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Handling programs with procedure calls

How would we extend an abstract interpretation to handle
programs with procedures?

main(){

x := 0;

f();

g();

print x;

}

f(){

x := x+1;

return;

}

g(){

f();

return;

}

Question: what is the collecting state before the print x

statement in main? Answer: x 7→ 2.
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Handling programs with procedure calls

Add extra edges

call edges: from
call site (call
p) to start of
procedure p
ret edges: from
return statement
(in p) to point
after call sites
(call p) (“ret
sites”).

A

x := 0

B

print x

call f

G

ret ret

x:=x+1 call f

call g

H

I

main f g

D

C

E

F J

K

L
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Handling programs with procedure calls

Assume only global
variables.

Transfer functions
for call/return
edges?

Identity
function

Now compute JOP
in this extended
control-flow graph.
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Problem with JOP in this graph

Ex. 1. Actual collecting
state at C?

{x 7→ 2}.
Ex. 2. JOP at C using
collecting analysis?
{x 7→ 1, x 7→ 2, x 7→ 3, . . .}.

JOP is sound but very
imprecise.

Reason: Some paths
don’t correspond to
executions of the
program: Eg.
ABDFGILC.

A

x := 0

B

print x

call f

G

ret ret

x:=x+1 call f

call g

H

I

main f g

D

C

E

F J

K

L

What we want is Join over “Interprocedurally-Valid” Paths (JVP).
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Interprocedurally valid paths and their call-strings

Informally a path ρ in the extended CFG G ′ is
inter-procedurally valid if every return edge in ρ “corresponds”
to the most recent “pending” call edge.

For example, in the example program the ret edge E
corresponds to the call edge D.

The call-string of a valid path ρ is a subsequence of call edges
which have not been “returned” as yet in ρ.

For example, cs(ABDFGEKJHF ) is “KH”.
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Interprocedurally valid paths and their call-strings

A path ρ = ABDFGEKJHF in IVPG ′ for example program:

0

1

2

3

A B D F G K J H FE

Associated call-string cs(ρ) is KH.

For ρ = ABDFGEK cs(ρ) = K .

For ρ = ABDFGE cs(ρ) = ϵ.
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Interprocedurally valid paths and their call-strings

More formally: Let ρ be a path in G ′. We define when ρ is
interprocedurally valid (and we say ρ ∈ IVP(G ′)) and what is its
call-string cs(ρ), by induction on the length of ρ.

If ρ = N and N is either an internal edge or a call edge, then
ρ ∈ IVP(G ′) and cs(ρ) is ϵ or N respectively.
If ρ = ρ′ · N then ρ ∈ IVP(G ′) iff ρ′ ∈ IVP(G ′) with
cs(ρ′) = γ say, and one of the following holds:

1 N is an internal edge.
In this case cs(ρ) = γ.

2 N is a call edge.
In this case cs(ρ) = γ · N.

3 N is ret edge, and γ is of the form γ′ · C , C is a call edge, and
N corresponds C .
In this case cs(ρ) = γ′.

We denote the set of call-strings that can occur along initial
IVP paths in G ′ by ΓP (or just Γ when P is clear).
Call-strings of example program are {ϵ,D,K ,KH}.
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Join over interprocedurally-valid paths (JVP)

Let P be a given program, with extended CFG G ′.

Let pathI ,N(G
′) be the set of paths from the initial point I to

point N in G ′.

Let A = ((D,≤), fMN , d0) be an abstract interpretation for P.

Then we define the join over all interprocedurally valid paths
(JVP) at point N in G ′ to be:⊔

ρ ∈ pathI ,N(G
′)∩IVP(G ′)

fρ(d0).
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Sharir and Pnueli’s approaches to interprocedural
analysis

Micha Sharir and Amir Pnueli: Two approaches to interprocedural
data flow analysis, in Program Flow Analysis: Theory and
Applications (Eds. Muchnick and Jones) (1981).
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One approach to obtain JVP: Call-Strings

Find JOP over
same graph, but
modify the abs int.

Modify transfer
functions for
call/ret edges to
detect and
invalidate invalid
edges.

Augment
underlying data
values with some
information for this.

Natural thing to
try: “call-strings”.

A

x := 0

B

print x

call f

G

ret ret

x:=x+1 call f

call g

H

I

main f g

D

C

E

F J

K

L
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Overall plan

Define an abs int A′ which extends
given abs int A with call-string data.

Show that JOP of A′ on G ′ coincides
with JVP of A on G ′.

Use Kildall (or any other technique) to
compute LFP of A′ on G ′. This value
over-approximates JVP of A on G ′.

LFP(G ′,A′)

JOP(G ′,A′) JVP(G ′,A)
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Call-string abs int A′: Lattice (D ′,≤′)

Elements of D ′ are maps ξ : Γ → D
ϵ c1 c1c2

d0 d1 d2 d3

c1c2c2
ξ :

Ordering on D ′: ≤′ is the pointwise extension of ≤ in D.
That is

ξ1 ≤′ ξ2 iff for each γ ∈ Γ, ξ1(γ) ≤ ξ2(γ).

ϵ c1 c1c2

d0 d1 d2 d3

c1c2c2
ξ :

ϵ c1 c1c2

d′0 d′1 d′2 d′3

c1c2c2
ξ′ :
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Call-string abs int A′: Lattice (D ′,≤′)

Induced join is:
ϵ c1 c1c2

d0 ⊔ e0d1 ⊔ e1 d2 ⊔ e2 d3 ⊔ e3

c1c2c2

ϵ c1 c1c2

e0 e1 e2 e3

c1c2c2
ξ2 :

ϵ c1 c1c2

d0 d1 d2 d3

c1c2c2
ξ1 :

ξ1 ⊔ ξ2 :

Check that (D ′,≤′) is also a complete lattice.
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Designing a correct transfer function

Given components (D,≤) and abstraction (α) and concretization
(γ) functions for elements of D, your transfer functions must
satisfy (in addition to monotonicity):

x = y + z

dM

N d′

concretization γ

fMNnstate′

If γ(d) were the only concrete states that could arise at M, then
γ(d ′) should over-approximate the resulting states at N (i.e.
nstate ′MN(γ(d))).
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Designing correct transfer functions in A′

A call-string table ξ at program point N represents the set of
concrete states (say a concrete state here is of the form (s, γ)
where s is a standard concrete state and γ is a call-string of
the execution giving rise to s) obtained by concretizing ξ(γ)
and tagging each concrete state with γ, for each γ ∈ Γ.
The transfer functions of A′ should keep this meaning in mind.

x = y + z

? ? ? ?

concretizationc1

c1c2

ϵ

ϵ c1c2c2
Prog Pt M

Prog Pt N

c1 c1c2

d3d2d1d0

c1 c1c2ϵ c1c2c2

γA(d2)
γA(d0)

γA(d1)
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Call-string abs int A′: Initial value ξ0

Initial value ξ0 is given by

ξ0(γ) =

{
d0 if γ = ϵ
⊥ otherwise.

ϵ c1 c1c2

d0 ⊥ ⊥ ⊥

c1c2c2
ξ0 :
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Call-string abs int A′: transfer functions

Transfer functions for non-call/ret edge N:

f ′MN(ξ) = fMN ◦ ξ.

Transfer functions for call edge N:

f ′MN(ξ) = λγ.

{
ξ(γ′) if γ = γ′ · N
⊥ otherwise

Transfer functions for ret edge N whose corresponding call
edge is C :

f ′MN(ξ) = λγ.ξ(γ · C )

Transfer functions f ′MN are monotonic (resp. distributive) if
each fMN is monotonic (resp. distributive).
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Transfer functions f ′MN for example program

Non-call/ret edge B:

ξB = fAB ◦ ξA.

Call edge D:

ξD(γ) =

{
ξB(γ

′) if γ = γ′ · D
⊥ otherwise

Return edge E :

ξE (γ) = ξG (γ · D).

A

x := 0

B

print x

call f

G

ret ret

x:=x+1 call f

call g

H

I

main f g

D

C

E

F J

K

L
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Exercise 1

Let A be the standard collecting state analysis. For brevity, represent a set of concrete
states as {0, 1} (meaning the 2 concrete states x 7→ 0 and x 7→ 1). Assume an initial
value d0 = {0}.
Show the call-string tagged abstract states (in the lattice A′) along the paths

1 ABDFGEKJHFGIL (interprocedurally valid)
2 ABDFGIL (interprocedurally invalid).

A

x := 0

B

print x

call f

G

ret ret

x:=x+1 call f

call g

H

I

main f g

D

C

E

F J

K

L
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Correctness claim

Assumption on A: Each transfer function satisfies fMN(⊥) = ⊥.

Claim

Let N be a point in G ′. Then

JVPA(N) =
⊔
γ∈Γ

JOPA′(N)(γ).

Proof: Use following lemmas
to prove that LHS dominates
RHS and vice-versa.

IVP Paths reaching N Paths reaching N
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Correctness claim: Lemma 1

Lemma 1

Let ρ be a path in IVPG ′ . Then

f ′ρ(ξ0) = λγ.

{
fρ(d0) if γ = cs(ρ)
⊥ otherwise.

ϵ c1

⊥ ⊥ d ⊥

c1c2c2cs(ρ)

Proof: by induction on the length of ρ.
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Correctness claim: Lemma 2

Lemma 2

Let ρ be a path not in IVPG ′ . Then

f ′ρ(ξ0) = λγ.⊥.

ϵ c1

⊥ ⊥ ⊥ ⊥

c1c2c2c2

Proof:

ρ must have an invalid prefix.

Consider smallest such prefix α · N. Then it must be that α is
valid and N is a return edge not corresponding to cs(α).

Using previous lemma it follows that f ′α·N(ξ0) = λγ.⊥.

But then all extensions of α along ρ must also have transfer
function λγ.⊥.
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Exercise 2

Use Kildall’s algo to compute the LFP of the A′ analysis for the
example program. Start with initial value d0 = {0}.

A

x := 0

B

print x

call f

G

ret ret

x:=x+1 call f

call g

H

I

main f g

D

C

E

F J

K

L

ϵϵ
{0}{0}

ϵ

ϵ

{0}

{0}
ϵ Dϵ D
⊥{0}⊥{0}
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Computing JOP for abs int A′

Problem is that D ′ is infinite in general (even if D were
finite). So we cannot use Kildall’s algo to compute an
over-approximation of JOP (it may not terminate when the
program has recursive procedures).
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Available expressions

An expresssion (like
“a ∗ b”) is available
along an execution if
there is a point where
the expression is
evaluated and thereafter
none of the constituent
variables (like a and b)
are written to.

An expression is available
at a point N in a
program, if along every
execution reaching N,
the expression is
available.

Is a ∗ b available at
program point D?

Yes.

a:=a−1

7

F

G

t:=a*b

1

A

read a,b

t:=b

print t

D

call p

E

11

call p

a != 0

5

B

C

O
L

M
N

2

3

4

6

9

8

ret

t:=a*b
10

I

J

K

P

H

Q
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Available expressions analysis
0 (may not be available)

1 (available)

⊥

Lattice for Av-Exp analysis for
a ∗ b.

“0” concretizes to the
set States × {A,NA};
while “1” concretizes to
States × {A}. “⊥”
concretizes to ∅.

JOP of analysis says
a ∗ b is not available at
program point N.

JVP says it is available.

a:=a−1

7

F

G

t:=a*b

1

A

read a,b

t:=b

print t

D

call p

E

11

call p

a != 0

5

B

C

O
L

M
N

2

3

4

6

9

8

ret

t:=a*b
10

I

J

K

P

H

Q
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Computing JOP for abs int A′

We give two methods to bound the number of call-strings we
need to consider, when underlying lattice (D,≤) is finite.

Give a bound on largest call-string needed.
Use “approximate” call-strings.
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Bounded call-string method for finite underlying
lattice D

Possible to bound length of call-strings in Γ we need to
consider.
For a number l , we denote the set of call-strings (for the given
program P) of length at most l , by Γl .
Define a new analysis A′′ (M-bounded call-string analysis) in
which call-string tables have entries only for ΓM for a certain
constant M, and transfer functions ignore entries for
call-strings of length more than M.
We will show that JOP(G ′,A′′) = JOP(G ′,A′).

LFP(G ′,A′)

JOP(G ′,A′) JVP(G ′,A)JOP(G ′,A′′)

LFP(G ′,A′′)
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LFP of A′′ is more precise than LFP of A′

Consider any fixpoint V ′ (a vector of tables) of A′.

Truncate each entry of V ′ to (call-strings of) length M, to get
V ′′.

Clearly V ′ dominates V ′′.

Further, observe that V ′′ is a post-fixpoint of the transfer
functions for A′′.

By Knaster-Tarski characterisation of LFP, we know that V ′′

dominates LFP(A′′).

LFP(G ′,A′)

JOP(G ′,A′) JVP(G ′,A)JOP(G ′,A′′)

LFP(G ′,A′′)
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Sufficiency (or safety) of bound

Let k be the number of call sites in P.

Claim

For any path p in IVP(r1,N) with a prefix q such that
|cs(q)| > k |D|2 = M there is a path p′ in IVP(r1,N) with
|cs(q′)| ≤ M for each prefix q′ of p′, and fp(d0) = fp′(d0).

Paths with bounded call-strings

M

pp′
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Proving claim

Claim

For any path p in IVP(r1,N) such that for some prefix q of p,
|cs(q)| > M = k |D|2, there is a path p′ in IVPΓM (r1,N) with
fp′(d0) = fp(d0).

Sufficient to prove:

Subclaim

For any path p in IVP(r1,N) with a prefix q such that
|cs(q)| > M, we can produce a smaller path p′ in IVP(r1,N) with
fp′(d0) = fp(d0).

...since if |p| ≤ M then p ∈ IVPΓM .
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Proving subclaim: Path decomposition

A path ρ in IVP(r1, n) can be decomposed as

ρ1∥(c1, rp2)∥ρ2∥(c2, rp3)∥σ3∥ · · · ∥(cj−1, rpj )∥ρj .

where each ρi (i < j) is a valid and complete path from rpi to ci ,
and ρj is a valid and complete path from rpj to n. Thus
c1, . . . , cj−1 are the unfinished calls at the end of ρ.

0

1

2

4

3

c1

ρ4
c3

ρ3c2

ρ2
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Proving subclaim

Let p0 be the first prefix of p where |cs(p0)| > M.

Let decomposition of p0 be

ρ1∥(c1, rp2)∥ρ2∥(c2, rp3)∥σ3∥ · · · ∥(cj−1, rpj )∥ρj .

Tag each unfinished-call c in p0 by (c , fq·c(d0), fq·cq′e(d0))
where e is corresponding return of c in p.

If no return for c in p tag with (c , fq·c(d0),⊥).

Number of distinct such tags is k · |D|2.
So there are two calls qc and qcq′c with same tag values.
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Proving subclaim – tag values are ⊥

M

Procedure F

Procedure F

cc

p

p′
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Proving subclaim – tag values are not ⊥

M

Proc F

Proc F

c

p

p′

c ee
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Correctness of Bounded Call-String method for
finite underlying lattice

Claim:
JOP(G ′,A′′) = JOP(G ′,A′).

Observe that:

M-bounded paths contribute same value d on both sides.
For every non M-bounded path ρ contributing d in RHS,
there is a M-bounded path ρ′ contributing d in the LHS.
Non M-bounded paths contribute ⊥ in LHS.
Invalid paths contribute ⊥ on both sides.

IVP Paths reaching N Paths reaching N Paths reaching N
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Approximate (suffix) call-string method

We assume WLOG that the main procedure does not call itself.

Idea:

Consider only call-strings of length ≤ l , for some 1 ≤ l .
For l = 2, call-strings can be of the form “c1” or “c1c2” etc,
but not “c1c2c3”. So each table ξ is now a finite table.
Transfer functions for non-call/ret edges remain same.
Transfer functions for call edge C : Shift each γ entry to γ · C
if |γ · C | ≤ l ; else shift it to γ′ · C where γ is of the form A · γ′
for some call A.
Transfer functions for ret edge N:
Consider each γ of the form γ′ · C , where N corresponds to
call edge C . Let the first call in γ be from some procedure p.
If there exists a call to procedure p, then shift γ entry to
A · γ′, for each call A to procedure p.
If there are no calls to procedure p (in which case p must be
main), shift γ entry to γ′.
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From Sharir-Pnueli 1981, p136 of typed version
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Correctness of A≈

Show that A≈ is a consistent abstraction of the unbounded
call-string analysis A′.

Use concretization function γ≈ and abstraction function α≈.

Argue they form a Galois connection

Transfer functions over-approximate that of the unbounded
call-strings analysis.

ϵ O OL

d3d2d1

OLL

d4

OL3 OL4 · · ·

⊥d5 d6

ϵ O OL

d3d2d1

Abstraction α≈

d4 ⊔ d5 ⊔ d6

LL

Concretization γ≈

ϵ O OL

d3d2d1

OLL

d4

OL3 OL4 · · ·

d4d4 d4

ϵ O OL

d3d2d1

LL

d4
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Exercise: approximate call-strings

Assume approximate call-string length of 2. Use Kildall’s algo to
compute the ξ table values for the example program. Start with
initial value d0 = 0.

a := a−1

7

F

G

t := a*b

1

A

read a,b

t := b

print t

D

call p

E

11

call p

a == 0

5

B

C

O
L

M
N

2

3

4

6

9

8

ret

t := a*b
10

I

J

K

P

H

Q

ϵ

ϵ

0

0

c1
c2

00
ϵϵ

ϵϵ
11

OO
11
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Exercise: approximate call-strings
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Exercise: approximate call-strings
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