Functional Approach

Interprocedural analysis: Sharir-Pnueli's functional approach

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

24, 29 September and 06 October 2025

Outline

- 1 Functional Approach
- 2 Example
- 3 Correctness
- 4 Iterative Approach
- **5** Exercises

Equation solving approach

Functional Approach

In non-procedural case, we set up equations to capture JOP assuming distributivity. Least solution to these equations gave us exact/over-approx JOP depending on distributive/monotonic framework.

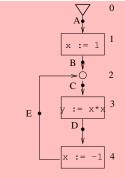
$$x_A = \emptyset$$

$$x_B = f_1(x_A)$$

$$x_C = x_B \sqcup x_E$$

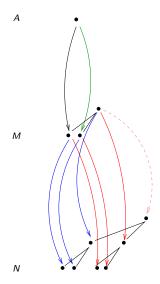
$$x_D = f_3(x_C)$$

$$x_E = f_4(x_D)$$



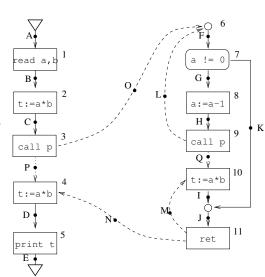
Equations to capture JOP: why it works

- We want JOP at N.
- Suppose M is an intermediate point such that all paths to N pass through M.
- If transfer functions are distributive, then we can take join over paths at point M, and then join over paths from M to N.



Equation solving: Problems with naive approach

- Try to set up similar equations for x_N (JVP at program point N).
- How do we describe x_N in terms of x_J ?



Functional Approach

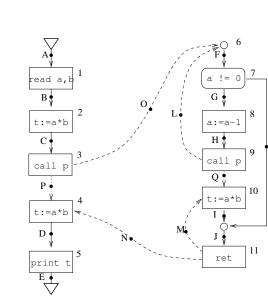
000000000000000000000

Instead try to capture join over complete paths first

- Set up equations to capture join over complete paths.
- Now set up equations to capture JVP using join over complete path values.

Functional Approach

- Given program with procedures P, with extended CFG G'.
- Root of procedure p is denoted r_p .
- Exit (return) of procedure p is denoted e_{p} .
- Sometimes use r_1 for r_{main}.
- Assume WLOG that main is not called.
- Given underlying analysis $\mathcal{A} = ((D, \leq), f_{MN}, d_0)$



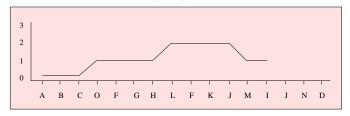
Valid and complete paths

Functional Approach

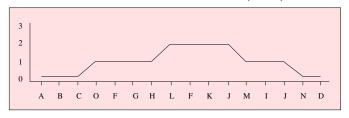
- A path ρ in G' is valid and complete if it is an interprocedurally valid path in G' and the associated call-string is empty.
- Denote the set of such valid and complete paths by $IVP_0(G')$
- That is $\rho \in IVP_0(G')$ iff $\rho \in IVP(G')$ and $cs(\rho) = \epsilon$.

Functional Approach

An example valid path in $IVP(r_1, I)$:



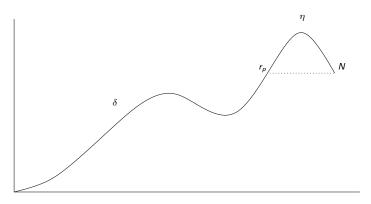
An example valid and complete path in $IVP_0(r_1, D)$:



Path "FGHLFKJMIJ" is valid and complete and is in $IVP_0(r_p, J)$.

Basic idea: Why join over complete paths help

An IVP path ρ from r_1 to N in procedure p can be written as $\delta \cdot \eta$ where δ is in IVP (r_1, r_p) , and η is in IVP $_0(r_p, N)$.



Path η is suffix after last pending call to procedure p was made along ρ .

Join over valid and complete paths from r_p to N

For a procedure p and node N in p, define:

$$\phi_{r_n,N}:D\to D$$

given by

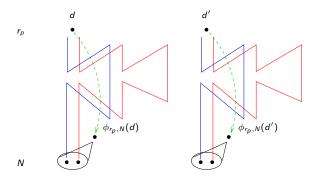
Functional Approach

$$\phi_{r_p,N}(d) = \bigsqcup_{ ext{paths }
ho \in ext{IVP}_0(r_p,N)} f_
ho(d).$$

 $\phi_{r_0,N}$ is thus the join of all functions f_{ρ} where ρ is an interprocedurally valid and complete path from r_p to N.

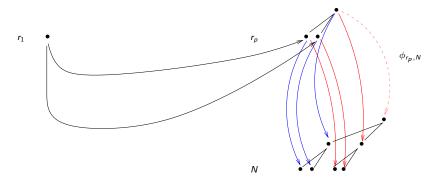
We call $\phi_{r_p,N}$ the Join over Valid and Complete Paths (JVCP) from r_p to N.

Visualizing $\phi_{r_p,N}$



Using $\phi_{r_p,N}$'s to get JVP values

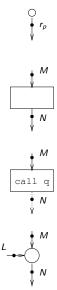
Functional Approach



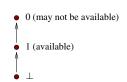
Assuming distributivity of underlying transfer functions, JVP value at N equals $\phi_{r_p,N}$ applied to JVP value at r_p .

Equations (1) to capture $\phi_{r_0,N}$

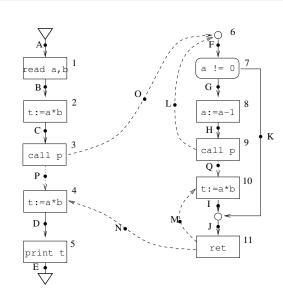
$$y_{r_p,r_p} = id_D$$
 (root)
 $y_{r_p,N} = f_{MN} \circ y_{r_p,M}$ (stmt)
 $y_{r_p,N} = y_{r_q,e_q} \circ y_{r_p,M}$ (call)
 $y_{r_p,N} = y_{r_p,L} \sqcup y_{r_p,M}$ (join)



Example: Available expressions analysis



Lattice for Av-Exp analysis.



• $D = \{\bot, 1, 0\}.$

Functional Approach

• $\mathbf{0}: D \to D$ given by

 $\begin{array}{ccc} 0 & \mapsto & 0 \\ 1 & \mapsto & 0 \\ \bot & \mapsto & \bot \end{array}$

• $\mathbf{1}: D \to D$ given by

 $egin{array}{cccc} 0 & \mapsto & 1 \ 1 & \mapsto & 1 \ \bot & \mapsto & \bot \end{array}$

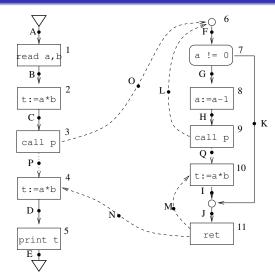
• $id: D \rightarrow D$ given by

 $\begin{array}{ccc} 0 & \mapsto & 0 \\ 1 & \mapsto & 1 \\ \bot & \mapsto & \bot \end{array}$

• Ordering: 1 < id < 0.

$$y_{A,A} = id$$

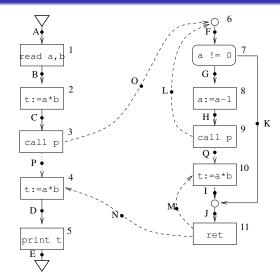
 $y_{A,B} = \mathbf{0} \circ y_{A,A}$
 $y_{A,C} = \mathbf{1} \circ y_{A,B}$
 $y_{A,P} = y_{F,J} \circ y_{A,C}$
 $y_{A,D} = \mathbf{1} \circ y_{A,P}$
 $y_{A,E} = id \circ y_{A,D}$



$$y_{A,A} = id$$

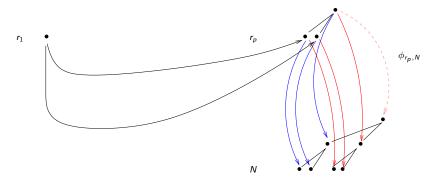
 $y_{A,B} = \mathbf{0} \circ y_{A,A}$
 $y_{A,C} = \mathbf{1} \circ y_{A,B}$
 $y_{A,P} = y_{F,J} \circ y_{A,C}$
 $y_{A,D} = \mathbf{1} \circ y_{A,P}$
 $y_{A,E} = id \circ y_{A,D}$

$$y_{F,F} = id$$
 $y_{F,G} = id \circ y_{F,F}$
 $y_{F,K} = id \circ y_{F,F}$
 $y_{F,H} = \mathbf{0} \circ y_{F,G}$
 $y_{F,Q} = y_{F,J} \circ y_{F,H}$
 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$
 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$



Using $\phi_{r_p,N}$'s to get JVP values

Functional Approach



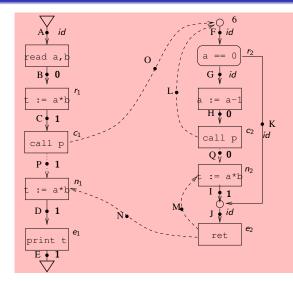
Assuming distributivity of underlying transfer functions, JVP value at N equals $\phi_{r_p,N}$ applied to JVP value at r_p .

Equations (2) to capture JVP

$$\begin{array}{lcl} x_1 & = & d_0 \\ x_{r_p} & = & \bigsqcup_{\operatorname{calls} C \operatorname{to} p} x_C \\ x_N & = & \phi_{r_p,N}(x_{r_p}) & \operatorname{for} N \in \operatorname{ProgPts}(p) - \{r_p\}. \end{array}$$

Example: Equations for x_N 's (JVP)

$$\begin{array}{rcl}
x_A & = & 0 \\
x_B & = & \phi_{AB}(x_A) \\
x_C & = & \phi_{AC}(x_A) \\
x_P & = & \phi_{AP}(x_A) \\
x_D & = & \phi_{AD}(x_A) \\
x_E & = & \phi_{AE}(x_A)
\end{array}$$



Example: Equations for x_N 's (JVP)

$$\begin{array}{rcl} x_A & = & 0 \\ x_B & = & \phi_{AB}(x_A) \\ x_C & = & \phi_{AC}(x_A) \\ x_P & = & \phi_{AP}(x_A) \\ x_D & = & \phi_{AD}(x_A) \\ x_E & = & \phi_{AE}(x_A) \end{array}$$

$$x_F = x_C \sqcup x_H$$

$$x_G = \phi_{FG}(x_F)$$

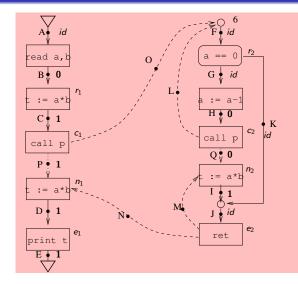
$$x_K = \phi_{FK}(x_F)$$

$$x_H = \phi_{FH}(x_F)$$

$$x_Q = \phi_{FQ}(x_F)$$

$$x_I = \phi_{FI}(x_F)$$

$$x_J = \phi_{FJ}(x_F).$$



Example: Equations for x_N 's (JVP)

$$x_A = 0$$

 $x_B = \mathbf{0}(x_A)$
 $x_C = \mathbf{1}(x_A)$
 $x_P = \mathbf{1}(x_A)$
 $x_D = \mathbf{1}(x_A)$
 $x_E = \mathbf{1}(x_A)$



Fig. shows values of $\phi_{r_p,N}$'s in bold.

 e_2

ret

 X_Q

ХJ

 $x_I = \mathbf{1}(x_F)$

 $= id(x_F).$

Example: Equations for x_N 's (JVP)

$$x_A = 0$$
 $x_B = \mathbf{0}(x_A)$
 $x_C = \mathbf{1}(x_A)$
 $x_P = \mathbf{1}(x_A)$
 $x_D = \mathbf{1}(x_A)$
 $x_E = \mathbf{1}(x_A)$
 $x_E = \mathbf{1}(x_A)$
 $x_C = \mathbf{1}(x_A)$
 $x_C = \mathbf{1}(x_C)$
 $x_C = \mathbf{1}(x_C)$

print

Fig. shows values of $\phi_{r_p,N}$'s in bold.

Solving a system of equations using Knaster-Tarski Theorem

Given equations (E_1)

$$y_1 = f_1(y_1, \dots, y_n)$$
 \dots
 $y_n = f_n(y_1, \dots, y_n)$

Consider a complete lattice (D, \leq) such that:

- D is closed under each f_i.
- Each f_i is a monotonic function on this lattice: if $\langle d_1,\ldots,d_n\rangle \leq \langle e_1,\ldots,e_n\rangle$ then $f_i(d_1,\ldots,d_n) \leq f_i(e_1,\ldots,e_n)$.
- Equivalently, the function \overline{F} on (D^n, \leq) given by

$$\overline{F}(\langle d_1,\ldots,d_n\rangle)=\langle f_1(d_1,\ldots,d_n),\ldots,f_n(d_1,\ldots,d_n)\rangle,$$

is monotonic.

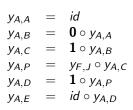
Then, by Knaster-Tarski, the function \overline{F} on (D^n, \leq) has a LFP, which coincides with the least solution (in D^n) to equations (E_1) .

Solving Eq (1) using Knaster-Tarski

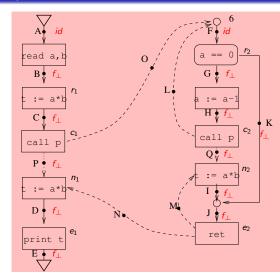
- Consider lattice (F, \leq) of functions from D to D, obtained by closing the transfer functions, identity, and $f_{\perp}: d \mapsto \bot$ under composition and join. (Alternatively we can take F to be all monotone functions on D.)
- Ordering is $f \le g$ iff $f(d) \le g(d)$ for each $d \in D$.
- (F, \leq) is also a complete lattice.
- \overline{f} induced by Eq (1) is monotone on complete lattice (\overline{F}, \leq) .
 - Sufficient to argue that function composition o is monotone when applied to monotone functions.
 - Join operation | is monotone.
- LFP / least solution (say $y_{r_0,N}^*$'s) exists by Knaster-Tarski.
- Each $y_{r_0,N}^*$ is necessarily monotonic.

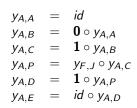
Using Kildall to compute LFP

- We can use Kildall's algo to compute the LFP of these equations as follows.
 - Initialize the value at all program points with RHS of the constant equations (in this case id at entry of procedures), and the bottom value (in this case f_{\perp}).
 - Mark all values
 - Pick a marked value at point say N, and "propagate" it (i.e. for any node M in the LHS of an equation in which N occurs in the RHS, evaluate M and join it with the existing value at M). Mark as before in Kildall's algo.
 - Stop when no more marked values to propagate.
- Kildall's algo will compute $y_{r_0,N}^*$ if D is finite. Note that finite height of (D, \leq) is not sufficient for termination.



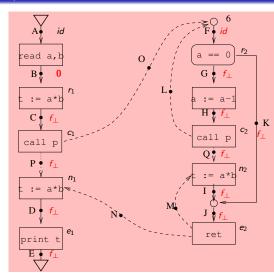
$$y_{F,F} = id$$
 $y_{F,G} = id \circ y_{F,F}$
 $y_{F,K} = id \circ y_{F,F}$
 $y_{F,H} = \mathbf{0} \circ y_{F,G}$
 $y_{F,Q} = y_{F,J} \circ y_{F,H}$
 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$
 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$

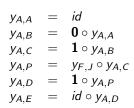




$$y_{F,F} = id$$

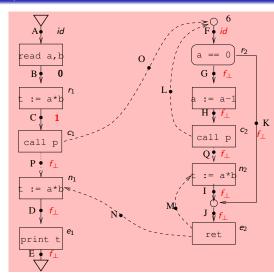
 $y_{F,G} = id \circ y_{F,F}$
 $y_{F,K} = id \circ y_{F,F}$
 $y_{F,H} = \mathbf{0} \circ y_{F,G}$
 $y_{F,Q} = y_{F,J} \circ y_{F,H}$
 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$
 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$

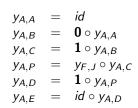




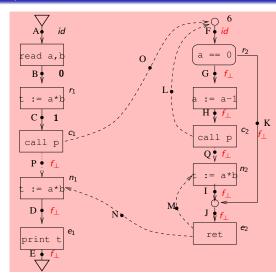
$$y_{F,F} = id$$

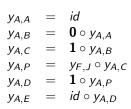
 $y_{F,G} = id \circ y_{F,F}$
 $y_{F,K} = id \circ y_{F,F}$
 $y_{F,H} = \mathbf{0} \circ y_{F,G}$
 $y_{F,Q} = y_{F,J} \circ y_{F,H}$
 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$
 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$





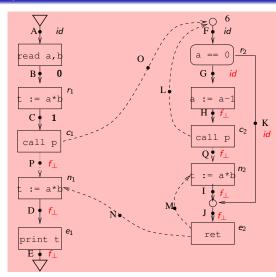
$$y_{F,F} = id$$
 $y_{F,G} = id \circ y_{F,F}$
 $y_{F,K} = id \circ y_{F,F}$
 $y_{F,H} = \mathbf{0} \circ y_{F,G}$
 $y_{F,Q} = y_{F,J} \circ y_{F,H}$
 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$
 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$

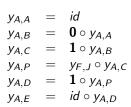




$$y_{F,F} = id$$

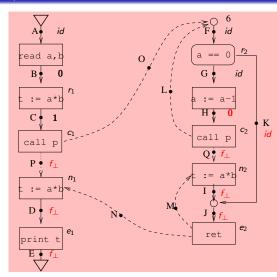
 $y_{F,G} = id \circ y_{F,F}$
 $y_{F,K} = id \circ y_{F,F}$
 $y_{F,H} = \mathbf{0} \circ y_{F,G}$
 $y_{F,Q} = y_{F,J} \circ y_{F,H}$
 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$
 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$

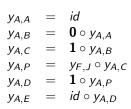




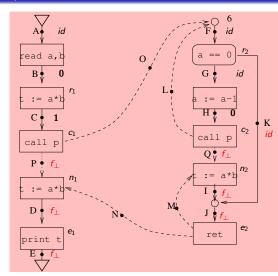
$$y_{F,F} = id$$

 $y_{F,G} = id \circ y_{F,F}$
 $y_{F,K} = id \circ y_{F,F}$
 $y_{F,H} = \mathbf{0} \circ y_{F,G}$
 $y_{F,Q} = y_{F,J} \circ y_{F,H}$
 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$
 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$





$$y_{F,F} = id$$
 $y_{F,G} = id \circ y_{F,F}$
 $y_{F,K} = id \circ y_{F,F}$
 $y_{F,H} = \mathbf{0} \circ y_{F,G}$
 $y_{F,Q} = y_{F,J} \circ y_{F,H}$
 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$
 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$



$$y_{A,A} = id$$

$$y_{A,B} = \mathbf{0} \circ y_{A,A}$$

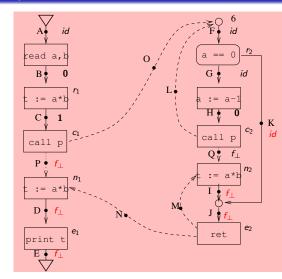
$$y_{A,C} = \mathbf{1} \circ y_{A,B}$$

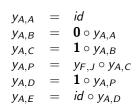
$$y_{A,P} = y_{F,J} \circ y_{A,C}$$

$$y_{A,D} = \mathbf{1} \circ y_{A,P}$$

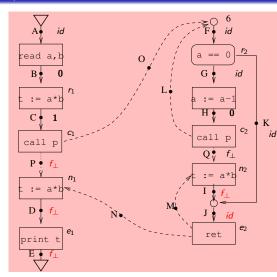
$$y_{A,E} = id \circ y_{A,D}$$

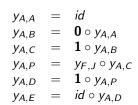
$$y_{F,F} = id$$
 $y_{F,G} = id \circ y_{F,F}$
 $y_{F,K} = id \circ y_{F,F}$
 $y_{F,H} = \mathbf{0} \circ y_{F,G}$
 $y_{F,Q} = y_{F,J} \circ y_{F,H}$
 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$
 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$



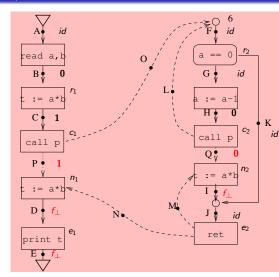


$$y_{F,F} = id$$
 $y_{F,G} = id \circ y_{F,F}$
 $y_{F,K} = id \circ y_{F,F}$
 $y_{F,H} = \mathbf{0} \circ y_{F,G}$
 $y_{F,Q} = y_{F,J} \circ y_{F,H}$
 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$
 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$





$$y_{F,F} = id$$
 $y_{F,G} = id \circ y_{F,F}$
 $y_{F,K} = id \circ y_{F,F}$
 $y_{F,H} = \mathbf{0} \circ y_{F,G}$
 $y_{F,Q} = y_{F,J} \circ y_{F,H}$
 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$
 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$



$$y_{A,A} = id$$

$$y_{A,B} = \mathbf{0} \circ y_{A,A}$$

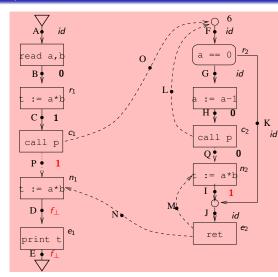
$$y_{A,C} = \mathbf{1} \circ y_{A,B}$$

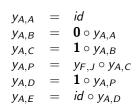
$$y_{A,P} = y_{F,J} \circ y_{A,C}$$

$$y_{A,D} = \mathbf{1} \circ y_{A,P}$$

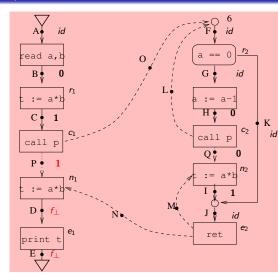
$$y_{A,E} = id \circ y_{A,D}$$

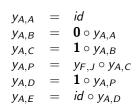
$$y_{F,F} = id$$
 $y_{F,G} = id \circ y_{F,F}$
 $y_{F,K} = id \circ y_{F,F}$
 $y_{F,H} = \mathbf{0} \circ y_{F,G}$
 $y_{F,Q} = y_{F,J} \circ y_{F,H}$
 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$
 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$



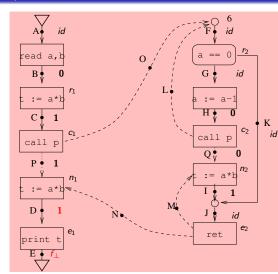


$$y_{F,F} = id$$
 $y_{F,G} = id \circ y_{F,F}$
 $y_{F,K} = id \circ y_{F,F}$
 $y_{F,H} = \mathbf{0} \circ y_{F,G}$
 $y_{F,Q} = y_{F,J} \circ y_{F,H}$
 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$
 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$





$$y_{F,F} = id$$
 $y_{F,G} = id \circ y_{F,F}$
 $y_{F,K} = id \circ y_{F,F}$
 $y_{F,H} = \mathbf{0} \circ y_{F,G}$
 $y_{F,Q} = y_{F,J} \circ y_{F,H}$
 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$
 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$



$$y_{A,A} = id$$

$$y_{A,B} = \mathbf{0} \circ y_{A,A}$$

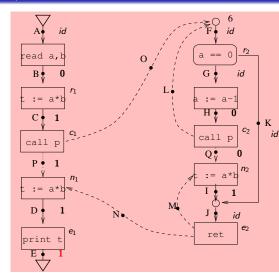
$$y_{A,C} = \mathbf{1} \circ y_{A,B}$$

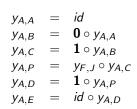
$$y_{A,P} = y_{F,J} \circ y_{A,C}$$

$$y_{A,D} = \mathbf{1} \circ y_{A,P}$$

$$y_{A,E} = id \circ y_{A,D}$$

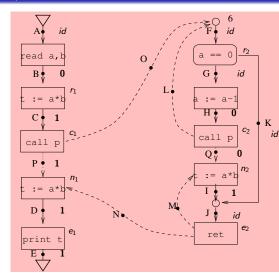
$$y_{F,F} = id$$
 $y_{F,G} = id \circ y_{F,F}$
 $y_{F,K} = id \circ y_{F,F}$
 $y_{F,H} = \mathbf{0} \circ y_{F,G}$
 $y_{F,Q} = y_{F,J} \circ y_{F,H}$
 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$
 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$



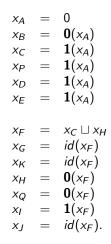


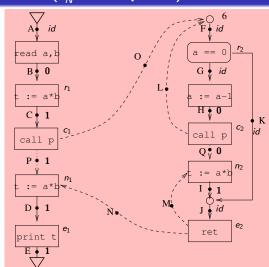
$$y_{F,F} = id$$

 $y_{F,G} = id \circ y_{F,F}$
 $y_{F,K} = id \circ y_{F,F}$
 $y_{F,H} = \mathbf{0} \circ y_{F,G}$
 $y_{F,Q} = y_{F,J} \circ y_{F,H}$
 $y_{F,I} = \mathbf{1} \circ y_{F,Q}$
 $y_{F,J} = y_{F,I} \sqcup y_{F,K}$



Example: Computing JVP values (x_N^*) 's to be precise





Functional Approach

```
X_A
          \mathbf{0}(x_A)
x_B
x_C = \mathbf{1}(x_A)
x_P = \mathbf{1}(x_A)
     = \mathbf{1}(x_A)
       = \mathbf{1}(x_A)
ΧE
                                                                                    call p
X_F
          x_C \sqcup x_H
                                                                                     Q . 0
x_G = id(x_F)
      = id(x_F)
     = \mathbf{0}(x_F)
X_H
x_Q = \mathbf{0}(x_F)
x_I = \mathbf{1}(x_F)
                                                                                              e_2
                                                                                      ret
       = id(x_F).
ХJ
```

Fig shows initial (red) and final (blue) values.

Functional Approach

```
X_A
           \mathbf{0}(x_A)
x_B
x_C = \mathbf{1}(x_A)
x_P = \mathbf{1}(x_A)
       = \mathbf{1}(x_A)
       = \mathbf{1}(x_A)
ΧE
                                                                                         call p
X_F
           x_C \sqcup x_H
                                                                                          Q_{V}^{\bullet} 0
x_G = id(x_F)
       = id(x_F)
     = \mathbf{0}(x_F)
X_H
x_Q = \mathbf{0}(x_F)
x_I = \mathbf{1}(x_F)
                                                                                                    e_2
                                                                                           ret
       = id(x_F).
ХJ
```

Fig shows initial (red) and final (blue) values.

Correctness Claim I

Functional Approach

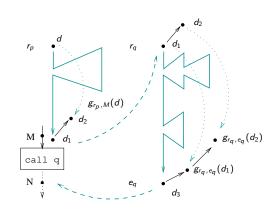
Claim I

- The least solution to Eq (1) dominates $\phi_{r_p,N}$'s (i.e. $\phi_{r_p,N} \leq y_{r_p,N}^*$ for each N).
- ② $\phi_{r_p,N}$'s are the least solution to Eq (1) (i.e. $\phi_{r_p,N} = y_{r_p,N}^*$ for each N) when f_{MN} 's are distributive.

Proof

Functional Approach

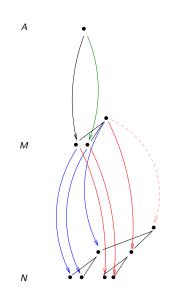
- For part 1:
 - Let $g_{r_p,N}$'s be any monotone solution to Eq (1).
 - Sufficient to prove: For each proc p in P, $d \in D$, and ρ an IVP_0 path from r_p to N, $f_{\rho}(d) \leq g_{r_0,N}(d)$.
 - Proof by induction on length of path ρ .
- ② For part 2: Prove that $\phi_{r_p,N}$'s are a solution to Eq (1), and hence they will dominate the least solution.



Claim I Part (2): Key observation

Functional Approach

- We want JOP at N.
- Suppose M is an intermediate point such that all paths to N pass through Μ.
- If transfer functions are distributive, then we can take join over paths at point M, and then join over paths from M to N.
- For any d, $JOP_{A,N}(d) = JOP_{M,N}(JOP_{A,M}(d))$
- $JOP_{A,N} = JOP_{M,N} \circ JOP_{A,M}$
- In a similar way $\phi_{r_p,N} = f_{MN} \circ \phi_{r_p,M}$ (for an non-call point M) and $\phi_{r_n,N} = \phi_{r_n,e_n} \circ \phi_{r_n,M}$ (for a call site M).



Functional Approach

Correctness and Algo II

Consider Eq (2)':

$$\begin{array}{lcl} x_1 & = & d_0 \\ x_{r_p} & = & \bigsqcup_{\operatorname{calls} C \operatorname{to} p} x_C \\ x_N & = & y_{r_p,N}^*(x_{r_p}) & \operatorname{for} N \in N_p - \{r_p\}. \end{array}$$

(Recall that $y_{r_0,N}^*$'s are the least solution of Eq (1).)

- \overline{f} induced by Eq (2)' is a monotone function on the complete lattice $(\overline{D}, \overline{\leq})$.
- LFP / least solution (say x_N^* 's) exists by Knaster-Tarski.

Claim

JVP values are the least solution to Eq (2)' (i.e. $JVP_N = x_N^*$) when f_{MN} 's are distributive. Otherwise $JVP_N \leq x_N^*$ for each N.

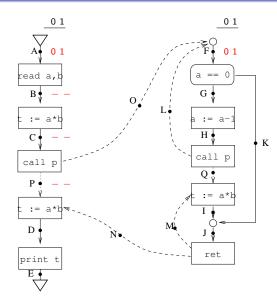
Kleene/Kildall's algo will compute x_N^* 's (assuming D finite).

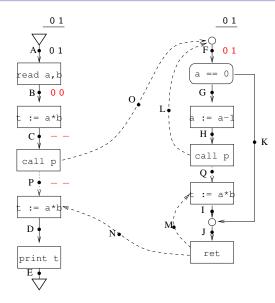
Functional Approach

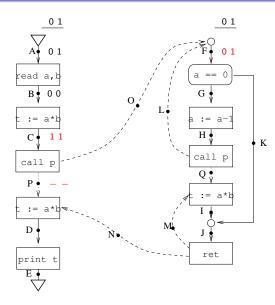
- Uses a two step approach
 - **①** Compute $\phi_{r_p,N}$'s (JVCPs for each function).
 - 2 Compute x_n 's (JVPs) at each point.

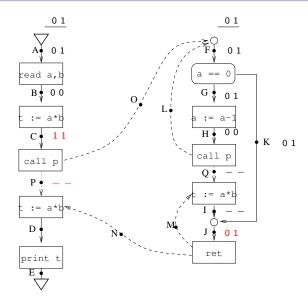
Summary of conditions: For each property (column heading), the conjunction of the ticked conditions (row headings) are sufficient to ensure the property.

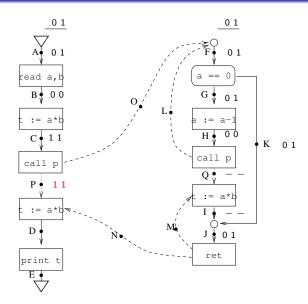
	Termination	Least Sol of Eq(2) \geq JVP	Least Sol of Eq $(2) = JVP$
f_{MN} 's monotonic Finite underlying lattice f_{MN} 's distributive	√ ✓	√	√ √











Iterative/Tabulation Approach

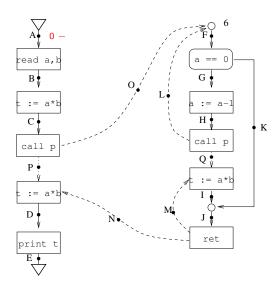
Functional Approach

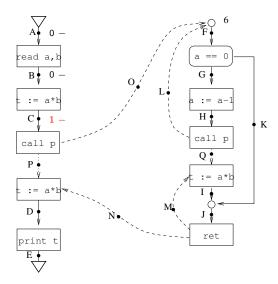
- Main idea: de-couple the propagation of function rows.
- Maintain a table of values representing the current value of $\phi_{r_n,N}$ for each program point N in procedure p.
- Expand column for data value d in procedure p only if d is reachable at r_p .
- Informally, at N in procedure p, the table has an entry $d \mapsto d'$ if we have seen
 - **1** valid paths ρ from r_1 to r_p with $\bigsqcup_{\rho} f_{\rho}(d_0) = d$, and
 - 2 valid and complete paths δ from r_p to N with $| \cdot |_{\delta} f_{\delta}(d) = d'$.

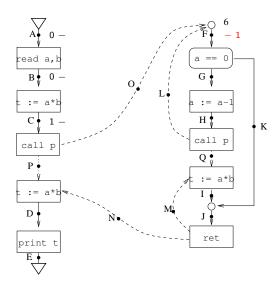
Iterative/Tabulation Approach

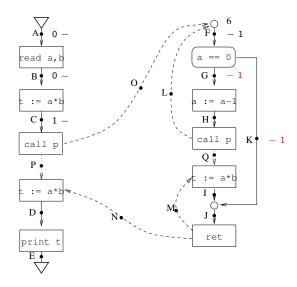
Functional Approach

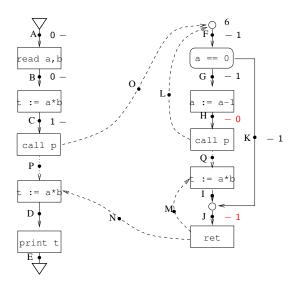
- Apply Kildall's algo with initial value of $d_0 \mapsto d_0$ at r_1 .
- Propagating value d across a call to procedure p: (a) begin a column for d at root of p if not already there; Also (b) if d is mapped to d' at the end of p, then propogate d' to the return site of the call.
- Propagating across return nodes from procedure p: value d'in column for d is propagated to each column at a return site of a call to procedure p that has the value d in the preceding entry.

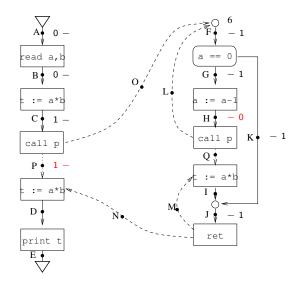


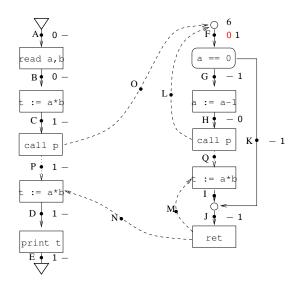


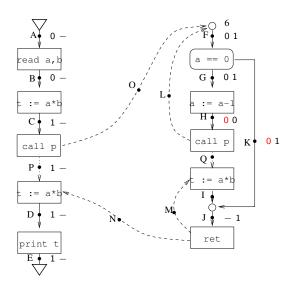


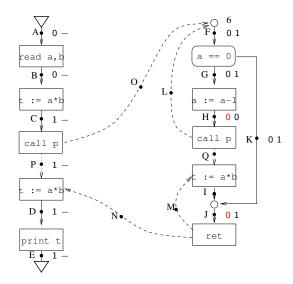




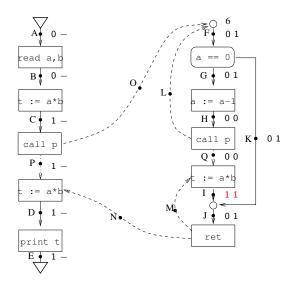


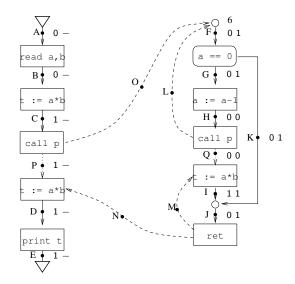






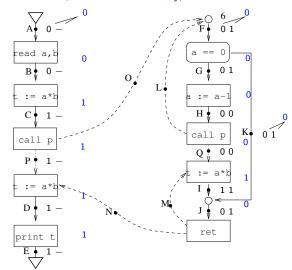






Example: Finally compute x_N 's from ϕ values

At each point N take join of reachable $\phi_{r_n,N}$ values.



Correctness of iterative algo

- Iterative algo terminates provided underlying lattice is finite.
- It computes the $y_{r_0,N}^*$'s (where $y_{r_0,N}^*$'s are the least solution to Eq (1)) "partially": If it maps d to $d' \neq \bot$ then $y_{r_0,N}^*(d) = d'$.
- The JVP values it gives (say z_N 's) are such that

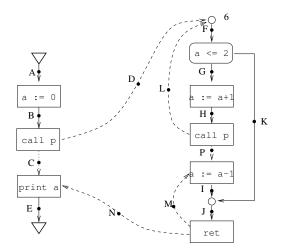
$$\text{JVP}_N \leq z_N \leq x_N^*$$

(where x_N^* 's are the solution to Eq (2')).

- If underlying transfer functions are distributive it computes $\phi_{r_0,N}$'s correctly (though partially), and the JVP values correctly.
- It thus computes an overapproximation of JVP for monotonic transfer functions, and exact JVP when transfer functions are distributive.

Exercise 1: Iterative algo

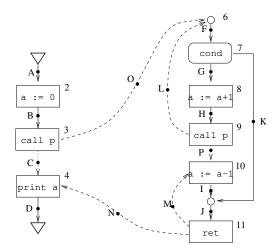
Run the iterative algo to do constant propagation analysis for the program below with initial value \emptyset .



Exercise 2: Functional vs Iterative algo

Functional Approach

Run the functional and iterative algos to do constant propagation analysis for the program below with initial value \emptyset :



Comparing functional vs iterative approach

Functional Approach

- Functional algo can terminate even when underlying lattice is infinite, provided we can represent and compose/join functions "symbolically".
- Iterative is typically more efficient than functional since it only computes $\phi_{r_p,N}$'s for values reachable at start of procedure.