Program Synthesis Meets Machine Learning

Assignment 2 (PBE/FlashMeta and Model Learning)

(Due on Mon 24st Feb 2020)

1. Consider a DSL for sum expressions in the FlashMeta framework, with the following grammar:

$$\begin{array}{ccc} S & \rightarrow & T \mid S + S \\ T & \rightarrow & 0 \mid 1 \mid x \mid y \end{array}$$

The variables x and y are input variables with domain natural numbers $\{0,1,\ldots\}$, and a program (a sum expression derived from S) outputs a natural number as the result of evaluating the expression on the input valuation for x and y. A specification φ is an input/output example of the form $(1,2) \leadsto 3$ (meaning that the program on the input valuation $(x \mapsto 1, y \mapsto 2)$ evaluates to 3.

(a) Consider the witness functions for first parameter of the production $S \to S + S$ given by:

$$\omega_1((m,n) \leadsto k) = (m,n) \leadsto 1 \lor (m,n) \leadsto 2 \lor \cdots \lor (m,n) \leadsto k-1,$$

and a conditional witness function for the second parameter given by

$$\omega_2((m,n) \leadsto k \mid l) = (m,n) \leadsto k-l.$$

Is the witness function ω_1 precise? Is the conditional witness function ω_2 precise?

- (b) Using the witness functions above, show the step-by-step progression of the enumeration tree (as shown in Slide 28 of the lectures slides) for the specification $(1,2) \rightsquigarrow 3$, till you obtain the enumeration tree representing *all* programs (modulo the specification of the witness functions) that satisfy φ .
- (c) Represent the final tree above as a VSA structure. Assume that VSA nodes are labeled by their specification (in addition to the operator corresponding to the node), and unify nodes that have the same label.
- (d) What is the size and volume of the VSA?
- 2. Consider the coffee vending machine (implemented as a Mealy machine) below. The machine accepts 10 paise (dime) and 5 paise (nickel) coins and gives out 1 cup of coffee whenever the balance is 15 paise or more. The inputs are n (for "nickel") and d (for "dime"), and outputs of the machine are C (for "Coffee vended") and N (for "Nothing vended").

Given this as a black box implementation, use Angluin's algorithm to learn an equivalent Mealy machine. Show the main steps in the learning process (i.e. the points whenever you reach a closed and consistent table).

3. Question on Prose (to be given).