

Floyd-Hoare Style Program Verification

Deepak D'Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

10 November 2025

Outline of these lectures

- 1 Overview
- 2 Hoare Triples
- 3 Proving assertions
- 4 Inductive Annotation
- 5 Hoare Logic
- 6 Weakest Preconditions
- 7 Completeness

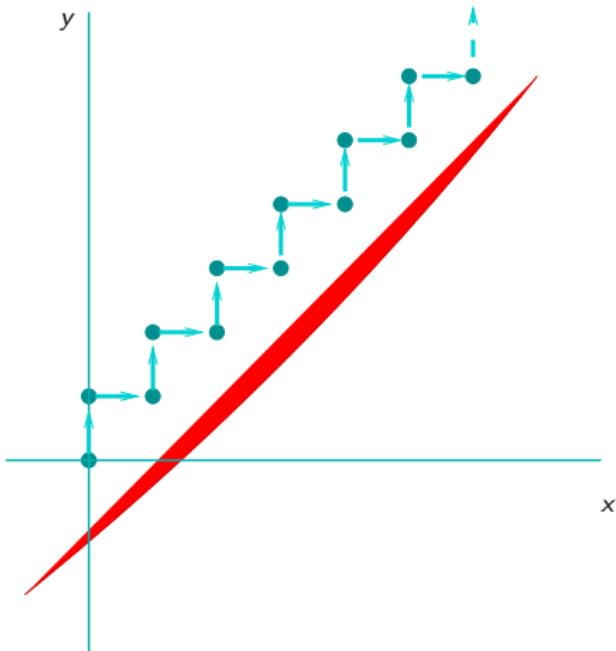
The Verification Problem

Given a *system model* M and a *property* P about the model, tell whether M satisfies P or not.

- Different kinds of system models. Here we are interested in (idealized) programs.
- Different kinds of properties: Safety, Temporal, Functionality based, Performance based, etc. Here we are interested in safety properties (“an unsafe/bad state is not reachable”). In particular, “**pre-post**” properties.

Example Program and Property

```
x := 0;  
y := 0;  
while (*) {  
    if (x < y)  
        x++;  
    else  
        y++;  
}  
// assert y != x - 1
```



How would one check that this program satisfies the given assertion?

Transition System Model

A transition system \mathcal{T} is specified by (S, S_0, \rightarrow) , where:

- S is a set of **states**
- $S_0 \subseteq S$ is a set of **initial states**
- $\rightarrow \subseteq S \times S$ is the **transition relation**.

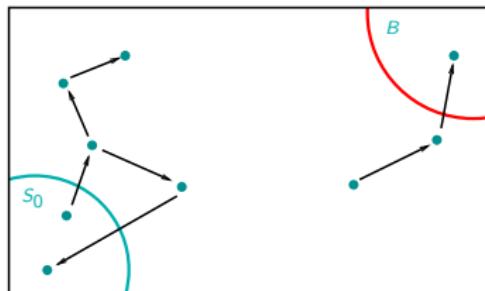
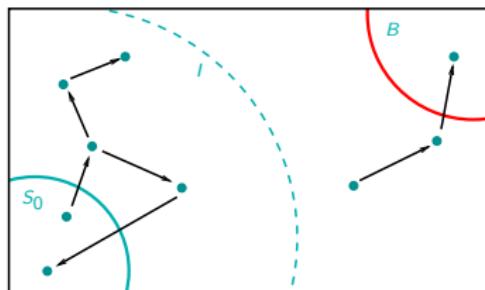
Idea of Deductive Verification

Problem: Given a transition system $\mathcal{T} = (S, S_0, \rightarrow)$ and a set of unsafe states $B \subseteq S$, does an execution of \mathcal{T} reach a state in B ?

Find a set of states I such that

- ① $S_0 \subseteq I$ (initial states belong to I)
- ② $s \in I$ and $s \rightarrow s'$, implies $s' \in I$ (I is inductive wrt trans)
- ③ $I \cap B = \emptyset$ (I disjoint from Bad states).

Such an I is called an **adequate inductive invariant**.

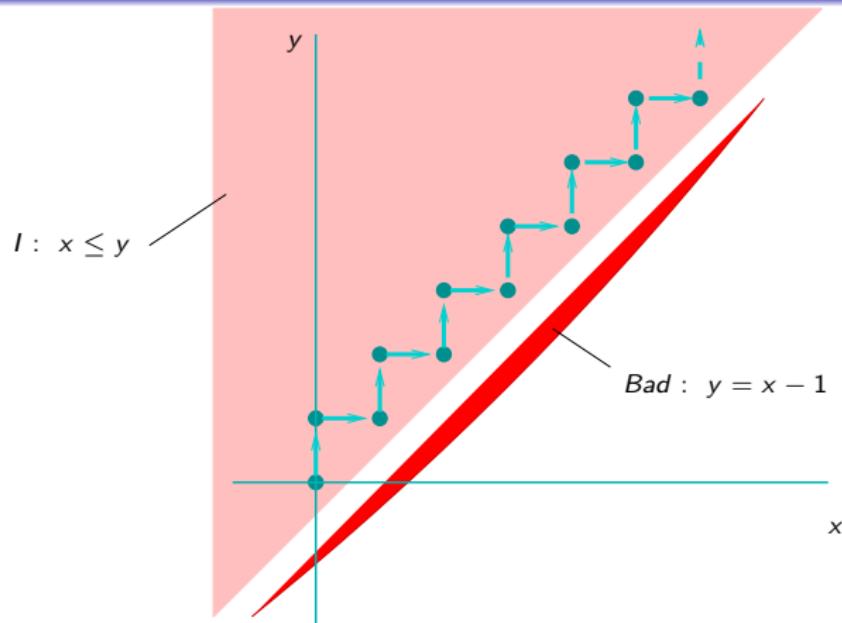


Idea of deductive verification

```

x := 0;
y := 0;
while (*) {
    if (x < y)
        x++;
    else
        y++;
}
// assert y != x - 1

```



I is an adequate inductive invariant:

- ➊ $s_0 \in I$ (initial state belongs to I)
- ➋ $s \in I$ and $s \rightarrow s'$, implies $s' \in I$ (I is inductive wrt trans)
- ➌ $I \cap B = \emptyset$ (I disjoint from Bad states).

Floyd-Hoare Style of Program Verification

Robert W. Floyd: "Assigning meanings to programs" *Proceedings of the American Mathematical Society Symposia on Applied Mathematics* (1967)

C A R Hoare: "An axiomatic basis for computer programming", *Communications of the ACM* (1969).

Floyd-Hoare Logic

- A way of asserting properties of programs.
- Hoare triple: $\{A\}P\{B\}$ asserts that “**Whenever program P is started in a state satisfying condition A , if it terminates, it will terminate in a state satisfying condition B .**”
- Example assertion: $\{n \geq 0\} P \{a = n + m\}$, where P is the program:

```
int a := m;
int x := 0;
while (x < n) {
    a := a + 1;
    x := x + 1;
}
```

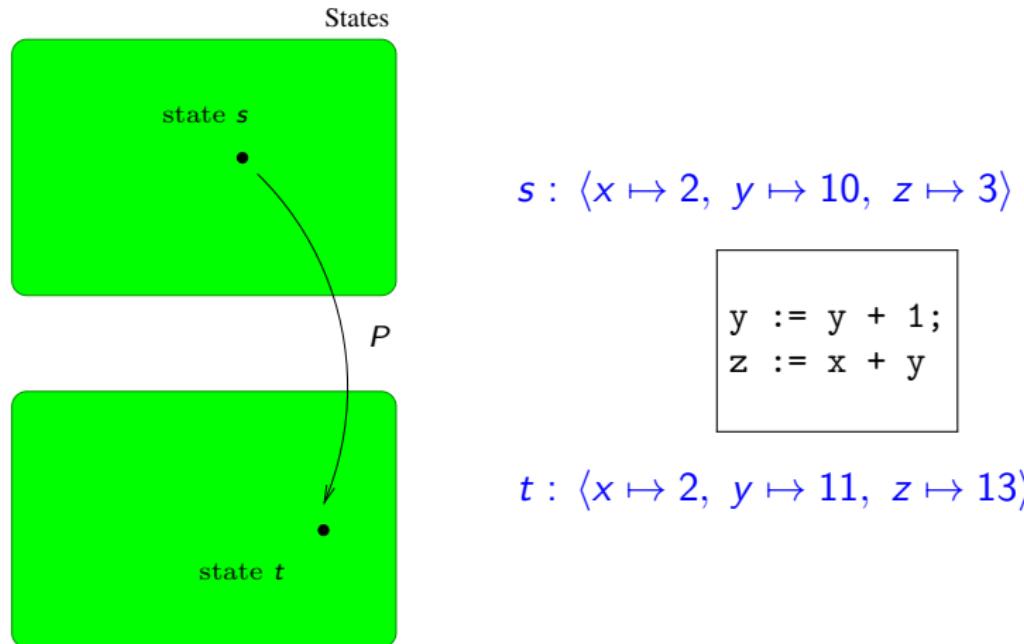
- Inductive Annotation (“consistent interpretation”) (due to Floyd)
- A proof system (due to Hoare) for proving such assertions.
- A way of reasoning about such assertions using the notion of “**Weakest Preconditions**” (due to Dijkstra).

A Simple Programming Language

- skip (do nothing)
- $x := e$ (assignment)
- if b then S else T (if-then-else)
- while b do S (while loop)
- $S ; T$ (sequencing)

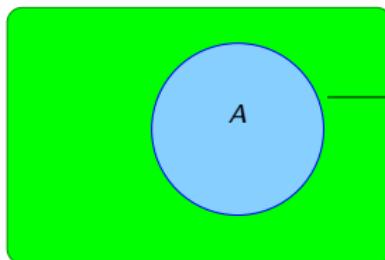
Programs as State Transformers

- Program state is a valuation to variables of the program:
 $States = Var \rightarrow \mathbb{Z}$.
- View program P as a **partial** map $\llbracket P \rrbracket : States \rightarrow States$.



Predicates on States

All States

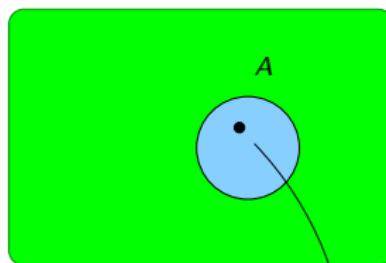


States satisfying
Predicate *A*
Eg. $0 \leq x \wedge x < y$

Assertion of “Partial Correctness” $\{A\}P\{B\}$

$\{A\}P\{B\}$ asserts that “Whenever program P is started in a state satisfying condition A , either it will not terminate, or it will terminate in a state satisfying condition B .”

All States



$\{10 \leq y\}$

$y := y + 1;$
 $z := x + y$

$\{x < z\}$

Mathematical meaning of a Hoare triple

- View program P as a **relation** on States (allows non-termination as well as non-determinism)

$$\llbracket P \rrbracket \subseteq \text{States} \times \text{States}.$$

Here $(s, t) \in \llbracket P \rrbracket$ iff it is possible to start P in the state s and terminate in state t .

- $\llbracket P \rrbracket$ is possibly non-deterministic, in case we also want to model non-deterministic assignment etc.
- Then the Hoare triple $\{A\} P \{B\}$ is true iff for all states s and t : whenever $s \models A$ and $(s, t) \in \llbracket P \rrbracket$, then $t \models B$.
- In other words $\text{Post}_{\llbracket P \rrbracket}(\llbracket A \rrbracket) \subseteq \llbracket B \rrbracket$.

Example programs and pre/post conditions

```
// Pre: true // Pre: 0 <= n
```

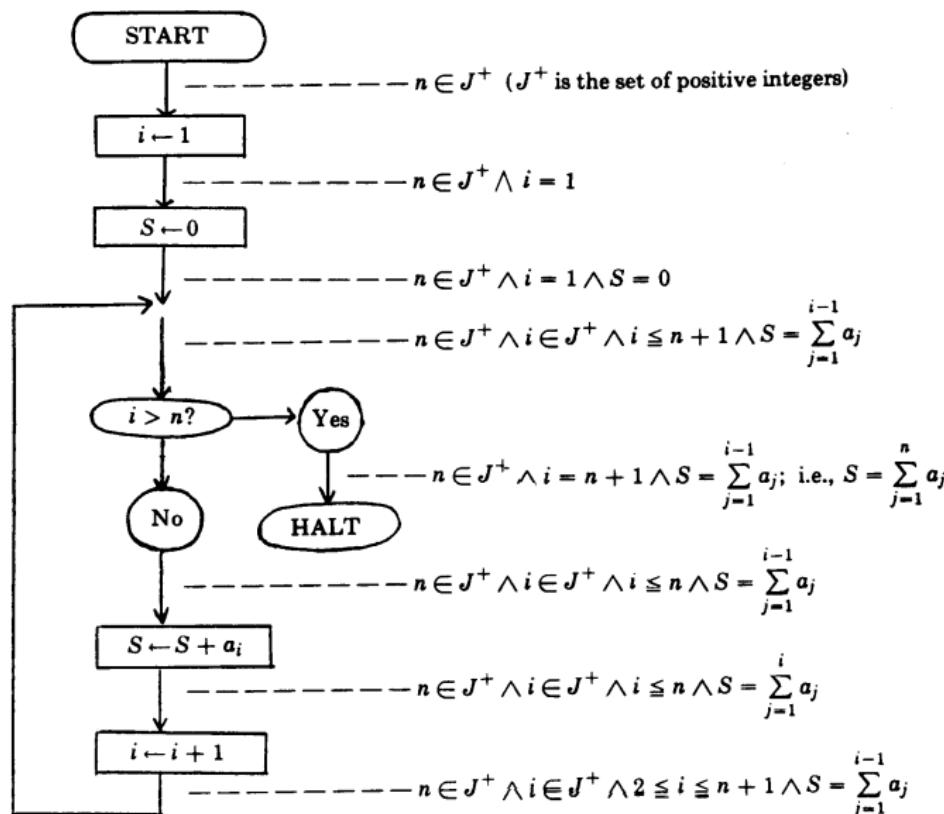
```
if (a <= b)
    min := a;
else
    min := b;
```

```
// Post: min <= a && min <= b
```

```
int a := m;
int x := 0;
while (x < n) {
    a := a + 1;
    x := x + 1;
}
```

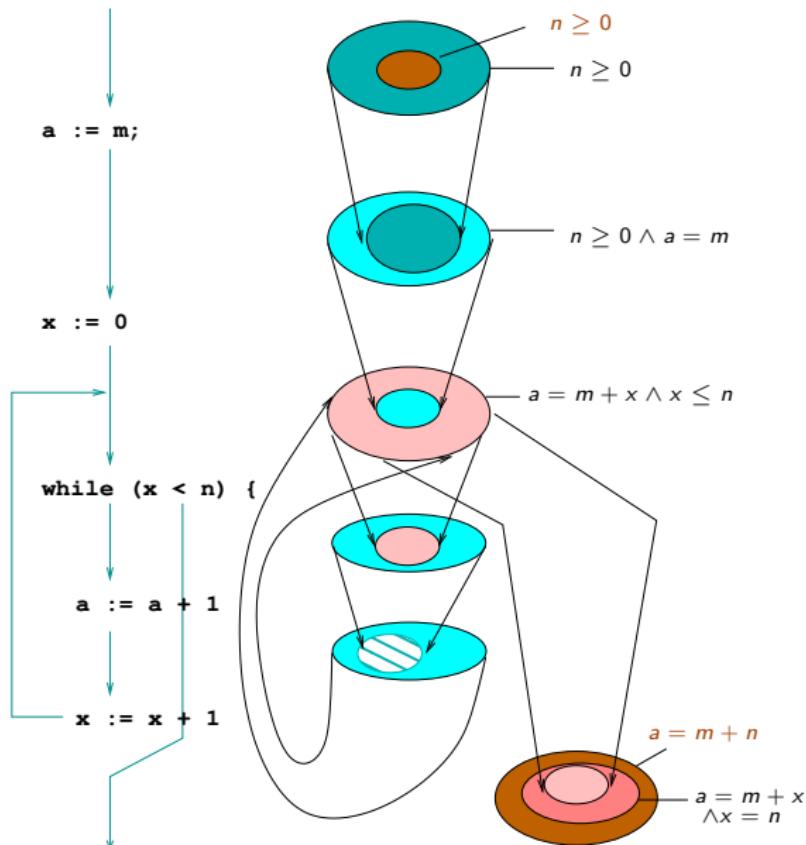
```
// Post: a = m + n
```

Floyd style proof: Inductive Annotation



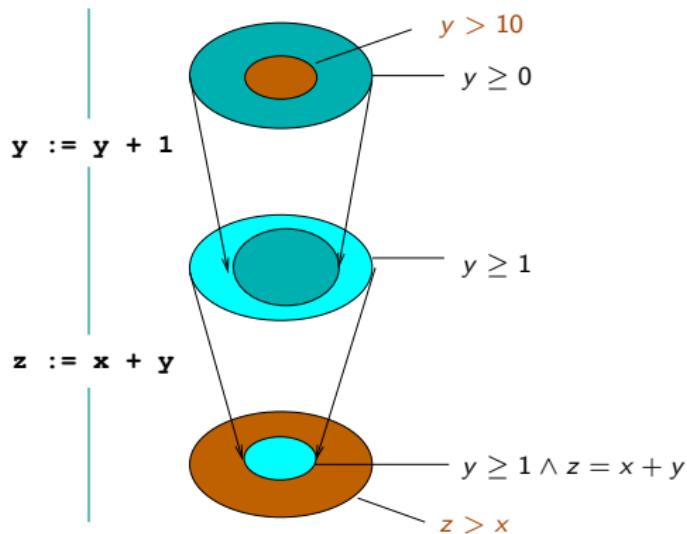
Inductive annotation based proof of add program

- Annotate each program point i with a predicate A_i
- Successive annotations must be **inductive**:
 $\llbracket S_i \rrbracket(\llbracket A_i \rrbracket) \subseteq \llbracket A_{i+1} \rrbracket$,
OR logically:
 $A_i \wedge \llbracket S_i \rrbracket \implies A'_{i+1}$.
- Annotation must be **adequate**:
 $Pre \implies A_1$ and
 $A_n \implies Post$.
- Adequate inductive annotation
constitutes a proof of
 $\{Pre\} \text{ Prog } \{Post\}$.



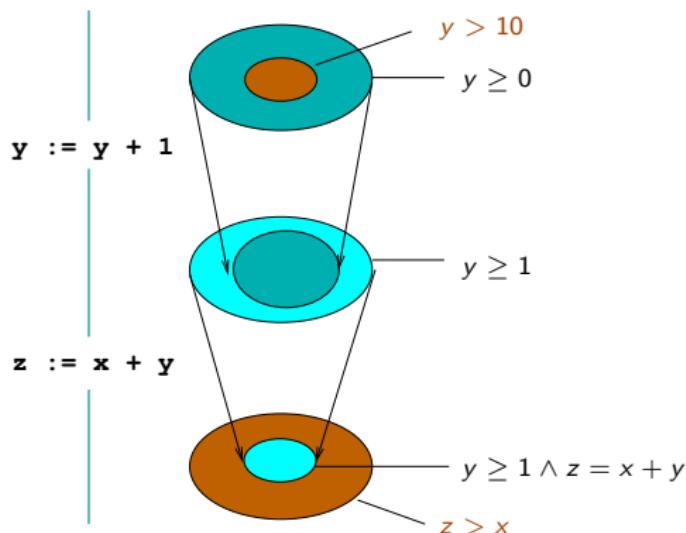
Example inductive annotation based proof

To prove: $\{y > 10\} \ y := y+1; \ z := x+y \ \{z > x\}$



Example inductive annotation based proof

To prove: $\{y > 10\} \ y := y+1; \ z := x+y \ \{z > x\}$



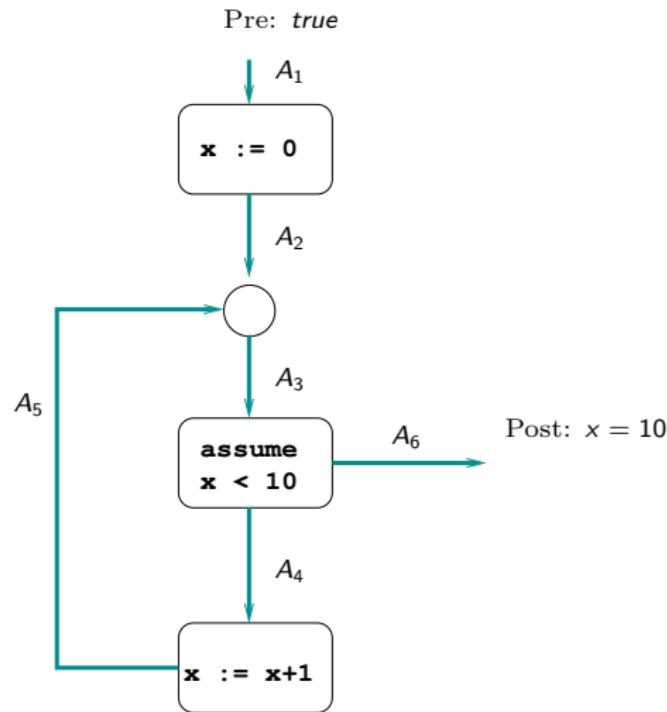
Logical proof obligations (**Verification Conditions**) check adequacy and inductiveness:
 If VCs are logically valid then annotations are adequate and inductive.

$$\begin{aligned}
 & (y > 10 \implies y \geq 0) \wedge ((y \geq 1 \wedge z = x + y) \implies z > x) \wedge \\
 & \quad ((y \geq 0 \wedge y' = y + 1 \wedge x' = x \wedge z' = z) \implies y' \geq 1) \wedge \\
 & \quad ((y \geq 1 \wedge z' = x + y \wedge x' = x \wedge y' = y) \implies y' \geq 1 \wedge z' = x' + y')
 \end{aligned}$$

Exercise 1

Prove using Floyd-style annotation:

```
// Pre: true
int x := 0;
while (x < 10)
    x := x + 1;
// Post: x = 10
```



Also write out the proof obligations (verification conditions).

Exercise 2

Prove using Floyd's inductive annotation:

$$\{n \geq 1\} \ P \ \{a = n!\},$$

where P is the program:

```

x := n;
a := 1;
while (x ≥ 1) {
    a := a * x;
    x := x - 1
}

```

Assume that factorial is defined as follows:

$$n! = \begin{cases} n \times (n-1) \times \cdots \times 1 & \text{if } n \geq 1 \\ 1 & \text{if } n = 0 \\ -1 & \text{if } n < 0 \end{cases}$$

Exercise 2

Prove using Floyd's inductive annotation:

$$\{n \geq 1\} \ P \ \{a = n!\},$$

where P is the program:

```

S1: x := n;
S2: a := 1;
S3: while (x ≥ 1) {
S4:     a := a * x;
S5:     x := x - 1
    }
```

Assume that factorial is defined as follows:

$$n! = \begin{cases} n \times (n-1) \times \cdots \times 1 & \text{if } n \geq 1 \\ 1 & \text{if } n = 0 \\ -1 & \text{if } n < 0 \end{cases}$$

Hoare's view: Program as a composition of statements

```
int a := m;  
int x := 0;  
while (x < n) {  
    a := a + 1;  
    x := x + 1;  
}
```

Hoare's view: Program as a composition of statements

```
int a := m;  
int x := 0;  
while (x < n) {  
    a := a + 1;  
    x := x + 1;  
}
```

```
S1: int a := m;  
S2: int x := 0;  
S3: while (x < n) {  
    a := a + 1;  
    x := x + 1;  
}
```

Program is S1;S2;S3

Proof rules of Hoare Logic

To be read as “If assertion above the line is true, then so is the assertion below the line”.

Axiom of Valid formulas

$$\overline{\quad} \quad A$$

provided “ $\models A$ ” (i.e. A is a valid logical formula, eg. $x > 10 \implies x > 0$).

Skip

$$\overline{\{A\} \text{ skip } \{A\}}$$

Assignment

$$\overline{\{A[e/x]\} \text{ } x := e \text{ } \{A\}}$$

Proof rules of Hoare Logic

If-then-else

$$\frac{\{P \wedge b\} S \{Q\}, \{P \wedge \neg b\} T \{Q\}}{\{P\} \text{ if } b \text{ then } S \text{ else } T \{Q\}}$$

While (here P is called a *loop invariant*)

$$\frac{\{P \wedge b\} S \{P\}}{\{P\} \text{ while } b \text{ do } S \{P \wedge \neg b\}}$$

Sequencing

$$\frac{\{P\} S \{Q\}, \{Q\} T \{R\}}{\{P\} S; T \{R\}}$$

Weakening

$$\frac{P \implies Q, \{Q\} S \{R\}, R \implies T}{\{P\} S \{T\}}$$

Loop invariants

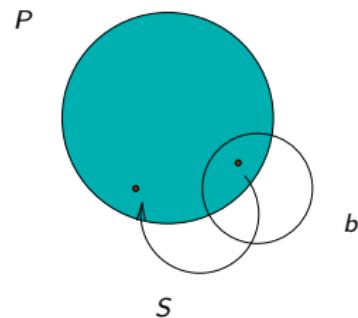
A predicate P is a **loop invariant** for the while loop:

```
while (b) {
    S
}
```

if $\{P \wedge b\} \ S \ \{P\}$ holds.

If P is a loop invariant then we can infer that:

$\{P\} \text{ while } b \text{ do } S \ \{P \wedge \neg b\}$



Proof of a Hoare triple in Hoare Logic

A proof of a Hoare triple $\{A\} P \{B\}$ in Hoare logic is a finite sequence of assertions

$$C_0, C_1, \dots, C_n$$

such that:

- Each C_i is either an axiom of valid formulas or follows from earlier C_j 's by one of the proof rules.
- C_n is $\{A\} P \{B\}$.

Can also be viewed as a “proof tree”.

Some examples to work on

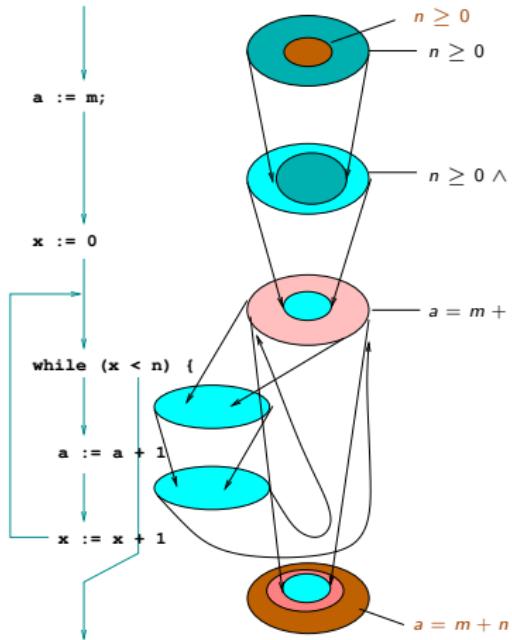
Use the rules of Hoare logic to prove the following assertions:

- ① $\{x > 3\} \quad x := x + 2 \quad \{x \geq 5\}$
- ② $\{(y \leq 0) \wedge (-1 < x)\} \text{ if } (y < 0) \text{ then } x := x + 1 \text{ else } x := y$
 $\{0 \leq x\}$
- ③ $\{x \leq 0\} \text{ while } (x \leq 5) \text{ do } x := x + 1 \quad \{x = 6\}$

Example proof using Hoare Logic

- ① $\{x + 2 \geq 5\} x := x + 2 \{x \geq 5\}$ [Assign. Rule] $// \text{pre: } x > 3$
- ② $x > 3 \implies x + 2 \geq 5$ [Logical Axiom] $x := x + 2$
- ③ $x \geq 5 \implies x \geq 5$ [Logical Axiom] $// \text{post: } x \geq 5$
- ④ $\{x > 3\} x := x + 2 \{x \geq 5\}$ [Weak. on 1, 2, 3]

Adequate loop invariant



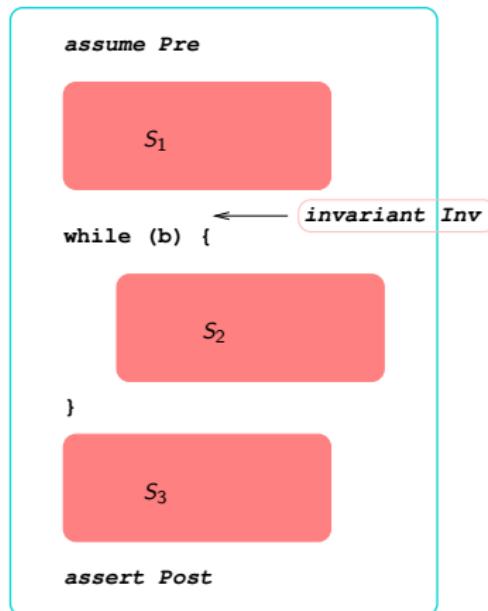
An **adequate** loop invariant needs to satisfy:

- $\{n \geq 0\} a := m; x := 0$
 $\{a = m + x \wedge x \leq n\}.$
- $\{a = m + x \wedge x \leq n \wedge x < n\} a := a+1;$
 $x := x+1 \quad \{a = m + x \wedge x \leq n\}.$
- $\{a = m + x \wedge x \leq n \wedge x \geq n\} \text{ skip}$
 $\{a = m + n\}.$

Verification conditions are generated accordingly.

Note that $a = m + x$ is **not** an adequate loop invariant.

Generating Verification Conditions for a program



The following VCs are generated:

- $Pre \wedge [S_1] \implies Inv'$
Or: $Pre \implies WP(S_1, Inv)$
- $Inv \wedge b \wedge [S_2] \implies Inv'$
Or: $(Inv \wedge b) \implies WP(S_2, Inv)$
- $Inv \wedge \neg b \wedge [S_3] \implies Post'$
Or: $Inv \wedge \neg b \implies WP(S_3, Post)$

Example proof using Hoare Logic

- 1 $\{n \geq 0\} \text{ S1 } \{n \geq 0 \wedge a = m\}$
- 2 $\{n \geq 0 \wedge a = m\} \text{ S2 } \{n \geq 0 \wedge a = m \wedge x = 0\}$
- 3 ...
- 4 $\{a = m + x \wedge 0 \leq x \leq n \wedge x < n\} \text{ S4;S5}$
 $\{a = m + x \wedge 0 \leq x \leq n\} \text{ (From ...)}$
- 5 $\{a = m + x \wedge 0 \leq x \leq n\} \text{ S3}$
 $\{a = m + x \wedge 0 \leq x \leq n \wedge x \geq n\} \text{ (From While rule, 4)}$
- 6 $\{n \geq 0\} \text{ S1;S2 } \{n \geq 0 \wedge a = m \wedge x = 0\} \text{ (From Seq rule, 1 and 2)}$
- 7 $(n \geq 0 \wedge a = m \wedge x = 0) \implies (a = m + x \wedge 0 \leq x \leq n) \text{ (From logical axiom)}$
- 8 $\{n \geq 0\} \text{ S1;S2 } \{a = m + x \wedge 0 \leq x \leq n\} \text{ (From Weakening rule, 6 and 7)}$
- 9 $\{n \geq 0\} \text{ (S1;S2);S3}$
 $\{a = m + x \wedge 0 \leq x \leq n \wedge x \geq n\} \text{ (From Seq rule, 8, 5)}$
- 10 $(a = m + x \wedge 0 \leq x \leq n \wedge x \geq n) \implies (a = m + n)$
- 11 $\{n \geq 0\} \text{ (S1;S2);S3 } \{a = m + n\} \text{ (From Weakening rule, 9, 10).}$

```

// pre: n >= 0
S1: int a := m;
S2: int x := 0;
S3: while (x < n) {
S4:   a := a + 1;
S5:   x := x + 1;
}
// post: a = m + n

```

Program is S1;S2;S3

More on Adequate loop invariants

What is a “good” loop invariant for this program?

```
x := 0;  
while (x < 10) {  
    if (x >= 0)  
        x := x + 1;  
    else  
        x := x - 1;  
}  
assert(x <= 11);
```

Adequate loop invariant

	Canonical Invariant	Not-inv	Inv,not-ind	Inv,ind,not-adeq	Inv,ind,adeq
<pre> x := 0; while (x < 10) { if (x >= 0) x := x + 1; else x := x - 1; } assert(x <= 11); </pre>					

Exercise

Prove using Hoare logic:

$$\{n \geq 1\} \ P \ \{a = n!\},$$

where P is the program:

```

x := n;
a := 1;
while (x ≥ 1) {
    a := a * x;
    x := x - 1
}

```

Assume that factorial is defined as follows:

$$n! = \begin{cases} n \times (n-1) \times \cdots \times 1 & \text{if } n \geq 1 \\ 1 & \text{if } n = 0 \\ -1 & \text{if } n < 0 \end{cases}$$

Exercise

Prove using Hoare logic:

$$\{n \geq 1\} \ P \ \{a = n!\},$$

where P is the program:

```
S1: x := n;  
S2: a := 1;  
S3: while (x ≥ 1) {  
S4:     a := a * x;  
S5:     x := x - 1  
}
```

Assume that factorial is defined as follows:

$$n! = \begin{cases} n \times (n-1) \times \cdots \times 1 & \text{if } n \geq 1 \\ 1 & \text{if } n = 0 \\ -1 & \text{if } n < 0 \end{cases}$$

Soundness and Completeness

Soundness: If our proof system proves $\{A\} P \{B\}$ then $\{A\} P \{B\}$ indeed holds.

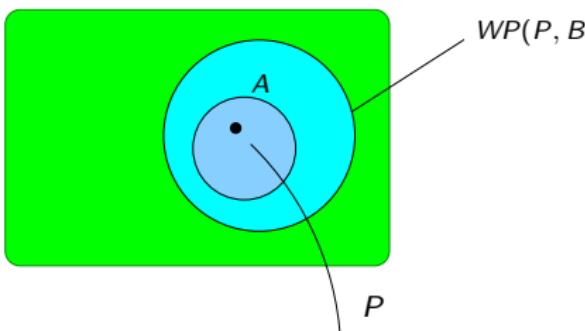
Completeness: If $\{A\} P \{B\}$ is true then our proof system can prove $\{A\} P \{B\}$.

- Floyd proof style is sound since any execution must stay within the annotations. Complete because the “collecting” set is an adequate inductive annotation for any program and any true pre/post condition. (Assumes collecting sets can be expressed logically).
- Hoare logic is sound, essentially because the individual rules can be seen to be sound.
- For completeness of Hoare logic, we need weakest preconditions.

Weakest Precondition $WP(P, B)$

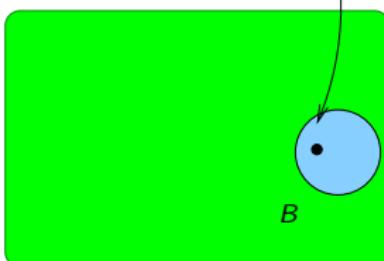
$WP(P, B)$ is “a predicate that describes the exact set of states s such that when program P is started in s , if it terminates it will terminate in a state satisfying condition B .”

All States



$\{10 < y\}$ (Valid Pre)

$y := y + 1;$
 $z := x + y;$

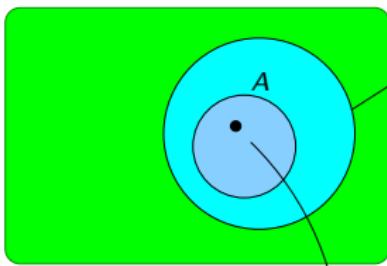


$\{x < z\}$

Weakest Precondition $WP(P, B)$

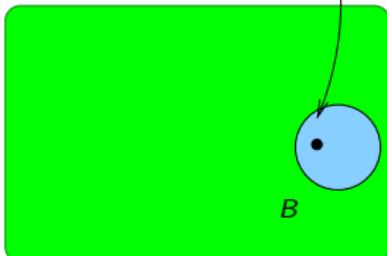
$WP(P, B)$ is “a predicate that describes the exact set of states s such that when program P is started in s , if it terminates it will terminate in a state satisfying condition B .”

All States



$WP(P, B)$

$\{-1 < y\}$ (Weakest Pre)



$y := y + 1;$
 $z := x + y;$

$\{x < z\}$

Exercise: Give “weakest” preconditions

① $\{?\} x := x + 2 \{x \geq 5\}$

Exercise: Give “weakest” preconditions

1 $\{x \geq 3\} x := x + 2 \{x \geq 5\}$

2 $\{?$
if ($y < 0$) then $x := x+1$ else $x := y$
 $\{x > 0\}$

Exercise: Give “weakest” preconditions

1 $\{x \geq 3\} \ x := x + 2 \ \{x \geq 5\}$

2 $\{ (y < 0 \wedge x > -1) \vee (y > 0) \}$
`if (y < 0) then x := x+1 else x := y`
 $\{x > 0\}$

3 $\{? \quad \}$ while $(x \leq 5)$ do $x := x+1 \ \{x = 6\}$

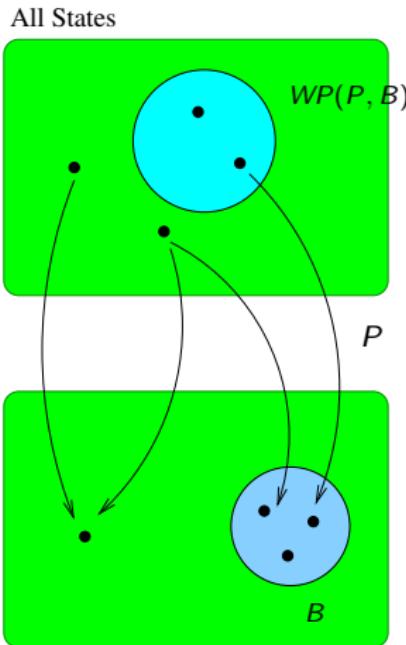
Exercise: Give “weakest” preconditions

1 $\{x \geq 3\} \ x := x + 2 \ \{x \geq 5\}$

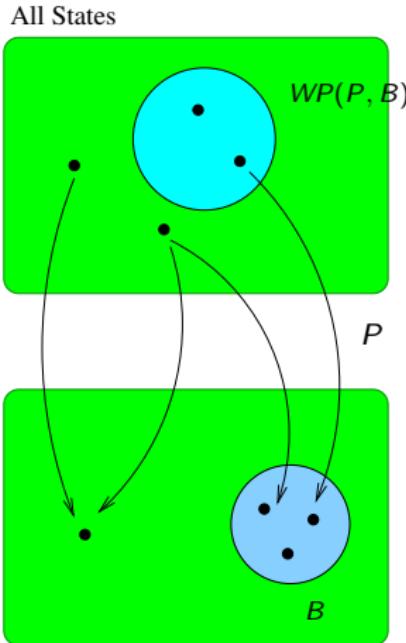
2 $\{ (y < 0 \wedge x > -1) \vee (y > 0) \}$
`if (y < 0) then x := x+1 else x := y`
 $\{x > 0\}$

3 $\{x \leq 6\}$ while $(x \leq 5)$ do $x := x+1 \ \{x = 6\}$

Exercise: How will you define $WP(P, B)$?



Exercise: How will you define $WP(P, B)$?



$$WP(P, B) = \{s \mid \forall t[(s, t) \in \llbracket P \rrbracket \text{ implies } t \models B]\}$$

Using weakest preconditions to partially automate inductive proofs

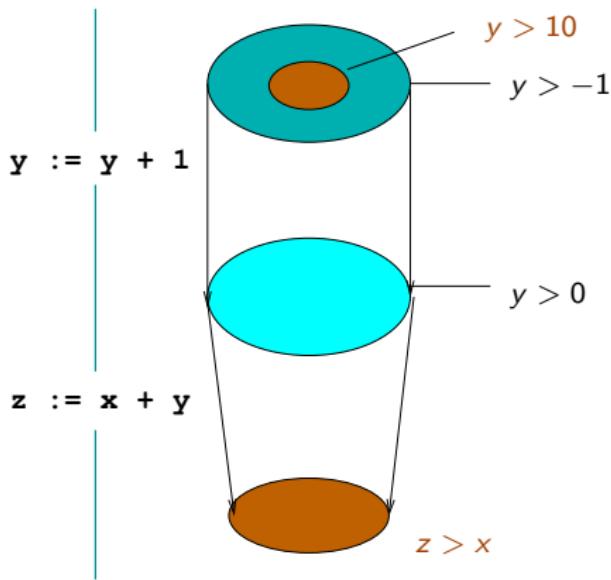
Weakest preconditions give us a way to:

- Check inductiveness of annotations

$$\{A_i\} \ S_i \ \{A_{i+1}\} \text{ iff } A_i \implies WP(S_i, A_{i+1})$$

- Reduce the amount of user-annotation needed
 - Programs **without loops** don't need any user-annotation
 - For programs with loops, user only needs to provide **loop invariants**

Checking $\{A\} P \{B\}$ using WP



Check that

$$(y > 10) \implies WP(P, z > x)$$

WP rules

- Hoare's rules for **skip**, **assignment**, and **if-then-else** are already WP rules.
- For **Sequencing**:

$$WP(S; T, B) = WP(S, WP(T, B)).$$

Weakest Precondition for while statements

- We can “approximate” $WP(\text{while } b \text{ do } c)$.
- $WP_i(w, A) =$ the set of states from which the body c of the loop is either entered more than i times or we exit the loop in a state satisfying A .
- WP_i defined inductively as follows:

$$WP_0 = b \vee A$$

$$WP_{i+1} = (\neg b \wedge A) \vee (b \wedge WP(c, WP_i))$$

- Then $WP(w, A)$ can be shown to be the “limit” or least upper bound of the chain $WP_0(w, A), WP_1(w, A), \dots$ in a suitably defined lattice (here the join operation is “And” or intersection).

Illustration of WP_i through example

Consider the program w below:

```
while (x ≥ 10) do
    x := x - 1
```

- What is the weakest precondition of w with respect to the postcondition $(x \leq 0)$?
- Compute $WP_0(w, (x \leq 0))$, $WP_1(w, (x \leq 0))$, ...

Illustration of WP_i through example

Consider the program w below:

```
while (x ≥ 10) do
  x := x - 1
```

- What is the weakest precondition of w with respect to the postcondition $(x \leq 0)$?
- Compute $WP_0(w, (x \leq 0))$, $WP_1(w, (x \leq 0))$, ...

Automating checking of pre-post specifications for a program

To check:

$$\{y > 10\}$$

```
y := y + 1;  
z := x + y;
```

$$\{x < z\}$$

Use the weakest precondition rules to generate the **verification condition**:

$$(y > 10) \implies (y > -1).$$

Check the verification condition by asking a theorem prover / SMT solver if the formula

$$(y > 10) \wedge \neg(y > -1).$$

is satisfiable.

Relative completeness of Hoare logic

Theorem (Cook 1974)

Hoare logic is complete provided the assertion language L can express the WP for any program P and post-condition B .

Proof uses WP predicates and proceeds by induction on the structure of the program P .

- Suppose $\{A\} \text{ skip } \{B\}$ holds. Then it must be the case that $A \implies B$ is true. By Skip rule we know that $\{B\} \text{ skip } \{B\}$. Hence by Weakening rule, we get that $\{A\} \text{ skip } \{B\}$ holds.
- Suppose $\{A\} x := e \{B\}$ holds. Then it must be the case that $A \implies B[e/x]$. By Assignment rule we know that $\{B[e/x]\} x := e \{B\}$ is true. Hence by Weakening rule, we get that $\{A\} x := e \{B\}$ holds.
- Suppose $\{A\} S;T \{B\}$ holds. Let $C = WP(T, B)$. Then $\{A\} S \{C\}$ and $\{C\} T \{B\}$ must be valid assertions. By IH there must be Hoare logic proofs for them. We can now use the sequencing rule to conclude $\{A\} S;T \{B\}$.

Relative completeness of Hoare logic

- Similarly for if-then-else.
- Suppose $\{A\} \text{ while } b \text{ do } S \{B\}$ holds. Let $P = WP(\text{while } b \text{ do } S, B)$.
 - Then it is not difficult to check that P is a loop invariant for the while statement. I.e $\{P \wedge b\} S \{P\}$ is true. (Exercise!)
 - By induction hypothesis, this triple must be provable in Hoare logic. Hence we can conclude using the While rule, that $\{P\} \text{ while } b \text{ do } S \{P \wedge \neg b\}$ is true.
 - But since P was a valid precondition, it follows that $(P \wedge \neg b) \implies B$. Since P was the WP, we should have $A \implies P$.
 - By the weakening rule, we have a proof of $\{A\} \text{ while } b \text{ do } S \{B\}$.

Conclusion

- Features of this Floyd-Hoare style of verification:
 - Tries to find a proof in the form of an **inductive annotation**.
 - A Floyd-style proof can be used to obtain a Hoare-style proof; and vice-versa.
 - Reduces verification (given key annotations) to checking satisfiability of a logical formula (VCs).
 - Is flexible about predicates, logic used (for example can add quantifiers to reason about arrays).
- Main challenge is the need for user annotation (adequate loop invariants).
- Can be increasingly automated (using learning techniques).