is not a lattice?

Example of a partial order that is not a lattice?

- "Simplest" example of a partial order that is not a lattice?
 - a • b
- Second Example of a lattice which is not complete?

• Example of a partial order that is not a lattice?

"Simplest" example of a partial order that is not a lattice?

3 Example of a lattice which is **not** complete? (\mathbb{N},\leq)

Let (D, \leq) be a partially ordered set, and X be a non-empty subset of D. Then X induces a partial order, which we call the partial order induced by X in (D, \leq) , and defined to be $(X, \leq \cap (X \times X))$.

Example: the partial order induced by the set of elements $X = \{2, 3, 12\}.$

Monotonic functions

Let (D, \leq) be a partially ordered set.

 A function f: D → D is monotonic or order-preserving if whenever x ≤ y we have f(x) ≤ f(y).

Fixpoints

Why study lattices

- A fixpoint of a function $f: D \to D$ is an element $x \in D$ such that f(x) = x.
- A pre-fixpoint of f is an element x such that $x \le f(x)$.
- A post-fixpoint of f is an element x such that $f(x) \le x$.

Knaster-Tarski Fixpoint Theorem

Theorem (Knaster-Tarski)

Let (D, <) be a complete lattice, and $f: D \to D$ a monotonic function on (D, \leq) . Then:

- (a) f has at least one fixpoint.
- (b) f has a least fixpoint which coincides with the glb of the set of postfixpoints of f, and a greatest fixpoint which coincides with the lub of the prefixpoints of f.
- (c) The set of fixpoints P of f itself forms a complete lattice under <.

Fixpoints of f

Stars denote fixpoints.

Consider the complete lattice and monotone function f below.

- Mark the pre-fixpoints with up-triangles (△).
- What is the lub of the pre-fixpoints?
- Mark post-fixpoints with down-triangles (♥).
- Fixpoints are the stars (♥).

Check that claims of K-T theorem hold here.

If you drop one of the conditions of the K-T theorem

- Monotonicity of the function f
- Completeness of the lattice

does the conclusion of the theorem still hold?

Proof of Knaster-Tarski theorem

Why study lattices

- (a) g = ||Pre|| is a fixpoint of f.
- (b) g is the greatest fixpoint of f.
- (c) Similarly $I = \bigcap Post$ is the least fixpoint of f.
- (d) Let P be the set of fixpoints of f. Then (P, \leq) is a *complete* lattice.

To show g = f(g):

• $g \leq f(g)$

Why study lattices

- $g \leq f(g)$
 - Since f(g) can be seen to be u.b. of Pre.

Why study lattices

- $g \leq f(g)$
 - Since f(g) can be seen to be u.b. of Pre.
- $f(g) \leq g$

Why study lattices

- $g \leq f(g)$
 - Since f(g) can be seen to be u.b. of Pre.
- $f(g) \leq g$
 - Since f(g) can be seen to be prefixpoint of f.

g is the greatest fixpoint of f:

g is the greatest fixpoint of f: Any other fixpoint is also a pre-fixpoint of f, and hence gmust dominate it.

Lattices

Exercise: intervals and closure

Let (D, \leq) be a partial order, and let $f: D \to D$.

- Let $a, b \in D$. The interval from a to b, written [a, b], is the set $\{d \mid a \leq d \leq b\}.$
- A subset $X \subseteq D$ is said to be closed wrt to f, if $f(x) \in X$ for each $x \in X$.

Exercise: Let (D, \leq) be a partial order with a \top element, and let $f: D \rightarrow D$ be a monotone function on D.

- Show that an interval in D need not be closed wrt f.
- \bigcirc Let $u \in D$ be the lub of a set X of fixpoints of f. Prove that the interval $[u, \top]$ is closed wrt f.

- (P, \leq) is also a partial order.
- (P, \leq) is a complete lattice
 - Let $X \subseteq P$. We show there is an lub of X in (P, \leq) .
 - Let u be lub of X in (D, \leq) .
 - Consider "interval" I = $[u, \top] = \{x \in D \mid u < x\}.$ $(1, \leq)$ is also a complete lattice
 - $f: I \rightarrow I$ as well, and monotonic on (I, \leq) .
 - Hence by part (a) f has a least fixpoint in I, say v.
 - Argue that v is the lub of X in (P, \leq) .

- A chain in a partial order (D, \leq) is a totally ordered subset of D.
- An ascending chain is an infinite sequence of elements of D of the form:

$$d_0 \leq d_1 \leq d_2 \leq \cdots$$
.

- An ascending chain $\langle d_i \rangle$ is eventually stable if there exists n_0 such that $d_i = d_{n_0}$ for each $i \geq n_0$.
- (D, \leq) has finite height if each chain in it is finite.
- (D, \leq) has bounded height if there exists k such that each chain in D has height at most k (i.e. number of elements in each chain is at most k+1.)

Monotonicity, distributivity, and continuity

• f is monotone:

Why study lattices

$$x \le y \implies f(x) \le f(y)$$
.

f is distributive:

$$f(x \sqcup y) = f(x) \sqcup f(y).$$

f is continuous: For any asc chain X:

$$f(\bigsqcup X) = \bigsqcup (f(X)).$$

• f is inf distributive: For any $X \subseteq D$:

$$f(| | X) = | | (f(X)).$$

Characterising LFP of a function f in a complete lattice (D, \leq)

- If f is monotonic
 - Then

$$\perp \leq f(\perp) \leq f^2(\perp) \leq f^3(\perp) \leq \cdots$$

is an ascending chain.

- If this chain stabilizes the stable value will be lfp(f).
- If (D, \leq) has finite height then we can compute lfp(f) by finding the stable value of this chain.
- If f is continuous then

$$Ifp(f) = \bigsqcup_{i \geq 0} (f^i(\bot)).$$

Consider the statement "p := p + q". Show the transfer function of this statement in the parity lattice below.

Is it monotonic/distributive/continuous?