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What a lattice looks like

∅

{1} {2} {3}

{1, 2} {2, 3}{1, 3}

{1, 2, 3}

Subsets of {1, 2, 3},
“subset”

o e

⊥

oe

Odd/even, “contained
in”
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Why study lattices in program analysis?

Why lattices?

Natural way to obtain the “collecting state” at a point is to
take union of states reached along each path leading to the
point.

With abstract states also we want a “union” or “join” over all
paths (JOP).

Why fixpoints?

Guaranteed to safely approximate JOP (* Conditions apply).

Easier to compute than JOP.

Knaster-Tarski theorem tells us about the existence of
fixpoints and their structure in a lattice.
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Motivation: Interpreting a program with even/odd abstract values

What values can this program print when input values are odd p
and even q?

1. while (p > q) {

2. p := p+1;

3. q := q+2;

}

4. print p,q;
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Motivation: Interpreting a program with even/odd abstract values

q := q+2;

p := p+1;

}

print p,q;

1.

2.

3.

4.

while (p > q){

A concrete execution Join over all paths
reaching line 4.with p=3 and q=2.

(3, 2)

(3, 2)

(4, 2)

(4, 4)

(4, 4)

(o, e)

(o, e)

(e, e)

(e, e)

(e, e)

(o, e)

(o, e)

(o, e)

(oe, e)
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Motivation: Interpreting a program with even/odd abstract values

1. while (p > q) {

2. p := p+1;

3. q := q+2;

}

4. print p;

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)
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Why Fixed Points?

JOP not always possible
to compute

LFP guaranteed to
conservatively
approximate JOP

More efficient to compute
LFP

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

Transfer function for p:=p+q
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Partial Orders

Usual order (or total order) on numbers: 1 ≤ 2 ≤ 3.

Some domains are naturally “partially” ordered:

∅

{1} {2} {3}

{1, 2} {2, 3}{1, 3}

{1, 2, 3}

Subsets of {1, 2, 3},
“subset”

1

2 3

4 6

12

Divisors of 12, “divides”

o e

⊥

oe

Odd/even, “contained
in”
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Partial orders: definition

A partially ordered set is a non-empty set D along with a
partial order ≤ on D. Thus ≤ is a binary relation on D
satisfying:

≤ is reflexive (d ≤ d for each d ∈ D)
≤ is transitive (d ≤ d ′ and d ′ ≤ d ′′ implies d ≤ d ′′)
≤ is anti-symmetric (d ≤ d ′ and d ′ ≤ d implies d = d ′).
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Binary relations as Graphs

We can view a binary relation on a set as a directed graph.
For example, the binary relation

{(a, a), (a, b), (b, c), (b, e), (d , e), (d , c), (e, f )}

can be represented as the graph:

e f

c

a

b d
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Partial Order as a graph

A partial order is then a special kind of directed graph:

Reflexive =
self-loop on each
node

Antisymmetric =
no 2-length cycles

Transitive =
“transitivity” of
edges.

Graph
representation

Hasse-diagram
representation
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Upper bounds etc.

In a partially ordered set (D,≤):

An element u ∈ D is an upper bound of a set
of elements X ⊆ D, if x ≤ u for all x ∈ X .

u is the least upper bound (or lub or join) of
X if u is an upper bound for X , and for
every upper bound y of X , we have u ≤ y .
We write u =

⊔
X .

Similarly, v =
d
X (v is the greatest lower

bound or glb or meet of X ).

a b

cd

t

s
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Lattices

A lattice is a partially order set in which every pair of
elements has an lub and a glb.

A complete lattice is a lattice in which every subset of
elements has a lub and glb.

Examples below are all complete lattices.

∅

{1} {2} {3}

{1, 2} {2, 3}{1, 3}

{1, 2, 3}

o e

⊥

oe
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Lattices

A lattice is a partially order set in which every pair of
elements has an lub and a glb.

A complete lattice is a lattice in which every subset of
elements has a lub and glb.

Examples below are all complete lattices.

∅

{1} {2} {3}

{1, 2} {2, 3}{1, 3}

{1, 2, 3}

o e

⊥

oe
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More lattices

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)
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Exercise

1 Example of a partial order that is not a lattice?

b

cd

a

2 “Simplest” example of a partial order that is not a lattice?

ba

3 Example of a lattice which is not complete? (N,≤)

0

1

2
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Exercise

1 Example of a partial order that is not a lattice?

b

cd

a

2 “Simplest” example of a partial order that is not a lattice?

ba

3 Example of a lattice which is not complete? (N,≤)

0

1

2
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Exercise

1 Example of a partial order that is not a lattice?

b

cd

a

2 “Simplest” example of a partial order that is not a lattice?

ba

3 Example of a lattice which is not complete?

(N,≤)

0

1

2
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Exercise

1 Example of a partial order that is not a lattice?

b

cd

a

2 “Simplest” example of a partial order that is not a lattice?

ba
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Partial order induced by a subset of elements

Let (D,≤) be a partially ordered set, and X be a non-empty subset
of D. Then X induces a partial order, which we call the partial
order induced by X in (D,≤), and defined to be (X , ≤ ∩(X ×X )).

Example: the partial order induced by the set of elements
X = {2, 3, 12}.

1

2 3

4 6

12

2 3

12



Why study lattices Partial Orders Lattices Knaster-Tarski Theorem Computing LFP

Monotonic functions

Let (D,≤) be a partially ordered set.

A function f : D → D is monotonic or
order-preserving if whenever x ≤ y we have
f (x) ≤ f (y).

a

w

b c

ed
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Fixpoints

A fixpoint of a function f : D → D is an
element x ∈ D such that f (x) = x .

A pre-fixpoint of f is an element x such that
x ≤ f (x).

A post-fixpoint of f is an element x such
that f (x) ≤ x .

a

w

b c

ed
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Knaster-Tarski Fixpoint Theorem

Theorem (Knaster-Tarski)

Let (D,≤) be a complete lattice, and f : D → D a monotonic
function on (D,≤). Then:

(a) f has at least one fixpoint.

(b) f has a least fixpoint which coincides with the glb of the set
of postfixpoints of f , and a greatest fixpoint which coincides
with the lub of the prefixpoints of f .

(c) The set of fixpoints P of f itself forms a complete lattice
under ≤.
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Fixpoints of f

Post

Pre

lfp

gfp

(D,≤)

Stars denote fixpoints.
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Exercise

Consider the complete lattice and monotone function f below.

1 Mark the pre-fixpoints
with up-triangles (M).

2 What is the lub of the
pre-fixpoints?

3 Mark post-fixpoints with
down-triangles (O).

4 Fixpoints are the stars
(MO).

Check that claims of K-T
theorem hold here.

a

w

b c

ed
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Exercise II

Consider the complete lattice and function f depicted below.

1 Is the lattice complete? Is
the function monotone?

2 Mark the pre-fixpoints
with up-triangles (M).

3 What is the lub of the
pre-fixpoints?

4 Mark post-fixpoints with
down-triangles (O).

5 Fixpoints are the stars
(MO).

Check that claims of K-T
theorem hold here.

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)
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Exercise

If you drop one of the conditions of the K-T theorem

Monotonicity of the function f

Completeness of the lattice

does the conclusion of the theorem still hold?
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Proof of Knaster-Tarski theorem

(a) g =
⊔

Pre is a fixpoint of f .

(b) g is the greatest fixpoint of f .

(c) Similarly l =
d

Post is the least fixpoint of f .

(d) Let P be the set of fixpoints of f . Then (P,≤) is a complete
lattice.
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Proof of K-T theorem: (a) g =
⊔

Pre is a fixpoint of f .

To show g = f (g):

g ≤ f (g)

Since f (g) can be seen
to be u.b. of Pre.

f (g) ≤ g

Since f (g) can be seen
to be prefixpoint of f .

��

��

����

��

��

Pre

(D,≤)

g

⊥

f (g)

f (x)

x
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Proof of K-T theorem: (b) g is the greatest fixpoint of f

Any other fixpoint is also a
pre-fixpoint of f , and hence g
must dominate it.

��

��

����

��

��

Pre

(D,≤)

g

⊥

f (g)

f (x)

x
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Proof of K-T theorem: (b) g is the greatest fixpoint of f
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��

��

����

��

��
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Exercise: intervals and closure

Let (D,≤) be a partial order, and let
f : D → D.

Let a, b ∈ D. The interval from a to
b, written [a, b], is the set
{d | a ≤ d ≤ b}.
A subset X ⊆ D is said to be closed
wrt to f , if f (x) ∈ X for each x ∈ X .

Exercise: Let (D,≤) be a partial order with
a > element, and let f : D → D be a
monotone function on D.

1 Show that an interval in D need not
be closed wrt f .

2 Let u ∈ D be the lub of a set X of
fixpoints of f . Prove that the interval
[u,>] is closed wrt f .

a

w

b c

ed
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Proof of K-T theorem: (d) Fixpoints form a complete lattice

Let P be the set of fixpoints of
f .

(P,≤) is also a partial order.

(P,≤) is a complete lattice
Let X ⊆ P. We show there is
an lub of X in (P,≤).

Let u be lub of X in
(D,≤).
Consider “interval” I =
[u,>] = {x ∈ D | u ≤ x}.
(I ,≤) is also a complete
lattice.
f : I → I as well, and
monotonic on (I ,≤).
Hence by part (a) f has a
least fixpoint in I , say v .
Argue that v is the lub of
X in (P,≤). (D,≤)

u

v

>

X



Why study lattices Partial Orders Lattices Knaster-Tarski Theorem Computing LFP

Chains in partial orders

Let (D,≤) be a partial order.

A chain in (D,≤) is a totally ordered subset of D.

An ascending chain in (D,≤) is an infinite sequence of
elements of D of the form:

d0 ≤ d1 ≤ d2 ≤ · · · .

An ascending chain 〈di 〉 is eventually stable if there exists n0
such that di = dn0 for each i ≥ n0.

(D,≤) has finite height if each chain in it is finite.

(D,≤) has bounded height if there exists k such that each
chain in D has height at most k (i.e. number of elements in
each chain is at most k + 1.)
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Monotonicity, distributivity, and continuity of a function f on a
complete lattice (D,≤)

f is monotone:

x ≤ y =⇒ f (x) ≤ f (y).

f is distributive:

f (xty) = f (x)tf (y).

f is continuous: For
any asc chain X :

f (
⊔

X ) =
⊔

(f (X )).

f is inf distributive:
For any X ⊆ D:

f (
⊔

X ) =
⊔

(f (X )).

Distributive

Continuous Inf−Distributive

Monotonic
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Characterising LFP of a function f in a complete lattice (D,≤)

If f is monotonic

Then

⊥ ≤ f (⊥) ≤ f 2(⊥) ≤ f 3(⊥) ≤ · · ·

is an ascending chain.
If this chain stabilizes the
stable value will be lfp(f ).
If (D,≤) has finite height
then we can compute
lfp(f ) by finding the stable
value of this chain.

If f is continuous then

lfp(f ) =
⊔
i≥0

(f i (⊥)).

Pre

(D,≤)

g

⊥

>

f (f (⊥))

⊔
(f i (⊥))

f (⊥)

l



Why study lattices Partial Orders Lattices Knaster-Tarski Theorem Computing LFP

Exercise

Consider the statement “p := p + q”. Show the transfer function
of this statement in the parity lattice below.

(e, oe)

⊥

(e, e)

(oe, oe)

(o, oe) (oe, o) (oe, e)

(o, e) (e, o)(o, o)

Is it monotonic/distributive/continuous?
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