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What a lattice looks like

{1,2,3}

o
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Why study lattices in program analysis?

Why lattices?

o Natural way to obtain the “collecting state” at a point is to
take union of states reached along each path leading to the
point.

@ With abstract states also we want a “union” or “join” over all
paths (JOP).

Why fixpoints?
@ Guaranteed to safely approximate JOP (* Conditions apply).
o Easier to compute than JOP.

@ Knaster-Tarski theorem tells us about the existence of
fixpoints and their structure in a lattice.
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Motivation: Interpreting a program with even/odd abstract values

What values can this program print when input values are odd p
and even g7

1. while (p > @) {
2. p := p+l;
3. q := q+2;
3
4. print p,q;
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Motivation: Interpreting a program with even/odd abstract values

(3,2) (4,4) (0,€) (e, €) (0,€) (o,¢)
\ 7\ 1.while (p > q){ \ 1\ \ ;
\ \ \ {
5 [ ‘ [ \ \ \
(3’\ ) ‘\‘ x 2. p = p+l; (o) | ‘ )
*.2) | 3. g = q+2; (ee) ) | (oe,e) | /
% N
/ } - iy ~ |
(4,4) 4.print p,q; (e, e) (o,e) o
A concrete execution Join over all paths

with p=3 and q=2. reaching line 4.



Why study lattices
0000®0

Motivation: Interpreting a program with even/odd abstract values

1. while (p > @) {

O oe oe O . e oe
. p := ptl;
3. q := q+2;
¥ (0,0) @ (o0,¢e)® (e,0) @ (e,e)
4. print p; \\//
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Why Fixed Points?

@ JOP not always possible
to compute

@ LFP guaranteed to
conservatively
approximate JOP

@ More efficient to compute
LFP

Transfer function for p:=p+q
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Partial Orders

@ Usual order (or total order) on numbers: 1 <2 < 3.

@ Some domains are naturally “partially” ordered:

{1,2,3}

{12}o>{1%><o{23} 4-/\06 /\
{2} - . 3 T/T \/
2 3 N
o Odd/even, “contained
Subsets of {1, 2,3}, it in”

“subset” Divisors of 12, “divides”
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Partial orders: definition

@ A partially ordered set is a non-empty set D along with a
partial order < on D. Thus < is a binary relation on D
satisfying:

is reflexive (d < d for each d € D)

is transitive (d < d" and d’ < d” implies d < d”)

is anti-symmetric (d < d’ and d’ < d implies d = d’).

A
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o <
o <
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Binary relations as Graphs

We can view a binary relation on a set as a directed graph.
For example, the binary relation

{(a,a),(a,b), (b, c), (b, e),(d,e),(d,c), (e, f)}

can be represented as the graph:
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Partial Order as a graph

A partial order is then a special kind of directed graph:

@ Reflexive = /\

self-loop on each C‘ D M
node T T T/T
@ Antisymmetric = C. . . .

no 2-length cycles

RN N

“transitivity” of *

edges. Q _
Graph Hasse-diagram
representation representation




Partial Orders
ooooe

Upper bounds etc.

In a partially ordered set (D, <):

@ An element v € D is an upper bound of a set °
of elements X C D, if x < u for all x € X. /\

@ u is the least upper bound (or lub or join) of e >
X if uis an upper bound for X, and for T><
every upper bound y of X, we have u < y. 2 e Vb

We write u = | | X.
@ Similarly, v =[] X (v is the greatest lower

bound or glb or meet of X). h
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Lattices

@ A lattice is a partially order set in which every pair of
elements has an lub and a glb.

@ A complete lattice is a lattice in which every subset of
elements has a lub and glb.

N\
{1,2} @ {1,3 e {23} 3 4 /\
X>< L] 2

{1,2,3}

{1} * {2}* e {3}

7 \ /

.
(]
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Lattices

@ A lattice is a partially order set in which every pair of
elements has an lub and a glb.

@ A complete lattice is a lattice in which every subset of
elements has a lub and glb.

@ Examples below are all complete lattices.
1,2} o>{1% {2 3} T/T / \
N QT/ N \ / | \/

.
(]

{1,2,3}
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More lattices

(oe, oe)
[ )
(o, oe)o% \§<)W. (e, e)
(o,0) ® (o,e)® (e,0) @ (e, e)
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Exercise

@ Example of a partial order that is not a lattice?
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Exercise

@ Example of a partial order that is not a lattice?
d

o C

<.

a
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Exercise

@ Example of a partial order that is not a lattice?
d

o C

<.

@ '"Simplest” example of a partial order that is not a lattice?

a
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Exercise

@ Example of a partial order that is not a lattice?
d

o C

<.

@ '"Simplest” example of a partial order that is not a lattice?

a

a e e b
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Exercise

@ Example of a partial order that is not a lattice?
d

o C

<.

@ '"Simplest” example of a partial order that is not a lattice?

a

a e e b

© Example of a lattice which is not complete?
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Exercise

@ Example of a partial order that is not a lattice?
d

o C

<.

@ '"Simplest” example of a partial order that is not a lattice?

a

a e e b

© Example of a lattice which is not complete? (N, <)

o —=0—>0—>
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Partial order induced by a subset of elements

Let (D, <) be a partially ordered set, and X be a non-empty subset
of D. Then X induces a partial order, which we call the partial
order induced by X in (D, <), and defined to be (X, < N(X x X)).

Example: the partial order induced by the set of elements
X ={2,3,12}.

12 12
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Monotonic functions

Let (D, <) be a partially ordered set.

@ A function f : D — D is monotonic or

order-preserving if whenever x < y we have
f(x) < f(y).
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Fixpoints

@ A fixpoint of a function f : D — D is an
element x € D such that f(x) = x.

@ A pre-fixpoint of f is an element x such that
x < f(x).

@ A post-fixpoint of f is an element x such
that f(x) < x.
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Knaster-Tarski Fixpoint Theorem

Theorem (Knaster-Tarski)

Let (D, <) be a complete lattice, and f : D — D a monotonic
function on (D, <). Then:
(a) f has at least one fixpoint.

(b) f has a least fixpoint which coincides with the glb of the set
of postfixpoints of f, and a greatest fixpoint which coincides
with the lub of the prefixpoints of f.

(c) The set of fixpoints P of f itself forms a complete lattice
under <.
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Fixpoints of f

Pre

Stars denote fixpoints.
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Exercise

Consider the complete lattice and monotone function f below.

Q@ Mark the pre-fixpoints
with up-triangles (A).
© What is the lub of the

pre-fixpoints? e
© Mark post-fixpoints with
down-triangles (V).
c

@ Fixpoints are the stars
().
Check that claims of K-T
theorem hold here.
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Exercise |l

Consider the complete lattice and function f depicted below.
©Q Is the lattice complete? Is
the function monotone?
© Mark the pre-fixpoints
with up-triangles (A).
© What is the lub of the
pre-fixpoints?
© Mark post-fixpoints with
down-triangles (V).
© Fixpoints are the stars
(%)
Check that claims of K-T
theorem hold here.
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Exercise

If you drop one of the conditions of the K-T theorem
@ Monotonicity of the function f
@ Completeness of the lattice

does the conclusion of the theorem still hold?
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Proof of Knaster-Tarski theorem

(a) g =| | Preis a fixpoint of f.
(b) g is the greatest fixpoint of f.
(c) Similarly I =[] Post is the least fixpoint of f.

(d) Let P be the set of fixpoints of f. Then (P, <) is a complete
lattice.
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Proof of K-T theorem: (a) g =| | Pre is a fixpoint of f.
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Proof of K-T theorem: (a) g =| | Pre is a fixpoint of f.

To show g = f(g):
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Proof of K-T theorem: (a) g =| | Pre is a fixpoint of f.

To show g = f(g):
° g<f(g)




Knaster-Tarski Theorem

0000000e000

Proof of K-T theorem: (a) g =| | Pre is a fixpoint of f.

To show g = f(g):
° g<f(g)

e Since f(g) can be seen
to be u.b. of Pre.
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Proof of K-T theorem: (a) g =| | Pre is a fixpoint of f.

To show g = f(g):
° g<f(g)

e Since f(g) can be seen
to be u.b. of Pre.

° f(g)<g
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Proof of K-T theorem: (a) g =| | Pre is a fixpoint of f.

To show g = f(g):
° g<f(g)

e Since f(g) can be seen
to be u.b. of Pre.

°flg)<g
e Since f(g) can be seen
to be prefixpoint of f.
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Proof of K-T theorem: (b) g is the greatest fixpoint of 7
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Proof of K-T theorem: (b) g is the greatest fixpoint of 7

Any other fixpoint is also a
pre-fixpoint of f, and hence g
must dominate it.
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Exercise: intervals and closure

Let (D, <) be a partial order, and let
f:D—D.

@ Let a,b € D. The interval from a to
b, written [a, b], is the set
{d]a<d<b}.

@ A subset X C D is said to be closed
wrt to f, if f(x) € X for each x € X.

Exercise: Let (D, <) be a partial order with
a T element, and let f : D — D be a
monotone function on D.

© Show that an interval in D need not
be closed wrt f.

©Q Let u € D be the lub of a set X of
fixpoints of f. Prove that the interval
[u, T] is closed wrt f.
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Proof of K-T theorem: (d) Fixpoints form a complete lattice

@ Let P be the set of fixpoints of
f

e (P,<) is also a partial order.
o (P,<) is a complete lattice
o Let X C P. We show there is

an lub of X in (P, <).

o Let u be lub of X in
(D, <).

o Consider “interval” | =
[u,T]={x€e D | u<x}.
(1, <) is also a complete
lattice.

o f: |l — 1 as well, and
monotonic on (/, <).

@ Hence by part (a) f has a
least fixpoint in /, say v.

@ Argue that v is the lub of
X in (P, <).
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Chains in partial orders

Let (D, <) be a partial order.
@ A chainin (D, <) is a totally ordered subset of D.

@ An ascending chain in (D, <) is an infinite sequence of
elements of D of the form:

dy<di<dp<---.

@ An ascending chain (d;) is eventually stable if there exists ng
such that d; = d,,, for each i > ng.

@ (D, <) has finite height if each chain in it is finite.

@ (D, <) has bounded height if there exists k such that each
chain in D has height at most k (i.e. number of elements in
each chain is at most k + 1.)
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Monotonicity, distributivity, and continuity of a function f on a
complete lattice (D, <)

@ f is monotone:
x <y = f(x) < f(y). E— |
3 ° : "
o f is distributive: A /\ A /\

f(xUy) = f(x)Uf(y).

Monotonic Distributive

@ f is continuous: For
any asc chain X:

F(LIX) = L. o BN
e f is inf distributive: o ‘@
Fofany ng D: ) o SR

f (|_| X) = |—| (F(X)). Continuous Inf-Distributive
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Characterising LFP of a function f in a complete lattice (D, <)

o If f is monotonic
e Then

L<f) <L) <L) <
is an ascending chain.
o If this chain stabilizes the
stable value will be /fp(f).
o If (D, <) has finite height
then we can compute
Ifp(f) by finding the stable Pre

value of this chain. ) e
@ If f is continuous then TLW (L))
i o f(f(L))

i20 0.<)
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Exercise

Consider the statement “p := p + q". Show the transfer function
of this statement in the parity lattice below.

(oe, oe)

// I

®(oe,e)e (e, oe)

T

Is it monotonic/distributive/continuous?
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