Floyd-Hoare Style Program Verification

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

10 November 2025

Outline of these lectures

© Overview

© Hoare Triples

© Proving assertions

@ Inductive Annotation
© Hoare Logic

@ Weakest Preconditions

@ Completeness

Overview
000000

The Verification Problem

Given a system model M and a property P about the
model, tell whether M satisfies P or not.

o Different kinds of system models. Here we are interested in
(idealized) programs.

@ Different kinds of properties: Safety, Temporal, Functionality
based, Performance based, etc. Here we are interested in
safety properties (“an unsafe/bad state is not reachable”). In
particular, “pre-post” properties.

Overview
(o] lelele]e]e]

Example Program and Property

x := 0;
y = 0;
while (x) {
if (x <y)
X++;
else
yt++;

}
// assert y !=x - 1

How would one check that this program satisfies the given
assertion?

Overview
[e]e] lelelele]

Transition System Model

A transition system 7T is specified by (S, So, —), where:
@ S is a set of states
@ Sop C S is a set of initial states

@ —C S5 x S is the transition relation.

Overview
[e]e]e] lelele]

Idea of Deductive Verification

Problem: Given a transition system X S
T =(S5,Sp,—) and an set of unsafe < \L‘
states B C S, does an execution of \. .
T reach a state in B? By . -~

Find a set of states / such that
© So C/ (initial states belong to
)

Q@ sclands— ¢, impliess’ €/ — .
(I is inductive wrt trans) \ i
© /N B =0 (I disjoint from Bad — />,

states).

Such an [is called an adequate
inductive invariant.

Overview

[e]e]e]e] lele)

Idea of deductive verification

x := 0;
y = 0;
while (%) {
if (x < y) ’:XSY/
X++;
else
y++;

}
// assert y !=x - 1

I is an adequate inductive invariant:
Q s € / (initial state belongs to /)
@ sc/ands— s, implies s’ € I (I is inductive wrt trans)
© /N B =0 (I disjoint from Bad states).

Overview
00000e0

Floyd-Hoare Style of Program Verification

oyd: “Assigning meanings to programs” Proceedings
of the American Mathematical Society Symposia on Applied
Mathematics (1967)

i
]

Robert W. Fl

=

C A R Hoare: “An axiomatic basis for computer programming”,
Communications of the ACM (1969).

Overview
000000

Floyd-Hoare Logic

A way of asserting properties of programs.

@ Hoare triple: {A}P{B} asserts that “Whenever program P is
started in a state satisfying condition A, if it terminates, it will
terminate in a state satisfying condition B."

@ Example assertion: {n >0} P {a = n+ m}, where P is the
program:
int a := m;
int x := 0;
while (x < n) {
a a+ 1;
b4 x + 1;

}

@ Inductive Annotation (“consistent interpretation”) (due to
Floyd)

A proof system (due to Hoare) for proving such assertions.

@ A way of reasoning about such assertions using the notion of
“Weakest Preconditions” (due to Dijkstra).

Hoare Triples
[Jelele]e]

A Simple Programming Language

skip (do nothing)

x := e (assignment)

if b then S elseT (if-then-else)
while bdo S (while loop)

S; T (sequencing)

Hoare Triples

[e] lele]e}

Programs as State Transformers

@ Program state is a valuation to variables of the program:
States = Var — 7.
@ View program P as a partial map [P] : States — States.

States

s: (x—2, y—10, z+— 3)

=y +1;
X+y

~
i

N
I

t: (x—2, y—11, z+— 13)

Hoare Triples
[e]e] le]e]

Predicates on States

All States

States satisfying
Predicate A
Eg. 0<xAx<y

Hoare Triples

[e]e]e] lo}

Assertion of “Partial Correctness” {A}P{B}

{A}P{B} asserts that “Whenever program P is started in a state
satisfying condition A, either it will not terminate, or it will
terminate in a state satisfying condition B."

All States

{10 < y}
y 1=y + 1;
z :=x+y

{x <z}

Hoare Triples
[e]e]ele]]

Mathematical meaning of a Hoare triple

@ View program P as a relation on States (allows
non-termination as well as non-determinism)

[P] C States x States.

Here (s, t) € [P] iff it is possible to start P in the state s and
terminate in state t.

@ [P] is possibly non-determinisitic, in case we also want to
model non-deterministic assignment etc.

@ Then the Hoare triple {A} P {B} is true iff for all states s
and t: whenever s = A and (s, t) € [P], then t = B.

@ In other words Postpy([A]) € [B].

Proving assertions
o

Example programs and pre/post conditions

// Pre: 0 <= n
// Pre: true

int a := m;
if (a <= b) int x := 0;
min := a; while (x < n) {
else a:=a+1;
min := b; X :=x + 1;
¥

// Post: min <= a && min <= b

// Post: a +n

I
B

Inductive Annotation
[leJele]e]

Floyd style proof: Inductive Annotation

———————— neEJtTAi=1A8=0

i-1

________ neJTAi€ItAisSn+IAS= 2 g
j=1

@ i1 n

———n€J Ai=n+1AS=Yq;ie, 5= g

=1 j=1

i1
———————— nedtAi€dtAisnAS=Xaq
j=1

S—S+a;

________ nedtAni€dtAisnAS=T g
j=1

i—i+1 i1
________ nedtAi€dTALsisn+1IAS=q
J=1

Inductive Annotation
(o] Jelele]

Inductive annotation based proof of add program

@ Annotate each
program point / with |
a predicate A; a = m;

@ Successive
annotations must be
inductive: |
HS’]](HAIH) g [A,‘+1]], x := 0
OR logically:
AiN[S] = A§+1_

n>0Aa=m

a=m+xAx<n

@ Annotation must be
adequate:
Pre — A; and
A, = Post.

@ Adequate inductive
annotation
constitutes a proof of
{Pre} Prog {Post}.

Inductive Annotation
00e00

Example inductive annotation based proof

To prove: {y > 10} y := y+1; z := x+y {z > x}

y >10
y=20
y =y +1
y=>1
z :=x +y
y>21lNhnz=x+y
~_

zZ>x

Inductive Annotation
00e00

Example inductive annotation based proof

To prove: {y > 10} y := y+1; z := x+y {z > x}

y >10
y=20
y :=y +
y=>1
z =x +y
y>21lNhnz=x+y
~_

zZ>x

Logical proof obligations (Verification Conditions) check adequacy and inductiveness:
If VCs are logically valid then annotations are adequate and inductive.

(y>10 = y>0)A((y>21Az=x+y) = z>x) A
(y20ny =y+1AX =xnZ=2z) = y' >1) A
(y>1AZ =x+yAxX =xAy =y) = y' >1AZ =x"+y)

Inductive Annotation
00080

Exercise 1

Prove using Floyd-style annotation:

Pre: true
| A
x =0
Az
// Pre: true —q
int x := 0;
while (x < 10) A Az
5
x :=x + 1; Ag Post: x =10
// Post: x = 10 assume
x < 10
Ay
x = x+1

Also write out the proof obligations (verification conditions).

Inductive Annotation
[e]e]ele]]

Exercise 2

Prove using Floyd's inductive annotation:
{n>1} P{a=nl},

where P is the program:

X := n;

a :=1;

while (x > 1) {
a := a ¥ x;
x :=x -1

}

Assume that factorial is defined as follows:

nx(n—1)x---x1 if n>1
1 if n=0
-1 if n<O

nl =

Inductive Annotation
[e]e]ele]]

Exercise 2

Prove using Floyd's inductive annotation:
{n>1} P{a=nl},

where P is the program:

S1: x := n;

S2: a := 1;

S3: while (x > 1) {
S4. a := a * x;

S5: x :=x -1
}

Assume that factorial is defined as follows:
nx(n—1)x---x1 if n>1
nl = 1 if n =
-1 if n<O

Hoare Logic
0000000000000 0

Hoare’s view: Program as a composition of statements

int a := m;

int x := 0;

while (x < n) {
a :=a+1;
X :=x + 1;

}

Hoare Logic
0000000000000 0

Hoare’s view: Program as a composition of statements

int a := m; S1: int a := m;

int x := 0; S2: int x := 0;

while (x < n) { S3: while (x < n) {
a :=a+1; a :=a+1;
X :=x + 1; X 1= x + 1;

¥ }

Program is S1;52;S83

Hoare Logic
0000000000000

Proof rules of Hoare Logic

To be read as “If assertion above the line is true, the so is the
assertion below the line".

Axiom of Valid formulas

A

provided “= A" (i.e. Ais a valid logical formula, eg.
x>10 = x > 0).

Skip

{A} skip {A]
Assignment

{Ale/x]} x := e {A}

Hoare Logic
00@00000000000

Proof rules of Hoare Logic

If-then-else

{PAb} S{Q}, {PA-b} T {Q}
{P} if b then S else T {Q}

While (here P is called a loop invariant)

{PAb} S {P}
{P} while b do S {P A—b}

Sequencing
{P} S {Q}, {@} T {R}
{P} ;T {R}

Weakening

P= Q, {Q}S{R}, R =T
{P} S{T}

Hoare Logic
0000000000000 0

Loop invariants

A predicate P is a loop invariant for the

while loop:
while (b) { i
S
}
if {PAb} S {P} holds. b
If P is a loop invariant then we can infer s
that:

{P} while b do S {P A —b}

Hoare Logic
0000@000000000

Proof of a Hoare triple in Hoare Logic

A proof of a Hoare triple {A} P {B} in Hoare logic is a finite
sequence of assertions

Co, Ciy..., Gy

such that:
@ Each C; is either an axiom of valid formulas or follows from
earlier C;'s by one of the proof rules.

o C,is {A} P {B}.

Can also be viewed as a “proof tree”.

Hoare Logic
0000080000000 0

Some examples to work on

Use the rules of Hoare logic to prove the following assertions:
Q {x>3}x :=x+2 {x>5}

Q@ {(y<O)A(-1<x)}if (y<0) then x:=x+1 else x:=y
{0<x)
© {x <0} while (x <5)dox:=x+1 {x=06}

Hoare Logic
0000008000000 0

Example proof using Hoare Logic

@Q {x+2>5} x:=x+2{x>5} [Assign. Rule]

// pre: x > 3
@ x>3 = x+2>5 [Logical Axiom] X = x + 92
©Q x>5 = x>5 [Logical Axiom] // post: x >= 5
Q {(x>3} x:=x+2{x>5} [Weak.onl,?2, 3]

Hoare Logic
0000000 e000000

Adequate loop invariant

An adequate loop invariant needs to satisfy:
@ {n>0}a :=m; x :=0

psonam l@8=m+xAx<n}

@ {a=m+xAx<nAx<n}a:= atl;
x =0 x := x+1 {a=m+xAx<n}.

@ {a=m+xAx<nAx2>n} skip
a=m+xAx<n

{a=m+ n}.

while (x <n) { Verification conditions are generated
accordingly.

Note that a = m 4+ x is not an adequate loop

invariant.

a=m-+n

Hoare Logic
0000000080000 0

Generating Verification Conditions for a program

assume Pre

S1 The following VCs are generated:
: : @ Pre A[S1] = Inv/
< |davariant |Inv Or: Pre = WP(Sy, Inv)
@ InvAbA[S)] = Inv/
Or: (Inv A b) = WP(Sy, Inv)
@ Inv A—-bA[S3] = Post’
Or: Inv A—~b = WP(S3, Post)

while (b) {

S

S3

assert Post

Hoare Logic
000000000 e0000

Example proof using Hoare Logic
Q {(n>0}S1 {n>0Aa=m}

// pre: n >= 0
Q (n>0na=m}S2 {n>0Aa=mAx=0} S1: int a := m;
e S2: int x := 0;
S3: while (x < n) {
S4: a:=a+1;
S5: X :=x + 1;

Q {(a=m+xA0<x<nAx<n}S4S5
{a=m+xAN0<x<n} (From ...)

Q {(a=m+xA0<x<n}S3 }
{a=m+xAN0<x<nAx2>n} (From While // post: a=m+n
rule, 4)

P is S1;82;83
Q (n>0}51;52 {n>0Aa=mAx=0} (From rogram 1s

Seq rule, 1 and 2)
Q@ (n>0Na=mAx=0) = (a=m+xA0<
x < n) (From logical axiom)

©Q {(P>0}51;,52 {a=m+xA0<x< n} (From
Weakening rule, 6 and 7)

© {n >0} (S1;52);S3
{a=m+xA0<x<nAx>n} (From Seq
rule, 8, 5)

@ (a=m+xA0<x<nAx>n) = (a=m+n)

@ {!‘I > 0} (51;52);53 {a =m+ n} (From
Weakening rule, 9, 10).

Hoare Logic
000000000 0e000

More on Adequate loop invariants

What is a “good” loop invariant for this program?

x := 0;
while (x < 10) {
if (x >= 0)

X :=x + 1;
else
x :=x - 1;

}

assert (x <= 11);

Hoare Logic
0000000000080

Adequate loop invariant

Canonical Not—inv Inv,not—ind Inv,ind,not—adeq Inv,ind,adeq
Invariant
x := 0;
while (x < 10) { 0<x<10 5<x —-1<x 0<x<12 0<x<11

if (x >= 0)

x :=x + 1; .
else 510
X = x - 1;

}

assert (x <= 11);

5 10 5 10 5 10 5 10

Hoare Logic
00000000000 0e0

Exercise

Prove using Hoare logic:

{n>1} P{a=nl},

where P is the program:

X := n;

a :=1;

while (x > 1) {
a = a * X;
x :=x -1

Assume that factorial is defined as follows:
nx(n—1)x---x1 if n>1
nl = 1 if n =
-1 if n<O

Hoare Logic
00000000000 0e0

Exercise

Prove using Hoare logic:
{n>1} P{a=nl},

where P is the program:

S1: x := n;
S2: a := 1;
S3: while (x > 1) {
S4: a := a * x;
S5: x :=x -1

}

Assume that factorial is defined as follows:
nx(n—1)x---x1 if n>1
nl = 1 if n =
-1 if n<O

Hoare Logic
0000000000000

Soundness and Completeness

Soundness: If our proof system proves {A} P {B} then
{A} P {B} indeed holds.

Completeness: If {A} P {B} is true then our proof system can
prove {A} P {B}.

@ Floyd proof style is sound since any execution must stay
within the annotations. Complete because the “collecting” set
is an adequate inductive annotation for any program and any
true pre/post condition. (Assumes collecting sets can be
expressed logically).

@ Hoare logic is sound, essentially because the individual rules
can be seen to be sound.

@ For completness of Hoare logic, we need weakest
preconditions.

Weakest Preconditions
@®00000000

Weakest Precondition WP(P, B)

WP(P, B) is “a predicate that describes the exact set of states s
such that when program P is started in s, if it terminates it will

terminate in a state satisfying condition B."
All States
WP(P, B)

G {10 < y} (Valid Pre)

y 1=y +1;
z = x +7;

{x <z}

Weakest Preconditions
@®00000000

Weakest Precondition WP(P, B)

WP(P, B) is “a predicate that describes the exact set of states s
such that when program P is started in s, if it terminates it will

terminate in a state satisfying condition B."
All States
WP(P, B)

G {—1 < y} (Weakest Pre)

y+ 1
X+y;

‘U
N <
o

{x <z}

Weakest Preconditions
[o] lele]elelele]e]

Exercise: Give “weakest” preconditions

o {7 }x i=x+2 {x>5}

Weakest Preconditions
[o] lele]elelele]e]

Exercise: Give “weakest” preconditions

QO {x>3}x :=x+2 {x>5}

(2]
{7 }
if (y < 0) then x := x+1 else x := y
{x >0}

Weakest Preconditions
[o] lele]elelele]e]

Exercise: Give “weakest” preconditions

QO {x>3}x :=x+2 {x>5}

{(y<0Ax>-1)V(y>0)}
if (y < 0) then x := x+1 else x := y
{x >0}

Q{7 } while (x <5) do x :=x+1 {x =06}

Weakest Preconditions
[o] lele]elelele]e]

Exercise: Give “weakest” preconditions

QO {x>3}x :=x+2 {x>5}

{(y<0Ax>-1)V(y>0)}
if (y < 0) then x := x+1 else x := y
{x >0}

O { x <6} while (x <5) dox:=x+1 {x=06}

Weakest Preconditions
[e]e] le]elelele]e}

Exercise: How will you define WP(P, B)?

All States

Weakest Preconditions
[e]e] le]elelele]e}

Exercise: How will you define WP(P, B)?

All States

WP(P,B) = {s | Vt[(s, t) € [P] implies t |= B]}

Weakest Preconditions
[e]e]e] lelelele]e]

Using weakest preconditions to partially automate inductive proofs

Weakest preconditions give us a way to:

@ Check inductiveness of annotations
{A,’} 5,' {A,'_H} iff A,‘ — WP(S;,A;+1)

@ Reduce the amount of user-annotation needed

o Programs without loops don't need any user-annotation
o For programs with loops, user only needs to provide loop
invariants

Weakest Preconditions
[e]e]ele] Telele]e}

Checking {A} P {B} using WP
y>10
y> -1

y 1=y +

y>0

zZ> X

Check that
(y >10) = WP(P,z > x)

Weakest Preconditions
[e]e]ele]e] lelele]

WP rules

@ Hoare's rules for skip, assignment, and if-then-else are already
WP rules.

@ For Sequencing:

WP(S;T, B) = WP(S, WP(T, B)).

Weakest Preconditions
000000800

Weakest Precondition for while statements

@ We can “approximate” WP(while b do c).

o WPj(w, A) = the set of states from which the body ¢ of the
loop is either entered more than j times or we exit the loop in
a state satisfying A.

o WP; defined inductively as follows:

WP, = bVA
WPi,1 = (=bAA)V(bAWP(c, WP;))

@ Then WP(w, A) can be shown to be the “limit" or least
upper bound of the chain WPq(w, A), WP1(w,A),...ina
suitably defined lattice (here the join operation is “And” or
intersection).

Weakest Preconditions
000000080

lllustration of WP; through example

Consider the program w below:

while (x > 10) do
x:=x-1

@ What is the weakest precondition of w with respect to the
postcondition (x < 0)?

e Compute WPy(w, (x <0)), WPi(w,(x <0)),

Weakest Preconditions
000000080

lllustration of WP; through example

Consider the program w below:

while (x > 10) do
x:=x-1

@ What is the weakest precondition of w with respect to the
postcondition (x < 0)?

e Compute WPy(w, (x <0)), WPi(w,(x <0)),

WpP3
WPy

) ; WPy
) : WPy

Postcondition x < 0

Weakest Preconditions
0O0000000e

Automating checking of pre-post specifications for a program

To check:

{y > 10}

y 1=y +1;
zZ =X +7y;

{x <z}

Use the weakest precondition rules to generate the verification
condition:
(y >10) = (y > -1).

Check the verification condition by asking a theorem prover / SMT
solver if the formula

(y >10)A—(y > -1).

is satisfiable.

Completeness
@00

Relative completeness of Hoare logic

Theorem (Cook 1974)

Hoare logic is complete provided the assertion language L can
express the WP for any program P and post-condition B.

Proof uses WP predicates and proceeds by induction on the
structure of the program P.

@ Suppose {A} skip {B} holds. Then it must be the case that
A = B is true. By Skip rule we know that {B} skip {B}.
Hence by Weakening rule, we get that {A} skip {B} holds.

@ Suppose {A} x := e {B} holds. Then it must be the case
that A = Ble/x]|. By Assignment rule we know that
{Ble/x]} x := e {B} is true. Hence by Weakening rule, we
get that {A} x := e {B} holds.

@ Suppose {A} S;T {B} holds. Let C = WP(T, B). Then
{A} 8 {C} and {C} T {B} must be valid assertions. By IH
there must be Hoare logic proofs for them. We can now use
the sequencing rule to conclude {A! S: T {B}!.

Completeness
oeo
Relative completeness of Hoare logic

@ Similarly for if-then-else.

@ Suppose {A} while b do S {B} holds. Let
P = WP(while b do S,B).

o Then it is not difficult to check that P is a loop invariant for
the while statement. l.e {P A b} 8 {P} is true. (Exercise!)

e By induction hypothesis, this triple must be provable in Hoare
logic. Hence we can conclude using the While rule, that
{P} while b do S {P A —b} is true.

o But since P was a valid precondition, it follows that
(P A-b) = B. Since P was the WP, we should have
A= P.

o By the weakening rule, we have a proof of
{A} while b do S {B}.

Completeness
ooe

Conclusion

@ Features of this Floyd-Hoare style of verification:

o Tries to find a proof in the form of an inductive annotation.

o A Floyd-style proof can be used to obtain a Hoare-style proof;
and vice-versa.

o Reduces verification (given key annotations) to checking
satisfiability of a logical formula (VCs).

o Is flexible about predicates, logic used (for example can add
quantifiers to reason about arrays).

@ Main challenge is the need for user annotation (adequate loop
invariants).

@ Can be increasingly automated (using learning techniques).

	Overview
	Hoare Triples
	Proving assertions
	Inductive Annotation
	Hoare Logic
	Weakest Preconditions
	Completeness

