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Handling programs with procedure calls

How would we extend an abstract interpretation to handle
programs with procedures?

main(){ £0O{ gO{
x := 0; X 1= x+1; £0O;
£0; return; return;
gO; } }
print x;

}
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Question: what is the collecting state before the print x
statement in main?
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Handling programs with procedure calls

How would we extend an abstract interpretation to handle
programs with procedures?

main(){ £0O{ gO{
x := 0; X 1= x+1; £0O;
£0; return; return;
gO; } }
print x;

}

Question: what is the collecting state before the print x
statement in main? Answer: x — 2.
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Handling programs with procedure calls

@ Add extra edges

o call edges: from
call site (call
p) to start of
procedure p

o ret edges: from
return statement
(in p) to point
after call sites
(call p) (“ret
sites”).
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Handling programs with procedure calls

f g
@ Assume only global PleN oN
: F ¢ 7o
variables. u
@ Transfer functions ~ =
for call /return : 1ot \
ed es? ret ) ret h
ges! B
. y
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Handling programs with procedure calls

f g
@ Assume only global ol oN
. : J N
variables. Fy -
. D x:=x+1 * \“——» AN
@ Transfer functions o -
for call /return ! = \
? . ret L7 ret !
edges.. Identity B _
function - L
@ Now compute JOP -

in this extended
control-flow graph.




Motivation
[e]e]e] lelelelele]e]

Problem with JOP in this graph

Ex. 1. Actual collecting
state at C?
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Problem with JOP in this graph

Ex. 1. Actual collecting
state at C? {x — 2}.
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Problem with JOP in this graph

Ex. 1. Actual collecting
state at C? {x — 2}.
Ex. 2. JOP at C using
collecting analysis?
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Problem with JOP in this graph

Ex. 1. Actual collecting
state at C? {x — 2}.

Ex. 2. JOP at C using
collecting analysis?
{x—1,x—2,x—3,...}.
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Problem with JOP in this graph

Ex. 1. Actual collecting

state at C? {x — 2}. f g
Ex. 2. JOP at C using /,»;33\ L
collecting analysis? .H
D x:=x+1 Tee-d 11 £
{x—1,x—2,x—3,...}. o 1
@ JOP is sound but very — e !
imprecise. E —
. C

@ Reason: Some paths
don’t correspond to
executions of the
program: Eg.
ABDFGILC.
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Problem with JOP in this graph

Ex. 1. Actual collecting

state at C? {x — 2}. f g
Ex. 2. JOP at C using /,»;33\ L
collecting analysis? .H
D x:=x+1 Tee-d 11 £
{x—1,x—2,x—3,...}. o 1
@ JOP is sound but very — e !
imprecise. E —
. C

@ Reason: Some paths
don’t correspond to
executions of the
program: Eg.
ABDFGILC.

What we want is Join over “Interprocedurally-Valid” Paths (JVP).
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Interprocedurally valid paths and their call-strings

@ Informally a path p in the extended CFG G’ is
inter-procedurally valid if every return edge in p “corresponds”
to the most recent “pending” call edge.

@ For example, in the example program the ret edge E
corresponds to the call edge D.

@ The call-string of a valid path p is a subsequence of call edges
which have not been “returned” as yet in p.

o For example, cs(ABDFGEKJHF) is “"KH".
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Interprocedurally valid paths and their call-strings

@ A path p = ABDFGEKJHF in IVP s for example program:

@ Associated call-string cs(p) is KH.
e For p = ABDFGEK cs(p) = K.
e For p = ABDFGE cs(p) = e.
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Interprocedurally valid paths and their call-strings

More formally: Let p be a path in G’. We define when p is
interprocedurally valid (and we say p € IVP(G')) and what is its
call-string cs(p), by induction on the length of p.
o If p= N and N is either an internal edge or a call edge, then
p € IVP(G’) and cs(p) is € or N respectively.
o If p=p'- N then p € IVP(G') iff p/ € IVP(G’) with
cs(p’) =~y say, and one of the following holds:
@ N is an internal edge.
In this case cs(p) = 7.
Q Nis a call edge.
In this case cs(p) =7 - N.
© N is ret edge, and 7 is of the form v/ - C, C is a call edge, and
N corresponds C.
In this case cs(p) = +'.
@ We denote the set of call-strings that can occur along initial
IVP paths in G’ by I'p (or just [ when P is clear).
o Call-strings of example program are {¢, D, K, KH}.
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Join over interprocedurally-valid paths (JVP)

@ Let P be a given program, with extended CFG G'.

o Let path; y(G’) be the set of paths from the initial point / to
point N in G'.

o Let A= ((D, <), fun, do) be an abstract interpretation for P.

@ Then we define the join over all interprocedurally valid paths
(JVP) at point N in G’ to be:

| | f,(cb)-

p € path; \(G')NIVP(G')
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Sharir and Pnueli’s approaches to interprocedural
analysis

Micha Sharir and Amir Pnueli: Two approaches to interprocedural
data flow analysis, in Program Flow Analysis: Theory and
Applications (Eds. Muchnick and Jones) (1981).
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One approach to obtain JVP: Call-Strings

Find JOP over
same graph, but
modify the abs int.

Modify transfer
functions for
call/ret edges to
detect and
invalidate invalid
edges.

Augment

underlying data
values with some

information for this.

Natural thing to
try: “call-strings”.

main

call £

call g|---___

print
€y

Y4

x
@ >
i =<
\\ ‘\ o
LI \ i
\ <
\\ ' \\
\ \ N
\ \ N
\ v \\
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Overall plan

@ Define an abs int A’ which extends
given abs int A with call-string data.

@ Show that JOP of A’ on G’ coincides
with JVP of A on G’.

@ Use Kildall (or any other technique) to
compute LFP of A" on G’. This value
over-approximates JVP of A on G’.

LFP(G’, A")
[ ]

JOP(G', A") JVP(G’, A)
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Call-string abs int A’: Lattice (D', <')

@ Elements of D' are maps £: T — D

€ =1 e | oo
£

do dp da d3

@ Ordering on D’: <’ is the pointwise extension of < in D.
That is

& <' & iff for each v € T, &1(7) < &(9).

€ 1 cjcp c1cpcp
§ ’
: / / / /
do dy dy d3
€ < e | o

do dq da d3
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Call-string abs int A’: Lattice (D', <')

@ Induced join is:

€ c1 1o crepc
&1 U &

to U eqdy Ll ey [dp Liey [d3 Lleg

i

€ c1 5% c1eoc € c1 1o 1
(S &o
do dq da d3 € el e 3
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Call-string abs int A’: Lattice (D', <')

@ Induced join is:

€ 5% c1cp c1cpcp
[SRERS

to U eqdy Ll ey [dp Liey [d3 Lleg

i

€ c1 5% c1eoc € c1 1o 1
&1 &
do dq da d3 € el e 3

@ Check that (D', <) is also a complete lattice.
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Designing a correct transfer function

Given components (D, <) and abstraction («) and concretization
(7) functions for elements of D, your transfer functions must
satisfy (in addition to monotonicity):

concretization ~y

e ~

nstate’ Xx=y+z ofun

If v(d) were the only concrete states that could arise at M, then
~(d") should over-approximate the resulting states at N (i.e.

nstate’y, (v(d))).
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Designing correct transfer functions in A’

@ A call-string table £ at program point N represents the set of
concrete states (say a concrete state here is of the form (s, )
where s is a standard concrete state and + is a call-string of
the execution giving rise to s) obtained by concretizing £(7y)
and tagging each concrete state with -, for each v €T,

@ The transfer functions of A’ should keep this meaning in mind.

e

e ™~

c1e2

1922

do

d3

(do)
rat A (d2)

v.A(d1)

1922

Prog Pt M

Prog Pt N
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Call-string abs int A’: Initial value &

@ Initial value &g is given by

| do ify=ce¢
So(7) = { 1 otherwise.

€ (51 c1cp cjepcp
o
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Call-string abs int A": transfer functions

@ Transfer functions for non-call/ret edge N:

fin(€) = fun o €.

@ Transfer functions for call edge N:

' _ () ify=+"-N
fun(§) = M- { 1 otherwise

@ Transfer functions for ret edge N whose corresponding call
edge is C:
fun(€) = M.6(v - €)

@ Transfer functions f{,,, are monotonic (resp. distributive) if
each fyy is monotonic (resp. distributive).
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H /
Transfer functions f;,,, for example program

main f
@ Non-call/ret edge B: ¢
70 O
AY F¢\\ AN
& = fap o éa. — b, el
e Call edge D: By 7 Sy L
// ret -~ ret
_J &) ify=+"D E
¢o(7) = { 1 otherwise P L.

@ Return edge E:

§E(7) = fg(’)/ D) print x
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Exercise 1

Let A be the standard collecting state analysis. For brevity, represent a set of concrete
states as {0,1} (meaning the 2 concrete states x — 0 and x — 1). Assume an initial
value dy = {0}.
Show the call-string tagged abstract states (in the lattice .A’) along the paths

@ ABDFGEKJHFGIL (interprocedurally valid)

@ ABDFGIL (interprocedurally invalid).

main f g




Correctness

®0000000

Correctness claim

Assumption on A: Each transfer function satisfies fyn(L) = L.

Let N be a point in G’. Then

JVPA(N) = |_| JOP4(N)(%).

el

Proof: Use following lemmas
to prove that LHS dominates
RHS and vice-versa.

IVP Paths reaching N Paths reaching N
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Correctness claim: Lemma 1

Let p be a path in /VPg:/. Then

[ E(d) = cs(p)
fp(fo) =\ { 1 otherwise.

€ Bt es(p) | c12e2

Proof: by induction on the length of p.
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Correctness claim: Lemma 2

Let p be a path not in /VPg/. Then

f[:(fo) = )\*y._l_.

€ q o crcpc

L L L L

Proof:
@ p must have an invalid prefix.
@ Consider smallest such prefix o - N. Then it must be that « is
valid and N is a return edge not corresponding to cs(«).
@ Using previous lemma it follows that £ ,(&o) = Avy.L.

@ But then all extensions of « along p must also have transfer
function A\y.L.
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Exercise 2

Use Kildall's algo to compute the LFP of the A’ analysis for the
example program. Start with initial value dp = {0}.

g
N
J .

main f
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Exercise 2

Use Kildall's algo to compute the LFP of the A’ analysis for the
example program. Start with initial value dp = {0}.

main f g
€ O\\
{0} 1o
€ K
10} - .
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Exercise 2

Use Kildall's algo to compute the LFP of the A’ analysis for the
example program. Start with initial value dp = {0}.

main f g
€ O\\
{0} 1o
€ \\
{0} - \
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Exercise 2

Use Kildall's algo to compute the LFP of the A’ analysis for the
example program. Start with initial value dp = {0}.

main f g
€ O\\
{0} 1o
€ \\
{0} - \
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Computing JOP for abs int A’

@ Problem is that D’ is infinite in general (even if D were
finite). So we cannot use Kildall's algo to compute an
over-approximation of JOP (it may not terminate when the
program has recursive procedures).
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Available expressions

@ An expresssion (like

“ax b") is available o6
along an execution if /X 7F¢
there is a point where - 1 S 7

. . read a,h Fa— —
the expression is S
evaluated and thereafter B o/ | Gy
none of the constituent S L

variables (like a and b) , \
are written to.

@ An expression is available
at a point N in a

. t:=a*b
program, if along every 7 -
execution reaching N, M« j)
the expression is Ne. SRR

i 1
available. oo 1 ret

@ Is a* b available at
program point D7
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Available expressions

@ An expresssion (like

“ax b") is available o6
along an execution if /X 7F¢
there is a point where - 1 S 7

. . read a,h Fa— —
the expression is S
evaluated and thereafter B o/ | Gy
none of the constituent S L

variables (like a and b) , \
are written to.

@ An expression is available
at a point N in a

. t:=a*b
program, if along every 7 -
execution reaching N, M« j)
the expression is Ne. SRR

i 1
available. oo 1 ret

@ Is a* b available at
program point D7 Yes.
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Available expressions analysis

o 0 (may not be available)

T o6
o 1 (available) IX e ,7F<¢>
T | /

o L
o/ ¢ $
Lattice for Av-Exp analysis for L g
axb. , !

@ “0" concretizes to the o 1 9 K
set States x {A, NA}; \
while “1” concretizes to Qd
States x {A}. “L" 4 10
concretizes to (). - STy

@ JOP of analysis says D \\N-\\ MA\ J?
ax b is not available at : 5 T ke M
program point N.
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Available expressions analysis

o 0 (may not be available)

T o6
o 1 (available) IX e ,7F<¢>
T | /

o L
o/ ¢ $
Lattice for Av-Exp analysis for 0L 3
axb. ; !

@ “0" concretizes to the o ! 9 1K
set States x {A, NA}; \
while “1” concretizes to Qd
States x {A}. “L" 4 10
concretizes to (). - STy

@ JOP of analysis says D \\N.\\ Nm\ J?

a* b is not available at : 5 e e M
program point N.
\/

@ JVP says it is available.
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Computing JOP for abs int A’

@ We give two methods to bound the number of call-strings we
need to consider, when underlying lattice (D, <) is finite.
o Give a bound on largest call-string needed.
o Use “approximate” call-strings.
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Bounded call-string method for finite underlying
lattice D

@ Possible to bound length of call-strings in I we need to
consider.

@ For a number /, we denote the set of call-strings (for the given
program P) of length at most /, by I'}.

@ Define a new analysis A” (M-bounded call-string analysis) in
which call-string tables have entries only for 'y, for a certain
constant M, and transfer functions ignore entries for

call-strings of length more than M.
e We will show that JOP(G’, A”) = JOP(G', A').

LFP(G’, A")
LFP(G’, A") °
[ )
ﬁ [ ] [ ]

JOP(G', A”) JOP(G',A’)  JVP(G',A)
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LFP of A" is more precise than LFP of A’

Consider any fixpoint V'’ (a vector of tables) of A’.

Truncate each entry of V'’ to (call-strings of) length M, to get
V7.

Clearly V'’ dominates V”.

Further, observe that V" is a post-fixpoint of the transfer
functions for A",

By Knaster-Tarski characterisation of LFP, we know that V"
dominates LFP(.A").

LFP(G’, A")
LFP(G’, A") °
[ )
ﬁ ° °

JOP(G', A") JOP(G', A') JVP(G’, A)
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Sufficiency (or safety) of bound

Let k be the number of call sites in P.

For any path p in IVP(r;, N) with a prefix g such that
lcs(q)| > k|D|?> = M there is a path p’ in IVP(r1, N) with
les(q')| < M for each prefix g’ of p/, and f,(do) = fy(dp).

v

Paths with bounded call-strings
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Proving claim

For any path p in IVP(ry, N) such that for some prefix g of p,
les(q)| > M = k|D|?, there is a path p’ in IVPr,,(r1, N) with
for (do) = fp(db).

o Sufficient to prove:

For any path p in IVP(ry, N) with a prefix g such that
les(q)| > M, we can produce a smaller path p" in IVP(r1, N) with

for (do) = £5(do).

e ..since if |p| < M then p € IVPr,,.
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Proving subclaim: Path decomposition

A path p in IVP(r1, n) can be decomposed as

pill(er, rpo)llp2ll(c2; rs)llosll - - [ (cj1, 7)) -

where each p; (i <) is a valid and complete path from rp; to ¢;,
and p; is a valid and complete path from rp, to n. Thus

C1,...,Cj—1 are the unfinished calls at the end of p.
4
30—
) % P4
] P3
1 @ o
! P2
0
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Proving subclaim

Let po be the first prefix of p where |cs(po)| > M.

Let decomposition of pg be

pll(er, ry)llp2ll(e2, rs) sl - - - Ml (G2, 7))l -

Tag each unfinished-call ¢ in pg by (c, fg.c(db), fg.cqre(db0))
where e is corresponding return of ¢ in p.

If no return for c in p tag with (c, fg.c(do), L).
Number of distinct such tags is k - |D|?.

So there are two calls gc and gcq’c with same tag values.
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Proving subclaim — tag values are |

,,,,,,,,,,,,,,, Procedure F
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Proving subclaim — tag values are not |

ffffffffff ----ProcF
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Correctness of Bounded Call-String method for
finite underlying lattice

Claim:
JOP(G', A") = JOP(G", A).
Observe that:
@ M-bounded paths contribute same value d on both sides.
@ For every non M-bounded path p contributing d in RHS,
there is a M-bounded path p’ contributing d in the LHS.
@ Non M-bounded paths contribute L in LHS.
@ Invalid paths contribute L on both sides.

A [

(EETE> (mEm
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Approximate (suffix) call-string method

We assume WLOG that the main procedure does not call itself.

Idea:

@ Consider only call-strings of length < /, for some 1 < /.

@ For | = 2, call-strings can be of the form “c;" or “c1” etc,
but not “cicrcs”. So each table € is now a finite table.

@ Transfer functions for non-call/ret edges remain same.

@ Transfer functions for call edge C: Shift each v entry to v - C
if |y C| < [; else shift it to 7/ - C where ~ is of the form A-+/
for some call A.

@ Transfer functions for ret edge N:

Consider each v of the form o/ - C, where N corresponds to
call edge C. Let the first call in v be from some procedure p.
If there exists a call to procedure p, then shift « entry to

A -+, for each call A to procedure p.

If there are no calls to procedure p (in which case p must be
main) shift ~ entrv to ~/
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From Sharir-Pnueli 1981, p136 of typed version

string. As long as the length of a call string is less than j
update it as in Section 4. However, if g is a call string of
length j, then, when appending to it a call edge, discard the first
component of q and add the new call block to its end. When append-
ing a return edge, check if it matches the last call in g and, if
it does, delete this call from g and add to its start all possible

call blocks which call the procedure containing the first call in qg.

This approximation may be termed a call-string suffix approximation.
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Approximate call-string method
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@ Show that A® is a consistent abstraction of the unbounded

call-string analysis A’.

@ Use concretization function v~ and abstraction function o.
@ Argue they form a Galois connection
@ Transfer functions over-approximate that of the unbounded

call-strings analysis.

€ o| oL ||oLL|oL| oLt
d d | ds dy | di | dy | dy
€ o| oL |loLL|oL®| oL*
di d> d3 dy ds ds 1

Concretization v~

£ ~

Abstraction o

€ O | OL LL
di d | ds dy
€ O | oL LL
dy d> ds3 dy U ds Ll dg
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Exercise: approximate call-strings

Assume approximate call-string length of 2. Use Kildall's algo to
compute the £ table values for the example program. Start with

initial value do = 0.
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Exercise: approximate call-strings

Assume approximate call-string length of 2. Use Kildall's algo to
compute the £ table values for the example program. Start with

initial value do = 0.
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Exercise: approximate call-strings

Assume approximate call-string length of 2. Use Kildall's algo to
compute the £ table values for the example program. Start with

initial value do = 0.

onm

=
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Exercise: approximate call-strings

Assume approximate call-string length of 2. Use Kildall's algo to
compute the £ table values for the example program. Start with

initial value do = 0.

onm
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Exercise: approximate call-strings

Assume approximate call-string length of 2. Use Kildall's algo to
compute the £ table values for the example program. Start with

initial value do = 0.
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