Floyd-Hoare Style Program Verification

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

23 October 2024

Outline of these lectures

- Overview
- 2 Hoare Triples
- Proving assertions
- 4 Inductive Annotation
- **5** Hoare Logic
- **6** Weakest Preconditions
- Completeness

The Verification Problem

Given a system model M and a property P about the model, tell whether M satisfies P or not.

- Different kinds of system models. Here we are interested in (idealized) programs.
- Different kinds of properties: Safety, Temporal, Functionality based, Performance based, etc. Here we are interested in safety properties ("an unsafe/bad state is not reachable"). In particular, "pre-post" properties.

Example Program and Property

```
x := 0;
y := 0;
while (*) {
  if (x < y)
    x++;
  else
    y++;
}
// assert y != x - 1</pre>
```


How would one check that this program satisfies the given assertion?

Transition System Model

A transition system \mathcal{T} is specified by (S, S_0, \rightarrow) , where:

- S is a set of states
- $S_0 \subseteq S$ is a set of initial states
- $\rightarrow \subseteq S \times S$ is the transition relation.

Idea of Deductive Verification

Problem: Given a transition system $\mathcal{T}=(S,S_0,\rightarrow)$ and an set of unsafe states $B\subseteq S$, does an execution of \mathcal{T} reach a state in B?

Find a set of states I such that

- $S_0 \subseteq I$ (initial states belong to I)
- 2 $s \in I$ and $s \to s'$, implies $s' \in I$ (I is inductive wrt trans)
- **3** $I \cap B = \emptyset$ (*I* disjoint from Bad states).

Such an *I* is called an adequate inductive invariant.

Idea of deductive verification

```
x := 0;
y := 0;
while (*) {
                       I: x \leq y
  if (x < y)
    x++;
  else
                                                            Bad: v = x - 1
    y++;
// assert y != x - 1
```

I is an adequate inductive invariant:

- $s_0 \in I$ (initial state belongs to I)
- 2 $s \in I$ and $s \to s'$, implies $s' \in I$ (I is inductive wrt trans)
- **3** $I \cap B = \emptyset$ (*I* disjoint from Bad states).

Floyd-Hoare Style of Program Verification

Robert W. Floyd: "Assigning meanings to programs" *Proceedings* of the American Mathematical Society Symposia on Applied Mathematics (1967)

C A R Hoare: "An axiomatic basis for computer programming", Communications of the ACM (1969).

Floyd-Hoare Logic

- A way of asserting properties of programs.
- Hoare triple: $\{A\}P\{B\}$ asserts that "Whenever program P is started in a state satisfying condition A, if it terminates, it will terminate in a state satisfying condition B."
- Example assertion: $\{n \ge 0\}$ P $\{a = n + m\}$, where P is the program:

```
int a := m;
int x := 0;
while (x < n) {
   a := a + 1;
   x := x + 1;
}</pre>
```

- Inductive Annotation ("consistent interpretation") (due to Floyd)
- A proof system (due to Hoare) for proving such assertions.
- A way of reasoning about such assertions using the notion of "Weakest Preconditions" (due to Dijkstra).

A Simple Programming Language

- skip (do nothing)
- x := e (assignment)
- if b then S else T (if-then-else)
- while b do S (while loop)
- *S* ; *T* (sequencing)

Programs as State Transformers

- Program state is a valuation to variables of the program: $States = Var \rightarrow \mathbb{Z}$.
- View program P as a partial map $\llbracket P \rrbracket$: $States \rightarrow States$.

$$s: \langle x \mapsto 2, y \mapsto 10, z \mapsto 3 \rangle$$

$$\begin{bmatrix} y := y + 1; \\ z := x + y \end{bmatrix}$$
 $t: \langle x \mapsto 2, y \mapsto 11, z \mapsto 13 \rangle$

Predicates on States

Assertion of "Partial Correctness" $\{A\}P\{B\}$

 $\{A\}P\{B\}$ asserts that "Whenever program P is started in a state satisfying condition A, either it will not terminate, or it will terminate in a state satisfying condition B."

Mathematical meaning of a Hoare triple

 View program P as a relation on States (allows non-termination as well as non-determinism)

$$\llbracket P \rrbracket \subseteq \operatorname{States} \times \operatorname{States}.$$

Here $(s,t) \in [P]$ iff it is possible to start P in the state s and terminate in state t.

- [P] is possibly non-determinisitic, in case we also want to model non-deterministic assignment etc.
- Then the Hoare triple $\{A\}$ P $\{B\}$ is true iff for all states s and t: whenever $s \models A$ and $(s,t) \in [P]$, then $t \models B$.
- In other words $Post_{\llbracket P \rrbracket}(\llbracket A \rrbracket) \subseteq \llbracket B \rrbracket$.

Example programs and pre/post conditions

// Pre: 0 <= n

Floyd style proof: Inductive Annotation

Inductive annotation based proof of add program

- Annotate each program point i with a predicate A_i
- Successive annotations must be inductive: $[S_i]([A_i]) \subseteq [A_{i+1}],$ OR logically:

$$A_i \wedge [S_i] \implies A'_{i+1}.$$
• Annotation must be

adequate: $Pre \implies A_1$ and

 $A_n \implies Post.$

 Adequate inductive annotation constitutes a proof of {Pre} Prog {Post}.

Example inductive annotation based proof

To prove: $\{y > 10\}$ y := y+1; z := x+y $\{z > x\}$

Example inductive annotation based proof

To prove: $\{y > 10\}$ y := y+1; z := x+y $\{z > x\}$

Logical proof obligations (Verification Conditions) check adequacy and inductiveness: If VCs are logically valid then annotations are adequate and inductive.

$$(y > 10 \implies y \ge 0) \land ((y \ge 1 \land z = x + y) \implies z > x) \land$$

$$((y \ge 0 \land y' = y + 1 \land x' = x \land z' = z) \implies y' \ge 1) \land$$

$$((y \ge 1 \land z' = x + y \land x' = x \land y' = y) \implies y' \ge 1 \land z' = x' + y')$$

Pre: true

x := x+1

Exercise 1

Prove using Floyd-style annotation:

```
// Pre: true
int x := 0;
while (x < 10)
x := x + 1;
// Post: x = 10

A<sub>5</sub>

A<sub>6</sub>

Post: x = 10
```

Also write out the proof obligations (verification conditions).

Exercise 2

Prove using Floyd's inductive annotation:

$$\{n \ge 1\} \ P \ \{a = n!\},$$

where P is the program:

Assume that factorial is defined as follows:

$$n! = \begin{cases} n \times (n-1) \times \dots \times 1 & \text{if} \quad n \ge 1 \\ 1 & \text{if} \quad n = 0 \\ -1 & \text{if} \quad n < 0 \end{cases}$$

Exercise 2

Prove using Floyd's inductive annotation:

$$\{n \ge 1\} \ P \ \{a = n!\},$$

where P is the program:

```
S1: x := n;

S2: a := 1;

S3: while (x \ge 1) {

S4: a := a * x;

S5: x := x - 1
```

Assume that factorial is defined as follows:

$$n! = \begin{cases} n \times (n-1) \times \dots \times 1 & \text{if} \quad n \ge 1 \\ 1 & \text{if} \quad n = 0 \\ -1 & \text{if} \quad n < 0 \end{cases}$$

Hoare's view: Program as a composition of statements

```
int a := m;
int x := 0;
while (x < n) {
   a := a + 1;
   x := x + 1;
}</pre>
```

Hoare's view: Program as a composition of statements

```
int a := m;
int x := 0;
while (x < n) {
    a := a + 1;
    x := x + 1;
}</pre>
S1: int a := m;
S2: int x := 0;
S3: while (x < n) {
    a := a + 1;
    x := x + 1;
}

S1: int a := m;
S1
```

Program is S1;S2;S3

Proof rules of Hoare Logic

To be read as "If assertion above the line is true, the so is the assertion below the line".

Axiom of Valid formulas

$$\overline{A}$$

provided " $\models A$ " (i.e. A is a valid logical formula, eg. $x > 10 \implies x > 0$).

Skip

$$\overline{\{A\} \text{ skip } \{A\}}$$

Assignment

$$\overline{\{A[e/x]\} \times := e \{A\}}$$

Proof rules of Hoare Logic

If-then-else

$$\frac{\{P \land b\} \ S \ \{Q\}, \ \{P \land \neg b\} \ T \ \{Q\}}{\{P\} \ \text{if} \ b \ \text{then} \ S \ \text{else} \ T \ \{Q\}}$$

While (here *P* is called a *loop invariant*)

$$\frac{\{P \land b\} \ S \ \{P\}}{\{P\} \ \text{while} \ b \ \text{do} \ S \ \{P \land \neg b\}}$$

Sequencing

$$\frac{\{P\}\ S\ \{Q\},\ \{Q\}\ T\ \{R\}}{\{P\}\ S;T\ \{R\}}$$

Weakening

$$\frac{P \implies Q, \{Q\} S \{R\}, R \implies T}{\{P\} S \{T\}}$$

Loop invariants

A predicate P is a loop invariant for the while loop:

```
while (b) {
   S
}
```

if
$$\{P \wedge b\}$$
 S $\{P\}$ holds.

If *P* is a loop invariant then we can infer that:

$$\{P\}$$
 while b do S $\{P \land \neg b\}$

Proof of a Hoare triple in Hoare Logic

A proof of a Hoare triple $\{A\}$ P $\{B\}$ in Hoare logic is a finite sequence of assertions

$$C_0, C_1, \ldots, C_n$$

such that:

- Each C_i is either an axiom of valid formulas or follows from earlier C_i 's by one of the proof rules.
- C_n is $\{A\}$ P $\{B\}$.

Can also be viewed as a "proof tree".

Some examples to work on

Use the rules of Hoare logic to prove the following assertions:

- **1** $\{x > 3\}$ x := x + 2 $\{x \ge 5\}$
- ② $\{(y \le 0) \land (-1 < x)\}\$ if (y < 0) then x:=x+1 else x:=y $\{0 \le x\}$
- **3** $\{x \le 0\}$ while $(x \le 5)$ do x := x+1 $\{x = 6\}$

Example proof using Hoare Logic

- **1** $\{x+2 \ge 5\}$ x := x+2 $\{x \ge 5\}$ [Assign. Rule]
- 2 $x > 3 \implies x + 2 \ge 5$ [Logical Axiom]
- 3 $x \ge 5 \implies x \ge 5$ [Logical Axiom]
- **4** $\{x > 3\}$ x := x + 2 $\{x \ge 5\}$ [Weak. on 1, 2, 3]

```
// pre: x > 3
x := x + 2
// post: x >= 5
```

Adequate loop invariant

Generating Verification Conditions for a program

The following VCs are generated:

- $Pre \wedge [S_1] \Longrightarrow Inv'$ Or: $Pre \Longrightarrow WP(S_1, Inv)$
- $Inv \wedge b \wedge [S_2] \implies Inv'$ Or: $(Inv \wedge b) \implies WP(S_2, Inv)$
- $Inv \land \neg b \land [S_3] \implies Post'$ Or: $Inv \land \neg b \implies WP(S_3, Post)$

Example proof using Hoare Logic

- **1** $\{n > 0\}$ S1 $\{n > 0 \land a = m\}$
- 2 $\{n > 0 \land a = m\}$ S2 $\{n > 0 \land a = m \land x = 0\}$
- **6** . . .

0000000 00000

- $\{a = m + x \land 0 < x < n \land x < n\}$ S4:S5 $\{a = m + x \land 0 < x < n\}$ (From ...)
- **6** $\{a = m + x \land 0 < x < n\}$ S3 $\{a = m + x \land 0 \le x \le n \land x \ge n\}$ (From While rule, 4)
- **6** $\{n \ge 0\}$ S1;S2 $\{n \ge 0 \land a = m \land x = 0\}$ (From Seg rule, 1 and 2)
- (1) $(n \ge 0 \land a = m \land x = 0) \implies (a = m + x \land 0 < 0)$ x < n) (From logical axiom)
- **1** $\{n > 0\}$ S1;S2 $\{a = m + x \land 0 < x < n\}$ (From Weakening rule, 6 and 7)
- $\{a = m + x \land 0 \le x \le n \land x \ge n\}$ (From Seq rule, 8, 5)
- ① $\{n > 0\}$ (S1;S2);S3 $\{a = m + n\}$ (From Weakening rule, 9, 10).

```
// pre: n >= 0
S1: int a := m;
S2: int x := 0:
S3: while (x < n) {
S4: a := a + 1:
S5: x := x + 1:
// post: a = m + n
```

Program is S1;S2;S3

More on Adequate loop invariants

What is a "good" loop invariant for this program?

```
x := 0;
while (x < 10) {
  if (x >= 0)
    x := x + 1;
  else
    x := x - 1;
}
assert(x <= 11);</pre>
```

Adequate loop invariant

Exercise

Prove using Hoare logic:

$$\{n \ge 1\} \ P \ \{a = n!\},\$$

where P is the program:

Assume that factorial is defined as follows:

$$n! = \begin{cases} n \times (n-1) \times \dots \times 1 & \text{if} \quad n \ge 1 \\ 1 & \text{if} \quad n = 0 \\ -1 & \text{if} \quad n < 0 \end{cases}$$

Exercise

Prove using Hoare logic:

$$\{n \ge 1\} \ P \ \{a = n!\},\$$

where P is the program:

```
S1: x := n;

S2: a := 1;

S3: while (x \ge 1) {

S4: a := a * x;

S5: x := x - 1
```

Assume that factorial is defined as follows:

$$n! = \begin{cases} n \times (n-1) \times \dots \times 1 & \text{if} \quad n \ge 1 \\ 1 & \text{if} \quad n = 0 \\ -1 & \text{if} \quad n < 0 \end{cases}$$

Soundness and Completeness

Soundness: If our proof system proves $\{A\}$ P $\{B\}$ then $\{A\}$ P $\{B\}$ indeed holds.

Completeness: If $\{A\}$ P $\{B\}$ is true then our proof system can prove $\{A\}$ P $\{B\}$.

- Floyd proof style is sound since any execution must stay
 within the annotations. Complete because the "collecting" set
 is an adequate inductive annotation for any program and any
 true pre/post condition. (Assumes collecting sets can be
 expressed logically).
- Hoare logic is sound, essentially because the individual rules can be seen to be sound.
- For completness of Hoare logic, we need weakest preconditions.

Weakest Precondition WP(P, B)

WP(P,B) is "a predicate that describes the exact set of states s such that when program P is started in s, if it terminates it will terminate in a state satisfying condition B."

Weakest Precondition WP(P, B)

WP(P,B) is "a predicate that describes the exact set of states s such that when program P is started in s, if it terminates it will terminate in a state satisfying condition B."

1
$$\{?$$
 $\}$ $x := x + 2 \{x \ge 5\}$

1
$$\{x \ge 3\}$$
 x := x + 2 $\{x \ge 5\}$

{? } if
$$(y < 0)$$
 then $x := x+1$ else $x := y$ $\{x > 0\}$

1
$$\{x \ge 3\}$$
 x := x + 2 $\{x \ge 5\}$

$$\{ (y < 0 \land x > -1) \lor (y > 0) \}$$
 if (y < 0) then x := x+1 else x := y
$$\{x > 0\}$$

3 {? } while
$$(x \le 5)$$
 do $x := x+1$ $\{x = 6\}$

1
$$\{x \ge 3\}$$
 x := x + 2 $\{x \ge 5\}$

$$\{ (y < 0 \land x > -1) \lor (y > 0) \}$$
 if (y < 0) then x := x+1 else x := y
$$\{x > 0\}$$

3
$$\{x \le 6\}$$
 while $(x \le 5)$ do $x := x+1 \{x = 6\}$

Exercise: How will you define WP(P,B)?

Exercise: How will you define WP(P,B)?

$$WP(P, B) = \{s \mid \forall t[(s, t) \in \llbracket P \rrbracket \text{ implies } t \models B]\}$$

Using weakest preconditions to partially automate inductive proofs

Weakest preconditions give us a way to:

Check inductiveness of annotations

$${A_i} S_i {A_{i+1}}$$
 iff $A_i \implies WP(S_i, A_{i+1})$

- Reduce the amount of user-annotation needed
 - Programs without loops don't need any user-annotation
 - For programs with loops, user only needs to provide loop invariants

Checking $\{A\}$ P $\{B\}$ using WP

Check that

$$(y > 10) \implies WP(P, z > x)$$

WP rules

- Hoare's rules for skip, assignment, and if-then-else are already WP rules.
- For Sequencing:

$$WP(S;T, B) = WP(S, WP(T, B)).$$

Weakest Precondition for while statements

- We can "approximate" WP(while b do c).
- $WP_i(w, A)$ = the set of states from which the body c of the loop is either entered more than i times or we exit the loop in a state satisfying A.
- WP_i defined inductively as follows:

$$WP_0 = b \lor A$$

 $WP_{i+1} = (\neg b \land A) \lor (b \land WP(c, WP_i))$

• Then WP(w,A) can be shown to be the "limit" or least upper bound of the chain $WP_0(w,A)$, $WP_1(w,A)$,... in a suitably defined lattice (here the join operation is "And" or intersection).

Illustration of WP_i through example

Consider the program w below:

while
$$(x \ge 10)$$
 do $x := x - 1$

- What is the weakest precondition of w with respect to the postcondition $(x \le 0)$?
- Compute $WP_0(w, (x \le 0)), WP_1(w, (x \le 0)), \ldots$

Illustration of WP_i through example

Consider the program w below:

while
$$(x \ge 10)$$
 do $x := x - 1$

- What is the weakest precondition of w with respect to the postcondition ($x \le 0$)?
- Compute $WP_0(w, (x \le 0)), WP_1(w, (x \le 0)), \ldots$

Postcondition x < 0

Automating checking of pre-post specifications for a program

To check:

$$y > 10$$

 $y := y + 1;$
 $z := x + y;$
 $x < z$

Use the weakest precondition rules to generate the verification condition:

$$(y > 10) \implies (y > -1).$$

Check the verification condition by asking a theorem prover / SMT solver if the formula

$$(y > 10) \land \neg (y > -1).$$

is satisfiable.

Relative completeness of Hoare logic

Theorem (Cook 1974)

Hoare logic is complete provided the assertion language L can express the WP for any program P and post-condition B.

Proof uses WP predicates and proceeds by induction on the structure of the program P.

- Suppose {A} skip {B} holds. Then it must be the case that
 A ⇒ B is true. By Skip rule we know that {B} skip {B}.
 Hence by Weakening rule, we get that {A} skip {B} holds.
- Suppose $\{A\}$ x := e $\{B\}$ holds. Then it must be the case that $A \Longrightarrow B[e/x]$. By Assignment rule we know that $\{B[e/x]\}$ x := e $\{B\}$ is true. Hence by Weakening rule, we get that $\{A\}$ x := e $\{B\}$ holds.
- Suppose $\{A\}$ S;T $\{B\}$ holds. Let C = WP(T, B). Then $\{A\}$ S $\{C\}$ and $\{C\}$ T $\{B\}$ must be valid assertions. By IH there must be Hoare logic proofs for them. We can now use the sequencing rule to conclude $\{A\}$ S;T $\{B\}$.

Relative completeness of Hoare logic

- Similarly for if-then-else.
- Suppose $\{A\}$ while b do S $\{B\}$ holds. Let P = WP(while b do S, B).
 - Then it is not difficult to check that P is a loop invariant for the while statement. I.e $\{P \land b\}$ S $\{P\}$ is true. (Exercise!)
 - By induction hypothesis, this triple must be provable in Hoare logic. Hence we can conclude using the While rule, that $\{P\}$ while b do S $\{P \land \neg b\}$ is true.
 - But since P was a valid precondition, it follows that $(P \land \neg b) \Longrightarrow B$. Since P was the WP, we should have $A \Longrightarrow P$.
 - By the weakening rule, we have a proof of {A} while b do S {B}.

Conclusion

- Features of this Floyd-Hoare style of verification:
 - Tries to find a proof in the form of an inductive annotation.
 - A Floyd-style proof can be used to obtain a Hoare-style proof; and vice-versa.
 - Reduces verification (given key annotations) to checking satisfiability of a logical formula (VCs).
 - Is flexible about predicates, logic used (for example can add quantifiers to reason about arrays).
- Main challenge is the need for user annotation (adequate loop invariants).
- Can be increasingly automated (using learning techniques).