Interprocedural Analysis: Sharir-Pnueli's **Call-Strings Approach**

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

15, 17, 22 September 2025

Outline

- Motivation
- Call-strings method
- Correctness
- Bounded call-string method
- **5** Approximate call-string method

How would we extend an abstract interpretation to handle programs with procedures?

```
main(){
                       f(){
                                               g(){
                                                 f();
  x := 0;
                         x := x+1;
  f();
                         return;
                                                 return;
  g();
  print x;
```

How would we extend an abstract interpretation to handle programs with procedures?

```
main(){
                       f(){
                                              g(){
                                                 f();
  x := 0;
                         x := x+1;
  f();
                         return;
                                                 return;
  g();
  print x;
```

Question: what is the collecting state before the print x statement in main?

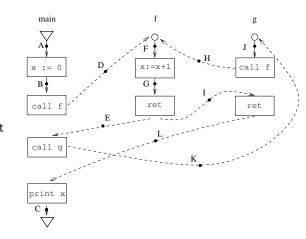
Bounded call-string method

How would we extend an abstract interpretation to handle programs with procedures?

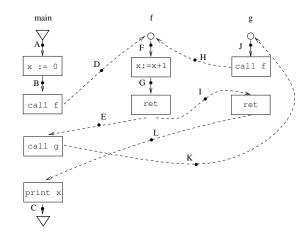
```
main(){
    x := 0;
    x := x+1;
    f();
    return;
    return;
    print x;
}
```

Question: what is the collecting state before the print x statement in main? Answer: $x \mapsto 2$.

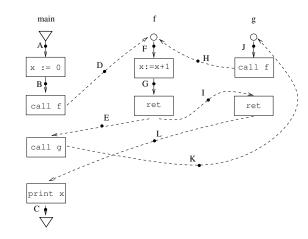
- Add extra edges
 - call edges: from call site (call p) to start of procedure p
 - ret edges: from return statement (in p) to point after call sites (call p) ("ret sites").



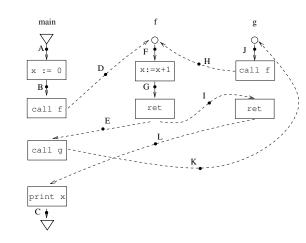
- Assume only global variables.
- Transfer functions for call/return edges?



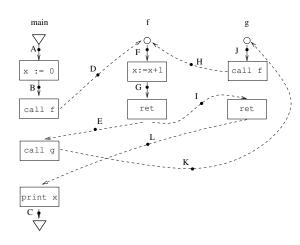
- Assume only global variables.
- Transfer functions for call/return edges? Identity function



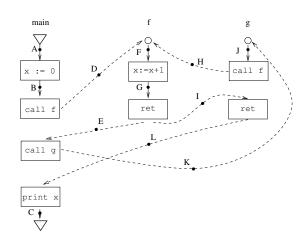
- Assume only global variables.
- Transfer functions for call/return edges? Identity function
- Now compute JOP in this extended control-flow graph.



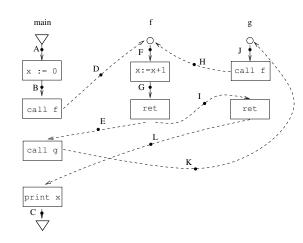
Ex. 1. Actual collecting state at C?



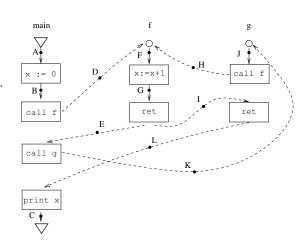
Ex. 1. Actual collecting state at C? $\{x \mapsto 2\}$.



Ex. 1. Actual collecting state at C? $\{x \mapsto 2\}$. Ex. 2. JOP at C using collecting analysis?



Ex. 1. Actual collecting state at C? $\{x \mapsto 2\}$. Ex. 2. JOP at C using collecting analysis? $\{x \mapsto 1, x \mapsto 2, x \mapsto 3, \ldots\}.$

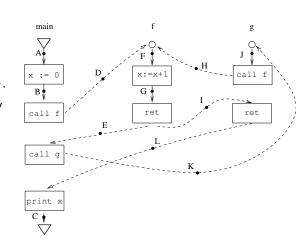


Ex. 1. Actual collecting state at C? $\{x \mapsto 2\}$. Ex. 2. JOP at C using

collecting analysis?

$$\{x\mapsto 1, x\mapsto 2, x\mapsto 3,\ldots\}.$$

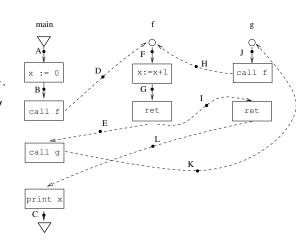
- JOP is sound but very imprecise.
- Reason: Some paths don't correspond to executions of the program: Eg.
 ABDEGILC.



Ex. 1. Actual collecting state at C? $\{x \mapsto 2\}$.

Ex. 2. JOP at C using collecting analysis? $\{x \mapsto 1, x \mapsto 2, x \mapsto 3, \ldots\}.$

• Reason: Some paths don't correspond to executions of the program: Eg. ABDEGILC.



What we want is Join over "Interprocedurally-Valid" Paths (JVP).

Interprocedurally valid paths and their call-strings

- Informally a path ρ in the extended CFG G' is inter-procedurally valid if every return edge in ρ "corresponds" to the most recent "pending" call edge.
- For example, in the example program the ret edge E corresponds to the call edge D.
- The call-string of a valid path ρ is a subsequence of call edges which have not been "returned" as yet in ρ .
- For example, cs(ABDFGEKJHF) is "KH".

Motivation

Interprocedurally valid paths and their call-strings

• A path $\rho = ABDFGEKJHF$ in $IVP_{G'}$ for example program:

- Associated call-string $cs(\rho)$ is KH.
- For $\rho = ABDFGEK \ cs(\rho) = K$.
- For $\rho = ABDFGE \ cs(\rho) = \epsilon$.

Interprocedurally valid paths and their call-strings

More formally: Let ρ be a path in G'. We define when ρ is interprocedurally valid (and we say $\rho \in IVP(G')$) and what is its call-string $cs(\rho)$, by induction on the length of ρ .

- If $\rho = N$ and N is either an internal edge or a call edge, then $\rho \in IVP(G')$ and $cs(\rho)$ is ϵ or N respectively.
- If $\rho = \rho' \cdot N$ then $\rho \in IVP(G')$ iff $\rho' \in IVP(G')$ with $cs(\rho') = \gamma$ say, and one of the following holds:
 - N is an internal edge. In this case $cs(\rho) = \gamma$.

Call-strings method

- N is a call edge. In this case $cs(\rho) = \gamma \cdot N$.
- **3** N is ret edge, and γ is of the form $\gamma' \cdot C$, C is a call edge, and N corresponds C. In this case $cs(\rho) = \gamma'$.
- We denote the set of call-strings that can occur along initial IVP paths in G' by Γ_P (or just Γ when P is clear).
- Call-strings of example program are $\{\epsilon, D, K, KH\}$.

Join over interprocedurally-valid paths (JVP)

- Let P be a given program, with extended CFG G'.
- Let $path_{I,N}(G')$ be the set of paths from the initial point I to point N in G'.
- Let $\mathcal{A} = ((D, \leq), f_{MN}, d_0)$ be an abstract interpretation for P.
- Then we define the join over all interprocedurally valid paths (JVP) at point N in G' to be:

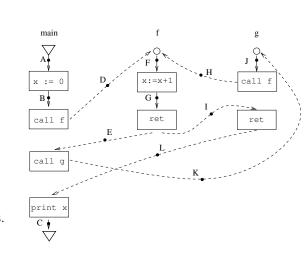
$$\bigsqcup_{\rho \in path_{I,N}(G') \cap IVP(G')} f_{\rho}(d_0)$$

Sharir and Pnueli's approaches to interprocedural analysis

Micha Sharir and Amir Pnueli: Two approaches to interprocedural data flow analysis, in *Program Flow Analysis: Theory and Applications* (Eds. Muchnick and Jones) (1981).

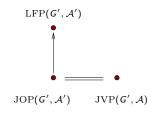
One approach to obtain JVP: Call-Strings

- Find JOP over same graph, but modify the abs int.
- Modify transfer functions for call/ret edges to detect and invalidate invalid edges.
- Augment underlying data values with some information for this.
- Natural thing to try: "call-strings".



Overall plan

- Define an abs int A' which extends given abs int A with call-string data.
- Show that JOP of A' on G' coincides with JVP of A on G'.
- Use Kildall (or any other technique) to compute LFP of \mathcal{A}' on \mathcal{G}' . This value over-approximates JVP of \mathcal{A} on G'.

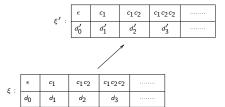


Call-string abs int A': Lattice $(D'_{\cdot}, <')$

• Elements of D' are maps $\xi : \Gamma \to D$

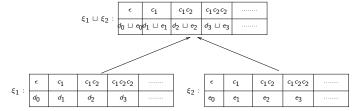
• Ordering on D': <' is the pointwise extension of < in D. That is

 $\xi_1 \leq ' \xi_2$ iff for each $\gamma \in \Gamma, \xi_1(\gamma) \leq \xi_2(\gamma)$.



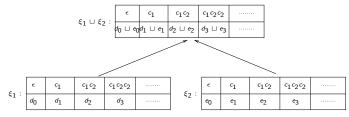
Call-string abs int \mathcal{A}' : Lattice (D', \leq')

• Induced join is:



Call-string abs int A': Lattice (D', \leq')

• Induced join is:

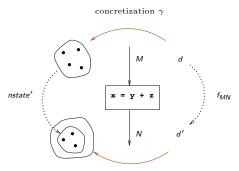


• Check that (D', \leq') is also a complete lattice.

Designing a correct transfer function

Call-strings method

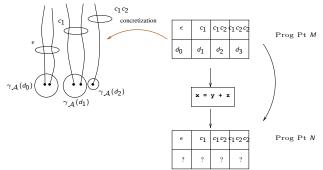
Given components (D, \leq) and abstraction (α) and concretization (γ) functions for elements of D, your transfer functions must satisfy (in addition to monotonicity):



If $\gamma(d)$ were the only concrete states that could arise at M, then $\gamma(d')$ should over-approximate the resulting states at N (i.e. $nstate'_{MN}(\gamma(d))$.

Designing correct transfer functions in A'

- A call-string table ξ at program point N represents the set of concrete states (say a concrete state here is of the form (s, γ) where s is a standard concrete state and γ is a call-string of the execution giving rise to s) obtained by concretizing $\xi(\gamma)$ and tagging each concrete state with γ , for each $\gamma \in \Gamma$.
- The transfer functions of \mathcal{A}' should keep this meaning in mind.



Call-string abs int A': Initial value ξ_0

• Initial value ξ_0 is given by

$$\xi_0(\gamma) = \begin{cases} d_0 & \text{if } \gamma = \epsilon \\ \bot & \text{otherwise.} \end{cases}$$

Call-strings method

Call-string abs int A': transfer functions

Transfer functions for non-call/ret edge N:

$$f'_{MN}(\xi) = f_{MN} \circ \xi.$$

Transfer functions for call edge N:

$$f'_{MN}(\xi) = \lambda \gamma. \begin{cases} \xi(\gamma') & \text{if } \gamma = \gamma' \cdot N \\ \bot & \text{otherwise} \end{cases}$$

 Transfer functions for ret edge N whose corresponding call edge is C:

$$f'_{MN}(\xi) = \lambda \gamma . \xi(\gamma \cdot C)$$

• Transfer functions f'_{MN} are monotonic (resp. distributive) if each f_{MN} is monotonic (resp. distributive).

Non-call/ret edge B:

$$\xi_B = f_{AB} \circ \xi_A.$$

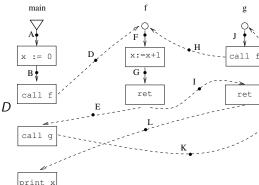
• Call edge *D*:

Motivation

$$\xi_D(\gamma) = \left\{ \begin{array}{ll} \xi_B(\gamma') & \text{ if } \gamma = \gamma' \cdot D \\ \bot & \text{ otherwise} \end{array} \right.$$

• Return edge *E*:

$$\xi_E(\gamma) = \xi_G(\gamma \cdot D).$$

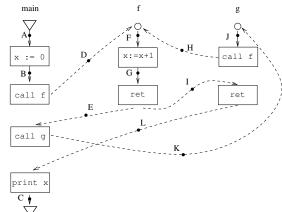


Motivation

Let \mathcal{A} be the standard collecting state analysis. For brevity, represent a set of concrete states as $\{0,1\}$ (meaning the 2 concrete states $x \mapsto 0$ and $x \mapsto 1$). Assume an initial value $d_0 = \{0\}.$

Show the call-string tagged abstract states (in the lattice A') along the paths

- ABDFGEKJHFGIL (interprocedurally valid)
- ABDFGIL (interprocedurally invalid).



Correctness claim

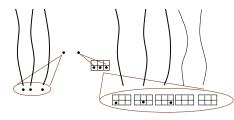
Assumption on A: Each transfer function satisfies $f_{MN}(\bot) = \bot$.

Claim

Let N be a point in G'. Then

$$JVP_{\mathcal{A}}(N) = \bigsqcup_{\gamma \in \Gamma} JOP_{\mathcal{A}'}(N)(\gamma).$$

Proof: Use following lemmas to prove that LHS dominates RHS and vice-versa.



IVP Paths reaching N

Paths reaching N

Correctness claim: Lemma 1

Lemma 1

Motivation

Let ρ be a path in $IVP_{G'}$. Then

$$f'_{\rho}(\xi_0) = \lambda \gamma. \begin{cases} f_{\rho}(d_0) & \text{if } \gamma = cs(\rho) \\ \bot & \text{otherwise.} \end{cases}$$

	ϵ	c_1	cs(p)	c1 c2 c2	
ĺ	Т	Т	d		

Proof: by induction on the length of ρ .

Correctness claim: Lemma 2

Lemma 2

Let ρ be a path not in $IVP_{G'}$. Then

$$f_{\rho}'(\xi_0) = \lambda \gamma. \perp.$$

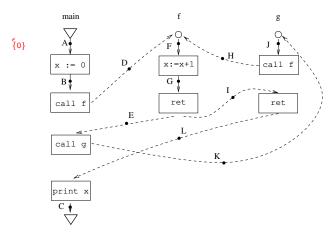
ε	c ₁	c ₂	c1 c2 c2	
_	1		1	

Proof:

- ρ must have an invalid prefix.
- Consider smallest such prefix $\alpha \cdot N$. Then it must be that α is valid and N is a return edge not corresponding to $cs(\alpha)$.
- Using previous lemma it follows that $f'_{\alpha,N}(\xi_0) = \lambda \gamma. \perp$.
- But then all extensions of α along ρ must also have transfer function $\lambda \gamma. \perp$.

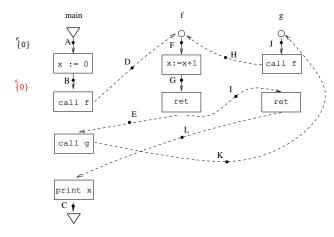
Exercise 2

Use Kildall's algo to compute the LFP of the \mathcal{A}' analysis for the example program. Start with initial value $d_0 = \{0\}$.

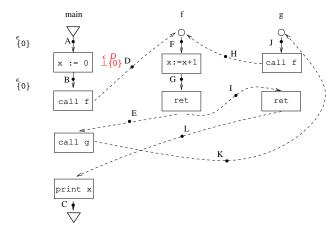


Exercise 2

Use Kildall's algo to compute the LFP of the \mathcal{A}' analysis for the example program. Start with initial value $d_0 = \{0\}$.

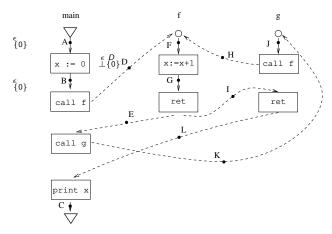


Use Kildall's algo to compute the LFP of the \mathcal{A}' analysis for the example program. Start with initial value $d_0 = \{0\}$.



Exercise 2

Use Kildall's algo to compute the LFP of the \mathcal{A}' analysis for the example program. Start with initial value $d_0 = \{0\}$.

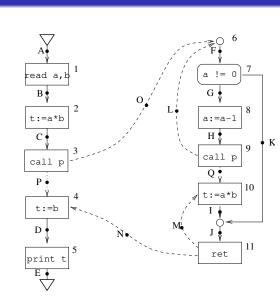


Motivation

• Problem is that D' is infinite in general (even if D were finite). So we cannot use Kildall's algo to compute an over-approximation of JOP (it may not terminate when the program has recursive procedures).

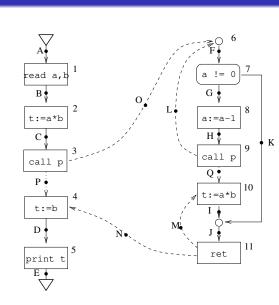
Available expressions

- An expresssion (like "a * b") is available along an execution if there is a point where the expression is evaluated and thereafter none of the constituent variables (like a and b) are written to.
- An expression is available at a point N in a program, if along every execution reaching N, the expression is available.
- Is a * b available at program point *D*?



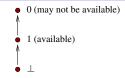
Available expressions

- An expresssion (like "a * b") is available along an execution if there is a point where the expression is evaluated and thereafter none of the constituent variables (like a and b) are written to.
- An expression is available at a point N in a program, if along every execution reaching N, the expression is available.
- Is a * b available at program point D? Yes.



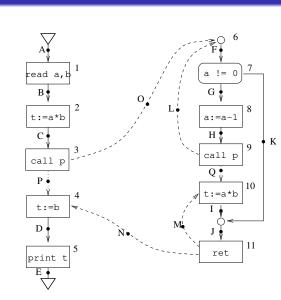
Bounded call-string method

Available expressions analysis

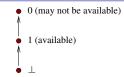


Lattice for Av-Exp analysis for a * b

- "0" concretizes to the set $States \times \{A, NA\}$; while "1" concretizes to States \times {*A*}. " \perp " concretizes to \emptyset .
- JOP of analysis says a * b is not available at program point N.

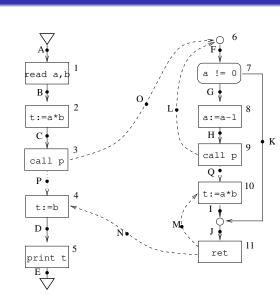


Available expressions analysis



Lattice for Av-Exp analysis for a * b

- "0" concretizes to the set $States \times \{A, NA\}$; while "1" concretizes to States \times {*A*}. " \perp " concretizes to \emptyset .
- JOP of analysis says a * b is not available at program point N.
- JVP says it is available.



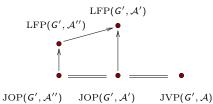
Motivation

Computing JOP for abs int A'

- We give two methods to bound the number of call-strings we need to consider, when underlying lattice (D, \leq) is finite.
 - Give a bound on largest call-string needed.
 - Use "approximate" call-strings.

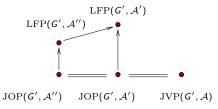
Bounded call-string method for finite underlying lattice D

- Possible to bound length of call-strings in Γ we need to consider.
- For a number I, we denote the set of call-strings (for the given program P) of length at most I, by Γ_I .
- Define a new analysis \mathcal{A}'' (M-bounded call-string analysis) in which call-string tables have entries only for Γ_M for a certain constant M, and transfer functions ignore entries for call-strings of length more than M.
- We will show that JOP(G', A'') = JOP(G', A').



LFP of A'' is more precise than LFP of A'

- ullet Consider any fixpoint V' (a vector of tables) of \mathcal{A}' .
- Truncate each entry of V' to (call-strings of) length M, to get V''.
- Clearly V' dominates V''.
- Further, observe that V'' is a post-fixpoint of the transfer functions for \mathcal{A}'' .
- By Knaster-Tarski characterisation of LFP, we know that V'' dominates LFP(\mathcal{A}'').



Let k be the number of call sites in P.

Claim

Motivation

For any path p in $IVP(r_1, N)$ with a prefix q such that $|cs(q)| > k|D|^2 = M$ there is a path p' in $IVP(r_1, N)$ with $|cs(q')| \leq M$ for each prefix q' of p', and $f_p(d_0) = f_{p'}(d_0)$.

Paths with bounded call-strings

Proving claim

Claim

For any path p in $IVP(r_1, N)$ such that for some prefix q of p, $|cs(q)| > M = k|D|^2$, there is a path p' in $IVP_{\Gamma_M}(r_1, N)$ with $f_{p'}(d_0) = f_p(d_0).$

Sufficient to prove:

Subclaim

For any path p in $IVP(r_1, N)$ with a prefix q such that |cs(q)| > M, we can produce a smaller path p' in $IVP(r_1, N)$ with $f_{p'}(d_0) = f_p(d_0).$

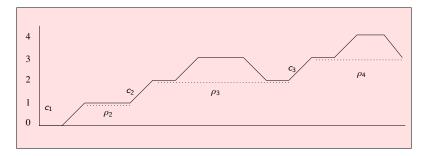
• ...since if $|p| \leq M$ then $p \in IVP_{\Gamma_M}$.

Proving subclaim: Path decomposition

A path ρ in $IVP(r_1, n)$ can be decomposed as

$$\rho_1 \| (c_1, r_{p_2}) \| \rho_2 \| (c_2, r_{p_3}) \| \sigma_3 \| \cdots \| (c_{j-1}, r_{p_j}) \| \rho_j.$$

where each ρ_i (i < j) is a valid and complete path from r_{p_i} to c_i , and ρ_i is a valid and complete path from r_{p_i} to n. Thus c_1, \ldots, c_{i-1} are the unfinished calls at the end of ρ .



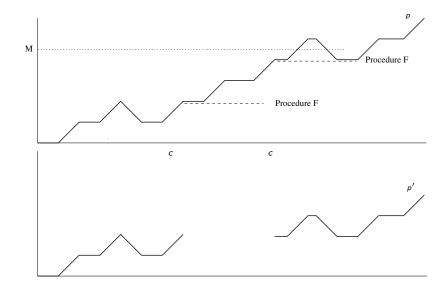
Proving subclaim

- Let p_0 be the first prefix of p where $|cs(p_0)| > M$.
- Let decomposition of p_0 be

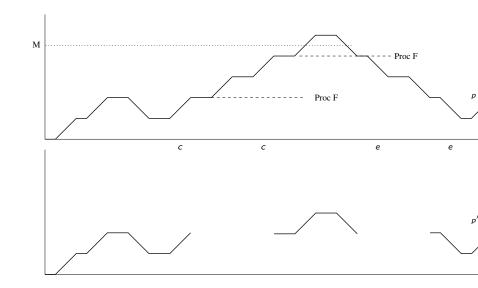
$$\rho_1\|(c_1,r_{\rho_2})\|\rho_2\|(c_2,r_{\rho_3})\|\sigma_3\|\cdots\|(c_{j-1},r_{\rho_j})\|\rho_j.$$

- Tag each unfinished-call c in p_0 by $(c, f_{q \cdot c}(d_0), f_{q \cdot cq'e}(d_0))$ where e is corresponding return of c in p.
- If no return for c in p tag with $(c, f_{q \cdot c}(d_0), \perp)$.
- Number of distinct such tags is $k \cdot |D|^2$.
- So there are two calls qc and qcq'c with same tag values.

Proving subclaim − tag values are ⊥



Proving subclaim – tag values are not \perp



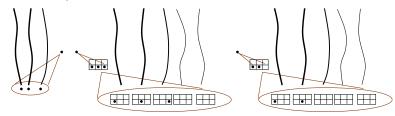
Correctness of Bounded Call-String method for finite underlying lattice

Claim:

$$JOP(G', A'') = JOP(G', A').$$

Observe that:

- M-bounded paths contribute same value d on both sides.
- For every non M-bounded path ρ contributing d in RHS, there is a M-bounded path ρ' contributing d in the LHS.
- Non *M*-bounded paths contribute \perp in LHS.
- Invalid paths contribute \(\perp\) on both sides.



Approximate (suffix) call-string method

We assume WLOG that the main procedure does not call itself.

Idea:

- Consider only call-strings of length < I, for some 1 < I.
- For l=2, call-strings can be of the form " c_1 " or " c_1c_2 " etc. but not " $c_1c_2c_3$ ". So each table ξ is now a finite table.
- Transfer functions for non-call/ret edges remain same.
- Transfer functions for call edge C: Shift each γ entry to $\gamma \cdot C$ if $|\gamma \cdot C| < I$; else shift it to $\gamma' \cdot C$ where γ is of the form $A \cdot \gamma'$ for some call A.
- Transfer functions for ret edge *N*: Consider each γ of the form $\gamma' \cdot C$, where N corresponds to call edge C. Let the first call in γ be from some procedure p. If there exists a call to procedure p, then shift γ entry to $A \cdot \gamma'$, for each call A to procedure p. If there are no calls to procedure p (in which case p must be main), shift γ entry to γ' .

Motivation

string. As long as the length of a call string is less than i, update it as in Section 4. However, if g is a call string of length j, then, when appending to it a call edge, discard the first component of q and add the new call block to its end. When appending a return edge, check if it matches the last call in q and, if it does, delete this call from q and add to its start all possible call blocks which call the procedure containing the first call in q. This approximation may be termed a call-string suffix approximation.

Correctness of A^{\approx}

- ullet Show that \mathcal{A}^{\approx} is a consistent abstraction of the unbounded call-string analysis \mathcal{A}' .
- Use concretization function γ^{\approx} and abstraction function α^{\approx} .
- Argue they form a Galois connection
- Transfer functions over-approximate that of the unbounded call-strings analysis.

ϵ	0	OL	OLL	OL ³	OL ⁴	
d_1	d_2	d ₃	d ₄	d ₄	d ₄	d ₄

Concretization γ	
	\

ϵ	0	OL	LL	
d_1	d_2	d ₃	d ₄	

ϵ	0	OL	OLL	OL ³	OL ⁴	
d_1	d ₂	d ₃	d ₄	d ₅	d ₆	

ϵ	0	OL	LL
d ₁	d ₂	d₃	$d_{\Lambda} \sqcup d_{5} \sqcup d_{5}$

