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Equation solving approach

In non-procedural case, we set up equations to capture JOP
assuming distributivity. Least solution to these equations gave us
exact/over-approx JOP depending on distributive/monotonic

framework.
XA = @
xg = fi(xa)
Xc = xgUXg
xp = f(xc)

xge = fi(xp)
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Equations to capture JOP: why it works

o We want JOP at N.

@ Suppose M is an intermediate
point such that all paths to N
pass through M.

o If transfer functions are
distributive, then we can take

join over paths at point M, and

then join over paths from M to
N.
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Equation solving: Problems with naive approach

@ Try to set up similar
equations for xy (JVP ,
at program point N).

@ How do we describe Pe
Xy in terms of x,7

E
NV
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Instead try to capture join over paths first

@ Set up equations to capture join over complete paths.

@ Now set up equations to capture JVP using join over
complete path values.
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Notation and Conventions

@ Given program with
procedures P, with
extended CFG G'.

@ Root of procedure p is
denoted r,.

@ Exit (return) of
procedure p is denoted
€p.

@ Sometimes use ry for
I'main-

@ Assume WLOG that
main is not called.

@ Given underlying
analysis
A = ((Da S)a fMN7 dO)
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Valid and complete paths

@ A path pin G’ is valid and complete if it is an
interprocedurally valid path in G’ and the associated
call-string is empty.

@ Denote the set of such valid and complete paths by /VPy(G’)

@ Thatis p € IVPy(G') iff p € IVP(G') and cs(p) = e.
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Example paths

An example valid path in IVP(ri,1):

()

|

Path “"FGHLFKJMIJ" is valid and complete and is in IVPq(rp, J).
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Basic idea: Why join over complete paths help

An IVP path p from r; to N in procedure p can be written as § - n
where ¢ is in IVP(r1, rp), and 7 is in IVPq(rp, N).

rp N

Path 7 is suffix after last pending call to procedure p was made
along p.
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Join over valid and complete paths from r, to N

For a procedure p and node N in p, define:
¢rp7N :D— D

given by

brn(d) = | | f,(d).

paths p€IVPq(rp,N)

ér,,n is thus the join of all functions f, where p is an
interprocedurally valid and complete path from r, to N.

We call ¢, v the Join over Valid and Complete Paths (JVCP)
from r, to N.
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Visualizing ¢, v

o

B

)

d’

(X

) brpn(d)
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Using ¢,, n's to get JVP values

n

Grp,N

Assuming distributivity of underlying transfer functions, JVP value
at N equals ¢, v applied to JVP value at rp.
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Equations (1) to capture ¢, v

Yroorp = idp (

Yo = funoy,m  (stmt)

Yo, N = Yrgeq © Yrp,M (Ca”)

YioN = YeLUy,m  (join) call g
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Example: Available expressions analysis

[Y
ead a, 1
B

® 0 (may not be available)
°
°

Lattice for Av-Exp
analysis.

1 (available)

1
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Functions we will use for example analysis

e D={1,1,0}.
@ 0: D — D given by
0 — 0
1 — 0
1l - 1
e 1:D — D given by
0 — 1
1 — 1
1 = 1
e id : D — D given by
0 — 0
1 - 1
1l — 1

@ Ordering: 1 <id <0.
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Example: Equations (1) for ¢’s

yaa = id

yap = 0oyan
yac = 1o YA,B
YAp = YFJOYAC
yap = 1o Ya,p

yae = idoyap
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Example: Equations (1) for ¢’s

yaa = id

yag = 0oyaa
yac = 1o YA,B
YApP = YFJOYAC
yap = 1o Ya,p
yae = idoyap
yrr = id

YrFc = IdoyrF
YFk = IdoyrF
yeH = 0Ooyre
YF,Q = YFJOYFH
yrr = loyrgq

YFs = YriUYFk
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Using ¢,, n's to get JVP values

n

Grp,N

Assuming distributivity of underlying transfer functions, JVP value
at N equals ¢, v applied to JVP value at rp.
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Equations (2) to capture JVP

x1 = do
Xrp = I—lcalls Ctop Xc
XN = Or,n(xr,) for N € ProgPts(p) — {rp}.



Functional Approach

000000000000 00000e0000

Example: Equations for xy’s (JVP)

XA = 0

xg = ¢as(xa)
xc = dac(xa)
xp = ¢ap(xa)
xp = ¢ap(xa)
xe = ¢ae(xa)
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Example: Equations for xy’s (JVP)

XA = 0

xg = ¢as(xa)
xc = ¢ac(xa)
xp = ¢ap(xa)
xp = ¢ap(xa)
xe = ¢ae(xa)
X = XxcUxy
x¢ = ¢rc(xF)
xk = ¢rk(xF)
xH = ¢rH(xF)
xQ = ¢re(xF)

x| oF1(xF)
x) = ¢rsxF).
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Example: Equations for xy’s (JVP)

Fig. shows values of ¢,, n's in bold.
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Example: Equations for xy’s (JVP)

)
)
Xp = 1(XA)
Xp = I(XA)
XE = 1(XA)
XF = XcUXxy
x¢ = id(xF)
xk = id(xF)
XH = O(XF)
xq = 0(xr)
xi = 1(xg)
xy = id(xg).

Fig. shows values of ¢,, n's in bold.



Functional Approach
000000000000 0000000e00

Solving a system of equations using Knaster-Tarski Theorem

Given equations (E;)

yi = fla,...,¥n)

Yn = fn()/lv'--:)/n)

Consider a complete lattice (D, <) such that:
@ D is closed under each f..
@ Each f; is a monotonic function on this lattice: if
(di,...,dn) < {e1,...,en) then fi(di,...,dn) < fi(e1,...,en).
@ Equivalently, the function F on (D", <) given by

F((d1,...,dn)) = (A(d1,--,dn), ..., Fald, ..., dn)),

is monotonic.

Then, by Knaster-Tarski, the function F on (D", <) has a LFP,
which coincides with the least solution (in D") to equations (Ej).
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Solving Eq (1) using Knaster-Tarski

o Consider lattice (F, <) of functions from D to D, obtained by
closing the transfer functions, identity, and | : d — L under
composition and join. (Alternatively we can take F to be all
monotone functions on D.)

@ Ordering is f < g iff f(d) < g(d) for each d € D.

@ (F,<)is also a complete lattice.

@ f induced by Eq (1) is monotone on complete lattice (F, <).

o Sufficient to argue that function composition o is monotone
when applied to monotone functions.
e Join operation | | is monotone.

@ LFP / least solution (say yr’; n'S) exists by Knaster-Tarski.

o Each y;'; n Is necessarily monotonic.
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Using Kildall to compute LFP

@ We can use Kildall's algo to compute the LFP of these
equations as follows.

o Initialize the value at all program points with RHS of the
constant equations (in this case id at entry of procedures), and
the bottom value (in this case ).

e Mark all values

o Pick a marked value at point say N, and “propagate” it (i.e.
for any node M in the LHS of an equation in which N occurs
in the RHS, evaluate M and join it with the existing value at
M). Mark as before in Kildall's algo.

o Stop when no more marked values to propagate.

o Kildall's algo will compute y;:’N if D is finite. Note that finite
height of (D, <) is not sufficient for termination.
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Example: Computing ¢,, n's (y;:‘N to be precise) using Kildall's algo

yaa = id

yag = 0o YAA
yac = 1o YA,B
YAP = YFJOYAC
yap = loyap
yae = lidoyap
yer = id

yrc = idoyrF
YFk = IdoyrrF
yeH = 0Ooyre
YF,Q = YFJCYFH
yer = loyrq

Yrs = YriUYrk
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Example: Computing JVP values (xy's to be precise)

0

O(XA)
xc = 1(xa) B} 0 1 Gy
Xp = l(XA) n , i L.“
Xp = l(XA) = a’b S g = e
XE = l(XA) Ce 1 //,// ‘\\ 40 K
XF = XcUXxy Q1o
x¢ = id(xF) e
xk = id(xF) (i
XH = O(XF) RN N ! Il
xqo = 0(xF) Ne._ Moy §id
X = l(XF) \\\\‘~——~», ret |
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Example: Computing JVP values (xy's to be precise)

XA
XB
Xc
Xp
Xp
XE

XF
XG
XK
XH
XQ
X1

Xy

s NN c |

N

\NV4 €L
Fig shows initial (red) and final (blue) values.
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Example: Computing JVP values (xy's to be precise)

u =0 o\ JaL]
xc = 1(xa) B! 0 g G¢ id
Xp = l(XA) 0 n / L.“ 0
Xp = l(XA) = a’b g e
X = l(XA) \\\ ; 00 K
XF = XcUXy *0
x¢ = id(xF) Qi % -
xk = id(xF) 7 T 2
xy = 0(xF) e i Il 1
xo = 0(x) N N i

X = l(XF) \\\\‘~——~», ret |
x; = id(xF).

Fig shows initial (red) and final (blue) values.
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Correctness Claim |

© The least solution to Eq (1) dominates ¢, y's (i.e.
$rn < yp y for each N).

Q@ ¢,n's are the least solution to Eq (1) (i.e. ¢, v = y; y for
each N) when fyy's are distributive.
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© For part 1:

o Let g, n's be any
monotone solution
to Eq (1). . &

e Sufficient to prove:
For each proc p in
P, d e D, and p an
IVPy path from r,
to N,
£,(d) < g,.n(d).

e Proof by induction
on length of path p.

© For part 2: Prove that
¢r,,n'S are a solution
to Eq (1), and hence
they will dominate the
least solution.

. grq,e[,(dZ)

L4 grq,eq(dl)
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Claim | Part (2): Key observation

@ We want JOP at N.

@ Suppose M is an intermediate point A .
such that all paths to N pass through \
M. \

o If transfer functions are distributive, \
then we can take join over paths at
point M, and then join over paths
from M to N. Iy

@ For any d,
JOP s n(d) = JOP M n(JOP A Mm(d))
("] JOPA,N = JOPM,N o JOPA’M
@ In a similar way gﬁrp,N = fiyn © qb,p’,\/,
(for an non-call point M) and
SN = Prgeq © Or,m (for a call site

¢r,
M)
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Correctness and Algo Il

Consider Eq (2)":

x1 = do
Xy = I_lcalls CtopXC
Xy = y;;N(X,P) for N € Np — {rp}.

(Recall that y; \'s are the least solution of Eq (1).)

o f induced by Eq (2)" is a monotone function on the complete
lattice (D, <).
@ LFP / least solution (say xy's) exists by Knaster-Tarski.

JVP values are the least solution to Eq (2)' (i.e. JVPy = x3)
when fyn's are distributive. Otherwise JVPy < xy, for each N.

Kleene/Kildall's algo will compute x3,'s (assuming D finite).
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Summary of functional approach

@ Uses a two step approach
© Compute ¢, n's (JVCPs for each function).
@ Compute x,'s (JVPs) at each point.
Summary of conditions: For each property (column heading), the
conjunction of the ticked conditions (row headings) are sufficient
to ensure the property.

| | Termination | Least Sol of Eq(2) > JVP | Least Sol of Eq(2) = JVP_|

v v

fpin's monotonic
Finite underlying lattice
fmn's distributive

v
v
v
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Viewing ¢ computation as a table
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Iterative/ Tabulation Approach

@ Main idea: de-couple the propagation of function rows.

@ Maintain a table of values representing the current value of
¢r,,n for each program point N in procedure p.

@ Expand column for data value d in procedure p only if d is
reachable at r,.

@ Informally, at N in procedure p, the table has an entry d — d’
if we have seen
@ valid paths p from ri to r, with | |, f,(do) = d, and
@ valid and complete paths ¢ from r, to N with | |5 f5(d) = d".
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Iterative/ Tabulation Approach

o Apply Kildall's algo with initial value of dy — dp at r.

@ Propagating value d across a call to procedure p: (a) begin a
column for d at root of p if not already there; Also (b) if d is
mapped to d’ at the end of p, then propogate d’ to the return
site of the call.

@ Propagating across return nodes from procedure p: value d’
in column for d is propagated to each column at a return site
of a call to procedure p that has the value d in the preceding
entry.
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Example: Computing ¢’s iteratively: 1
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Example: Computing ¢’s iteratively: 2
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Example: Computing ¢’s iteratively: 4
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Example: Computing ¢’s iteratively: 5
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Example: Computing ¢’s iteratively: 6
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Example: Computing ¢’s iteratively: 7
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Example: Computing ¢’s iteratively: 8
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Example: Computing ¢’s iteratively: 9




Iterative Approach
00000000000 e00000

Example: Computing ¢’s iteratively: 10
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Example: Computing ¢’s iteratively: 11
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Example: Computing ¢’s iteratively: 12
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Example: Computing ¢’s iteratively: 13
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Example: Finally compute xy’s from ¢ values

At each point N take join of reachable ¢,, n values.

o
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Correctness of iterative algo

@ lterative algo terminates provided underlying lattice is finite.
@ |t computes the y,f; n'S (where y;; n's are the least solution to
Eq (1)) “partially”: If it maps d to d’ # L then v y(d)=4d"

@ The JVP values it gives (say zy's) are such that
JVPN S zZN S X;\kl

(where x3,'s are the solution to Eq (2')).

o If underlying transfer functions are distributive it computes
ér,,n's correctly (though partially), and the JVP values
correctly.

@ |t thus computes an overapproximation of JVP for monotonic
transfer functions, and exact JVP when transfer functions are
distributive.
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Exercise 1: lterative algo

Run the iterative algo to do constant propagation analysis for the
program below with initial value (.
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Exercise 2: Functional vs lterative algo

Run the functional and iterative algos to do constant propagation
analysis for the program below with initial value :
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Comparing functional vs iterative approach

@ Functional algo can terminate even when underlying lattice is
infinite, provided we can represent and compose/join
functions “symbolically”.

@ lterative is typically more efficient than functional since it only
computes ¢, n's for values reachable at start of procedure.
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