
Motivation Automata Learning Extending to Mealy Machines

Model Learning

Deepak D’Souza

Department of Computer Science and Automation
Indian Institute of Science, Bangalore.

05 Feb 2020.

Motivation Automata Learning Extending to Mealy Machines

Model Learning Problem

Given a (possibly black-box) implementation T (“System Under
Learning”), learn a finite-state machine M that “conforms” to T .
Learner is allowed to use membership and equivalence queries.

90 COMMUNICATIONS OF THE ACM | FEBRUARY 2017 | VOL. 60 | NO. 2

review articles

a small state machine trying to get out.
By choosing a proper set of input actions
and by defining an appropriate mapper/
abstraction, we can make this small
state machine visible to the learner.

Examples of Applications
During recent years, model learning has
been successfully applied to numerous
practical cases in different domains.
There have been industrial applica-
tions, for instance, on regression test-
ing of telecommunication systems at
Siemens,20 on integration testing at
France Telecom,36 on automatic test-
ing of an online conference service of
Springer Verlag,39 and on testing require-
ments of a brake-by-wire system from
Volvo Technology.16 Below, I review some
representative case studies that have
been carried out at Radboud University
related to smart cards, network proto-
cols, and legacy software.

Smartcards. Chalupar et al.13 used
model learning to reverse engineer the
e.dentifier2, a smartcard reader for
Internet banking. To be able to learn a
model of the e.dentifier2, the authors
constructed a Lego robot, controlled
by a Raspberry Pi that can operate the
keyboard of the reader (see Figure 6).
Controlling all this from a laptop, they
then could use LearnLib26 to learn mod-
els of the e.dentifier2. They learned a
four-state Mealy machine of one version of
the e.dentifier2 that revealed the presence
of a security flaw, and showed that the
flaw is no longer present in a three-state
model for the new version of the device.

In another study, Aarts et al.3 learned
models of implementations of the EMV
protocol suite on bank cards issued
by several Dutch and German banks,
on MasterCard credit cards issued by
Dutch and Swedish banks, and on one
UK Visa debit card. To learn the models,
LearnLib performed between 855 and
1,696 membership and test queries for
each card and produced models with
four to eight states. (Figure 7 shows one
of the learned models.) All cards resulted
in different models, only the applica-
tions on the Dutch cards were identical.
The models learned did not reveal any
security issues, although some peculiar-
ities were noted. The authors argue that
model learning would be useful as part
of security evaluations.

Network protocols. Our society has
become completely dependent on the

be smaller for a restricted number of
stimuli. Models learned for a subset of
the inputs may then be used to gener-
ate counterexamples while learning
models for larger subsets. Yet another
approach, which, for instance, has
been applied by Chalupar et al.,13 is to
merge several input actions that usually
occur in a specific order into a single

high-level action, thus reducing the
number of inputs. Again, models that
have been learned with a small number
of high level inputs may be used to gen-
erate counterexamples in subsequent
experiments in which these inputs are
broken up into their constituents.

Paraphrasing C.A.R. Hoare, one could
say that in every large program there is

Figure 4. Model learning within the MAT framework.

TQs

SUL

CT

MQs

EQ

Learner Teacher

Figure 5. Model learning with a mapper.

TQ

Mapper

SUL

CT

MQs

EQ

Learner Teacher

Figure 6. Lego robot used to reverse engineer the e.dentifier2 smartcard reader (picture
courtesy of Chalupar13).

Fritz Vaandrager, CACM 2017

Motivation Automata Learning Extending to Mealy Machines

(Mealy) State Machines

M = (I ,O,Q, qo , δ, λ) where

I , O are finite input and output alphabets

Q a finite set of states

δ : (Q × I)→ Q is transition function.

λ : (Q × I)→ O is the state output function.

Language of machine M, AM , is a map from I ∗ to O∗

(same-length string transducer).
Example with input alphabet = {a, b}, output alphabet = {A,B}.

88 COMMUNICATIONS OF THE ACM | FEBRUARY 2017 | VOL. 60 | NO. 2

review articles

Peled et al.19,32 made the important
observation that the MAT framework
can be used to learn black box models
of software and hardware components.
Suppose we have a component, which
we call the System Under Learning (SUL),
whose behavior can be described by (an
unknown) Mealy machine M. Suppose
further that it is always possible to bring
the SUL back to its initial state. A mem-
bership query can now be implemented
by bringing the SUL to its initial state
and then observing the outputs gener-
ated by the SUL in response to the given
input sequence. Equivalence query can
be approximated using a conformance
testing (CT) tool29 via a finite number
of test queries (TQs). A test query asks
for the response of the SUL to an input
sequence, similar to a membership
query. If one of the test queries exhibits
a counterexample then the answer to
the equivalence query is no, otherwise
the answer is yes. A schematic overview
is shown in Figure 4. In this approach,
the task of the learner is to construct
hypotheses, whereas the task of the con-
formance testing tool is to test the valid-
ity of these hypotheses. As a testing tool
can only pose a finite number of que-
ries, we can never be sure that a learned
model is correct. However, a finite and
complete conformance test suite does
exists if we assume a bound on the num-
ber of states of machine M.29

The pioneering work of Peled et al.32
and Steffen et al.8,20,23 established fas-
cinating connections between model
learning and the area of formal meth-
ods, in particular model checking
and model-based testing. Subsequent
research has confirmed that, in the
absence of a tractable white box model
of a reactive system, a learned model is
often an excellent alternative that may
be obtained at relatively low cost.

In order to check properties of
learned models, model checking15 can
be used. In fact, Peled et al.32 showed
how model learning and model check-
ing can be fully integrated in an
approach called black box checking. The
basic idea is to use a model checker
as a “preprocessor” for the confor-
mance testing tool in Figure 4. When
the teacher receives a hypothesis from
the learner, it first runs a model checker
to verify if the hypothesis model satis-
fies all the properties from the SUL’s
specification. Only if this is true the

proposed the problem of learning finite
automata, provided an exponential
algorithm and proved that the problem
is inherently exponential. The prob-
lem has been studied under different
names by different communities: con-
trol theorists refer to it as system iden-
tification, computation linguists speak
about grammatical inference,22 some
papers use the term regular inference,8
regular extrapolation,20 or active autom-
ata learning,24 and security researchers
coined the term protocol state fuzz-
ing.34 Here, we will use the term model
learning in analogy with the commonly
used term model checking.15 Whereas
model checking is widely used for ana-
lyzing finite-state models, model learn-
ing is a complementary technique for
building such models from observed
input–output data.

In 1987, Angluin6 published a seminal
paper in which she showed that finite
automata can be learned using the so-called
membership and equivalence queries. Even
though faster algorithms have been
proposed since then, the most efficient
learning algorithms that are being used
today all follow Angluin’s approach of a
minimally adequate teacher (MAT). In the
MAT framework, learning is viewed as a
game in which a learner has to infer the
behavior of an unknown state diagram

by asking queries to a teacher. The teacher
knows the state diagram, which in our
setting is a Mealy machine M (see Mealy
machines for the definition). Initially, the
learner only knows the inputs I and
outputs O of M. The task of the learner
is to learn M through two types of queries:

•	With a membership query (MQ),
the learner asks what the output is
in response to an input sequence
σ ∈ I*. The teacher answers with
output sequence AM

(σ).
•	With an equivalence query (EQ),

the learner asks if a hypothesized
Mealy machine H with inputs I
and outputs O is correct, that is,
whether H and M are equivalent.
The teacher answers yes if this is the
case. Otherwise she answers no and
supplies a counterexample σ ∈ I*
that distinguishes H and M.

The L* algorithm of Angluin6 is able
to learn Mealy machine M by asking
a polynomial number of membership
and equivalence queries (polynomial in
the size of the corresponding canonical
Mealy machine). In the Angluin’s algo-
rithm, we give a simplified presentation
of the L* algorithm. Actual implemen-
tations, for instance in LearnLib26 and
libalf,9 contain many optimizations.

A (deterministic) Mealy machine is a tuple M = (I, O, Q, q0, δ, λ), where I is
a finite set of inputs, O is a finite set of outputs, Q is a finite set of states,
q0 ∈ Q is the initial state, δ : Q × I → Q is a transition function, and λ : Q × I → O is
an output function.

Figure 1 gives a graphical representation of a simple Mealy machine
with inputs {a, b}, outputs {A, B, C}, states {q0, q1, q2}, and initial state q0.

Figure 1. A simple Mealy machine.

q0start q1 q2

b/B

a/A

b/B

a/A a/C

b/B

Output function λ is extended to sequences of inputs by defining, for all q ∈ Q,
i ∈ I, and σ ∈ I*, λ(q, ε) = ε, and λ(q, iσ) = λ(q, i)λ(δ(q, i), σ). The behavior of Mealy
machine M is defined by function A

M
: I* → O* with A

M
(σ) = λ(q0, σ),

for σ ∈ I*. Mealy machines M and N are equivalent, denoted M ≈ N, iff A
M

 = A
N

.
Sequence σ ∈ I* distinguishes M and N if and only if A

M
(σ) ≠ A

N
(σ).

Mealy Machines

Motivation Automata Learning Extending to Mealy Machines

State Machine as a Program

enum StateType = {....};

StateType state;

state = ... // initialize

while (true) {

read(a); // read input

switch (state) {

0: switch(a) {

a: output(...); state = ...;

b: output(...); state = ...;

}

1: switch(a) {

a: output(...); state = ...;

b: output(...); state = ...;

}

...

}

}

Motivation Automata Learning Extending to Mealy Machines

Applications: Refactoring Equivalence

92 COMMUNICATIONS OF THE ACM | FEBRUARY 2017 | VOL. 60 | NO. 2

review articles

exhibited a difference between A and B,
and we changed either A or B (or both),
depending on which response to σ
was considered unsatisfactory behav-
ior. The implementations were learned
and checked iteratively with increas-
ing sets of stimuli to handle scalability.
Issues were found in both the refac-
tored and the legacy implementation
in an early stage, before the compo-
nent was integrated. In this way, costly
rework in a later phase of the develop-
ment was avoided.

Recent Advances
During recent years significant prog-
ress has been made on algorithms for
model learning, which is crucial for
scaling the application of these tech-
niques to larger systems.

Basic algorithms. Since 1987, the L*
algorithm of Angluin’s6 has been con-
siderably improved. The original L*
 performs a membership query for each
entry in the observation table. This is
often redundant, given that the sole
purpose of membership queries is the
distinction of states (rows). Therefore,
Kearns and Vazirani28 replaced the obser-
vation table of the L* algorithm by the
so-called discrimination trees, which
are basically decision trees for deter-
mining equivalence of states.

Another inefficiency of L* is that all
prefixes of a counterexample are added
as rows to the table. Counterexamples
obtained through conformance test-
ing or runtime monitoring may be
extremely long and are rarely minimal,
which results in numerous redun-
dant membership queries. Rivest and
Schapire33 observed that, instead of
adding all prefixes of a counterexample
as rows to the table, it suffices to add a
single, well-chosen suffix as a column.

The new TTT algorithm of Isberner
et al.24, 25 is currently the most efficient
algorithm for active learning. The algo-
rithm builds on the ideas of Kearns and
Vazirani28 and Rivest and Schapire33 but
eliminates overly long discrimination
trees, which may arise when processing
long counterexamples, by cleaning up
the internal data structures and reorga-
nizing the discrimination tree. Suppose
that a Mealy machine M has n states and
k inputs, and that the length of the longest
counterexample returned by the teacher
is m. Then in the worst-case TTT requires
O(n) equivalence queries and O(kn2 +

that we do not know how to cope with
but that are vital to our organization.”7
Typically, these systems are based on
obsolete technologies, documentation
is limited, and the original developers
are no longer available. In addition,
existing regression tests will be limited.
Given these characteristics, innovations
that require changes of legacy compo-
nents are risky. Several techniques have
been developed to extract the crucial
business information hidden in legacy
components, and to support the con-
struction of refactored implementa-
tions. Margaria et al.30 were the first to
point out that model learning may help
to increase confidence that a legacy
component and a refactored imple-
mentation have the same behavior.

Schuts et al.,35 for instance, used
model learning to support the rejuve-
nation of legacy embedded software
in a development project at Philips.
The project concerned the introduc-
tion of a new hardware component,
the Power Control Component (PCC),
which is used to start-up and shut-
down an interventional radiology
system. All computers in the system

have a software component, the Power
Control Service (PCS) which commu-
nicates with the PCC over an internal
control network during the execution
of start-up and shutdown scenarios.
To deal with the new hardware of the
PCC, which has a different interface,
a new implementation of the PCS was
needed. Since different configurations
had to be supported, with old and new
PCC hardware, the old and new PCS
software needed to have exactly the
same external behavior. Figure 9 illus-
trates the approach that was followed.
From both the legacy implementation
A and the refactored implementation
B, Mealy machine models MA resp.
MB were obtained using model learn-
ing. These models were then compared
using an equivalence checker. When
the equivalence checker found a coun-
terexample σ, then we checked whether
A and MA behaved the same on input
σ and whether B and MB behaved the
same on input σ. If there was a discrep-
ancy between A and MA, or between B
and MB, then we asked the learner to
construct an improved model based
on counterexample σ. Otherwise σ

Figure 9. Approach to compare legacy component and refactored implementation (diagram
courtesy of Schuts et al.35).

Implementation A Implementation B

model learner model learner

Model MA Model MB

models
correct
for σ?

equivalence
checker

equiv?
N N

Y
Y

done

counter
example σ

refine
model(s)
using σ

adapt
implementation(s)

Figure 10. A register automaton.

l0start l1 l2

Push(in)/OK
υ:=in

Pop/KO
in ¹ υ
Push(in)/OK
w:=in

in = υ
Push(in)/KO

out = υ
Pop/Out(out)

out = υ
Pop/Out(out)
υ:=w

Push(in)/KO

Fritz Vaandrager, CACM 2017

Motivation Automata Learning Extending to Mealy Machines

Other Applications

Checking for unxepected interactions allowed by Transport
Layer Security (TLS) protocol between Client and Server.
Learn model for both client and server, and model-check for
unwanted interactions.

Client-Server TCP protocol, unwanted interactions allowed.

Reverse-Engineer a smart card reader, and model-check for
security issues.

Similarities with PBE and CEGIS frameworks.

Motivation Automata Learning Extending to Mealy Machines

Other Applications

Checking for unxepected interactions allowed by Transport
Layer Security (TLS) protocol between Client and Server.
Learn model for both client and server, and model-check for
unwanted interactions.

Client-Server TCP protocol, unwanted interactions allowed.

Reverse-Engineer a smart card reader, and model-check for
security issues.

Similarities with PBE and CEGIS frameworks.

Motivation Automata Learning Extending to Mealy Machines

Angluin’s L∗ Algorithm

Basic approach is to use Dana Angluin’s L∗ algorithm to efficiently
learn an FSM.

Learning Regular Sets from Queries
and Counterexamples, in Information
& Computation, 1987.

Motivation Automata Learning Extending to Mealy Machines

Angluin’s L∗ algorithm

Teacher has a regular language U in mind.
The Learner can ask two types of queries:

Is a given string w in U? Teacher answers “Yes” or “No”.

Does a given DFA A accept the language U? Teacher
answers “Yes” or gives a counterexample x .

Angluin’s algorithm for the Learner finds the canonical DFA for U,
in a number of steps polynomial in the number of states of the
canonical DFA for U and the length of the longest counterexample
returned by the teacher.

Motivation Automata Learning Extending to Mealy Machines

Angluin’s Algorithm by Example

Suppose the Teacher has in mind the language

U = {w ∈ {a, b}∗ | number of a’s is even and number of b’s is even}

The Learner asks the Teacher if ε, a, and b belong to U, and
obtains the following Observation Table:

ε
S ε 1

S .{a, b} a 0
b 0

The set of strings S represents the states of the automaton
constructed by the Learner.
Entry (s, e) of the table represents the fact that from state s the
automaton accepts/rejects the string e.

This table is not “closed” as there are no states (or “rows”)
corresponding to ε · a and ε · b.

Motivation Automata Learning Extending to Mealy Machines

Angluin’s Algorithm by Example

Suppose the Teacher has in mind the language

U = {w ∈ {a, b}∗ | number of a’s is even and number of b’s is even}

The Learner asks the Teacher if ε, a, and b belong to U, and
obtains the following Observation Table:

ε
S ε 1

S .{a, b} a 0
b 0

The set of strings S represents the states of the automaton
constructed by the Learner.
Entry (s, e) of the table represents the fact that from state s the
automaton accepts/rejects the string e.
This table is not “closed” as there are no states (or “rows”)
corresponding to ε · a and ε · b.

Motivation Automata Learning Extending to Mealy Machines

Angluin’s Algorithm by Example: 2

Learner closes table by adding string a to S , and asking
membership queries for aa and ab.
He now gets the observation table:

ε
S ε 1

a 0
b 0

S .{a, b} aa 1
ab 0

a
a

a, b

ε
1 o

b

A1

This table is closed and consistent, and represents the DFA A1.

Learner now asks the Teacher if A1 represents the language she
has in mind. Teacher replies with counterexample bb which is in U
but is not accepted by A1.

Motivation Automata Learning Extending to Mealy Machines

Angluin’s Algorithm by Example: 2

Learner closes table by adding string a to S , and asking
membership queries for aa and ab.
He now gets the observation table:

ε
S ε 1

a 0
b 0

S .{a, b} aa 1
ab 0

a
a

a, b

ε
1 o

b

A1

This table is closed and consistent, and represents the DFA A1.
Learner now asks the Teacher if A1 represents the language she
has in mind.

Teacher replies with counterexample bb which is in U
but is not accepted by A1.

Motivation Automata Learning Extending to Mealy Machines

Angluin’s Algorithm by Example: 2

Learner closes table by adding string a to S , and asking
membership queries for aa and ab.
He now gets the observation table:

ε
S ε 1

a 0
b 0

S .{a, b} aa 1
ab 0

a
a

a, b

ε
1 o

b

A1

This table is closed and consistent, and represents the DFA A1.
Learner now asks the Teacher if A1 represents the language she
has in mind. Teacher replies with counterexample bb which is in U
but is not accepted by A1.

Motivation Automata Learning Extending to Mealy Machines

Angluin’s Algorithm by Example: 3

Learner adds bb and its prefixes to his set S , makes membership
queries for ba, bba, and bbb to obtain the observation table:

ε
ε 1

S a 0
b 0
bb 1
aa 1
ab 0

S .{a, b} ba 0
bba 0
bbb 0

This table is closed but not consistent. The rows for a and b are
identical, but aa and ba have different rows.

Motivation Automata Learning Extending to Mealy Machines

Angluin’s Algorithm by Example: 4

Learner adds ε · a (that is, a) and its suffixes to the set E , and
makes membership queries to obtain the observation table:

ε a
ε 1 0

S a 0 1
b 0 0
bb 1 0
aa 1 0
ab 0 0

S .{a, b} ba 0 0
bba 0 1
bbb 0 0

10
ε a

01

A2

b
00

a

a

b

a

b

b

This table is closed and consistent. So Learner conjectures the
automaton A2.

Teacher responds with counterexample abb.

Motivation Automata Learning Extending to Mealy Machines

Angluin’s Algorithm by Example: 4

Learner adds ε · a (that is, a) and its suffixes to the set E , and
makes membership queries to obtain the observation table:

ε a
ε 1 0

S a 0 1
b 0 0
bb 1 0
aa 1 0
ab 0 0

S .{a, b} ba 0 0
bba 0 1
bbb 0 0

10
ε a

01

A2

b
00

a

a

b

a

b

b

This table is closed and consistent. So Learner conjectures the
automaton A2. Teacher responds with counterexample abb.

Motivation Automata Learning Extending to Mealy Machines

Angluin’s Algorithm by Example: 5

Learner adds abb its prefixes to S , makes membership queries to
obtain the observation table:

ε a
ε 1 0

S a 0 1
b 0 0
ab 0 0
bb 1 0
abb 0 1
aa 1 0

S .{a, b} ba 0 0
aba 0 0
bba 0 1
bbb 0 0
abba 1 0
abbb 0 0

10
ε a

01

A2

b
00

a

a

b

a

b

b

This table is closed but not consistent since b and ab have same
row but different behaviour on seeing a b.

Motivation Automata Learning Extending to Mealy Machines

Angluin’s Algorithm by Example: 6

Learner adds b and its suffixes to E , and makes membership
queries to obtain the observation table:

ε a b
ε 1 0 0

S a 0 1 0
b 0 0 1
ab 0 0 0
bb 1 0 0
abb 0 1 0
aa 1 0 0

S .{a, b} ba 0 0 0
aba 0 0 1
bba 0 1 0
bbb 0 0 1
abba 1 0 0
abbb 0 0 1

100
ε a

A3

ab
000

b
001

a

bb bb

010

a

a

a

Table is closed and consistent, so Learner conjectures DFA A3.

Teacher responds with “Yes!”.

Motivation Automata Learning Extending to Mealy Machines

Angluin’s Algorithm by Example: 6

Learner adds b and its suffixes to E , and makes membership
queries to obtain the observation table:

ε a b
ε 1 0 0

S a 0 1 0
b 0 0 1
ab 0 0 0
bb 1 0 0
abb 0 1 0
aa 1 0 0

S .{a, b} ba 0 0 0
aba 0 0 1
bba 0 1 0
bbb 0 0 1
abba 1 0 0
abbb 0 0 1

100
ε a

A3

ab
000

b
001

a

bb bb

010

a

a

a

Table is closed and consistent, so Learner conjectures DFA A3.
Teacher responds with “Yes!”.

Motivation Automata Learning Extending to Mealy Machines

Angluin’s L* Algorithm

Motivation Automata Learning Extending to Mealy Machines

Complexity of Angluin’s Algorithm

Let minimal automaton for U have n states, and length of
longest counter-example given by Teacher be m. Then:

Makes at most n equivalence conjectures. (Since
counterexample increases number of states by at least 1.)

Total number of strings in E is at most n.

Table can be represented by table of size O(m2n2 + mn3).

At most n closed/consistency checks, each done in poly time
in size of table.

Total running time is polynomial in n and m.

Motivation Automata Learning Extending to Mealy Machines

Extending to Mealy State Machines

88 COMMUNICATIONS OF THE ACM | FEBRUARY 2017 | VOL. 60 | NO. 2

review articles

Peled et al.19,32 made the important
observation that the MAT framework
can be used to learn black box models
of software and hardware components.
Suppose we have a component, which
we call the System Under Learning (SUL),
whose behavior can be described by (an
unknown) Mealy machine M. Suppose
further that it is always possible to bring
the SUL back to its initial state. A mem-
bership query can now be implemented
by bringing the SUL to its initial state
and then observing the outputs gener-
ated by the SUL in response to the given
input sequence. Equivalence query can
be approximated using a conformance
testing (CT) tool29 via a finite number
of test queries (TQs). A test query asks
for the response of the SUL to an input
sequence, similar to a membership
query. If one of the test queries exhibits
a counterexample then the answer to
the equivalence query is no, otherwise
the answer is yes. A schematic overview
is shown in Figure 4. In this approach,
the task of the learner is to construct
hypotheses, whereas the task of the con-
formance testing tool is to test the valid-
ity of these hypotheses. As a testing tool
can only pose a finite number of que-
ries, we can never be sure that a learned
model is correct. However, a finite and
complete conformance test suite does
exists if we assume a bound on the num-
ber of states of machine M.29

The pioneering work of Peled et al.32
and Steffen et al.8,20,23 established fas-
cinating connections between model
learning and the area of formal meth-
ods, in particular model checking
and model-based testing. Subsequent
research has confirmed that, in the
absence of a tractable white box model
of a reactive system, a learned model is
often an excellent alternative that may
be obtained at relatively low cost.

In order to check properties of
learned models, model checking15 can
be used. In fact, Peled et al.32 showed
how model learning and model check-
ing can be fully integrated in an
approach called black box checking. The
basic idea is to use a model checker
as a “preprocessor” for the confor-
mance testing tool in Figure 4. When
the teacher receives a hypothesis from
the learner, it first runs a model checker
to verify if the hypothesis model satis-
fies all the properties from the SUL’s
specification. Only if this is true the

proposed the problem of learning finite
automata, provided an exponential
algorithm and proved that the problem
is inherently exponential. The prob-
lem has been studied under different
names by different communities: con-
trol theorists refer to it as system iden-
tification, computation linguists speak
about grammatical inference,22 some
papers use the term regular inference,8
regular extrapolation,20 or active autom-
ata learning,24 and security researchers
coined the term protocol state fuzz-
ing.34 Here, we will use the term model
learning in analogy with the commonly
used term model checking.15 Whereas
model checking is widely used for ana-
lyzing finite-state models, model learn-
ing is a complementary technique for
building such models from observed
input–output data.

In 1987, Angluin6 published a seminal
paper in which she showed that finite
automata can be learned using the so-called
membership and equivalence queries. Even
though faster algorithms have been
proposed since then, the most efficient
learning algorithms that are being used
today all follow Angluin’s approach of a
minimally adequate teacher (MAT). In the
MAT framework, learning is viewed as a
game in which a learner has to infer the
behavior of an unknown state diagram

by asking queries to a teacher. The teacher
knows the state diagram, which in our
setting is a Mealy machine M (see Mealy
machines for the definition). Initially, the
learner only knows the inputs I and
outputs O of M. The task of the learner
is to learn M through two types of queries:

•	With a membership query (MQ),
the learner asks what the output is
in response to an input sequence
σ ∈ I*. The teacher answers with
output sequence AM

(σ).
•	With an equivalence query (EQ),

the learner asks if a hypothesized
Mealy machine H with inputs I
and outputs O is correct, that is,
whether H and M are equivalent.
The teacher answers yes if this is the
case. Otherwise she answers no and
supplies a counterexample σ ∈ I*
that distinguishes H and M.

The L* algorithm of Angluin6 is able
to learn Mealy machine M by asking
a polynomial number of membership
and equivalence queries (polynomial in
the size of the corresponding canonical
Mealy machine). In the Angluin’s algo-
rithm, we give a simplified presentation
of the L* algorithm. Actual implemen-
tations, for instance in LearnLib26 and
libalf,9 contain many optimizations.

A (deterministic) Mealy machine is a tuple M = (I, O, Q, q0, δ, λ), where I is
a finite set of inputs, O is a finite set of outputs, Q is a finite set of states,
q0 ∈ Q is the initial state, δ : Q × I → Q is a transition function, and λ : Q × I → O is
an output function.

Figure 1 gives a graphical representation of a simple Mealy machine
with inputs {a, b}, outputs {A, B, C}, states {q0, q1, q2}, and initial state q0.

Figure 1. A simple Mealy machine.

q0start q1 q2

b/B

a/A

b/B

a/A a/C

b/B

Output function λ is extended to sequences of inputs by defining, for all q ∈ Q,
i ∈ I, and σ ∈ I*, λ(q, ε) = ε, and λ(q, iσ) = λ(q, i)λ(δ(q, i), σ). The behavior of Mealy
machine M is defined by function A

M
: I* → O* with A

M
(σ) = λ(q0, σ),

for σ ∈ I*. Mealy machines M and N are equivalent, denoted M ≈ N, iff A
M

 = A
N

.
Sequence σ ∈ I* distinguishes M and N if and only if A

M
(σ) ≠ A

N
(σ).

Mealy Machines

FEBRUARY 2017 | VOL. 60 | NO. 2 | COMMUNICATIONS OF THE ACM 89

review articles

hypothesis is forwarded to the confor-
mance tester. If one of the properties
does not hold then the model checker
produces a counterexample. Now there
are two cases. The first possibility is
that the counterexample can be repro-
duced on the SUL. This means we have
demonstrated a bug in the SUL (or in its
specification) and we stop learning. The
second possibility is that the counter-
example cannot be reproduced on the
SUL. In this case the teacher returns
the counterexample to the learner
since it follows that the hypothesis is
incorrect. In later work,16,19 the black
box checking approach has been fur-
ther refined and it has been success-
fully applied to several industrial cases.

The required number of member-
ship queries of most learning algori-
thms grows linearly with the number
of inputs and quadratically with the
number of states.24 This means that
learning algorithms scale rather well
when the number of inputs grows; in
other words, formulating a new hypoth-
esis is easy. However, checking that a
hypothesis is correct (conformance test-
ing), quickly becomes a bottleneck for
larger numbers of inputs. If the current
hypothesis has n states, the SUL has n′
states, and there are k inputs, then in the
worst case we need to run test sequences
that contain all possible sequences of n′
– n inputs, that is, k(n′ – n) possibilities.29
As a result, model learning currently can
only be applied if there are less than, say,
100 inputs. Thus, we seek methods that
help us to reduce the number of inputs.

Abstraction is the key for scaling
model learning methods to realistic
applications. Cho et al.14 succeeded to
infer models of realistic botnet com-
mand and control protocols by plac-
ing an emulator/mapper between
botnet servers and the learning software,
which concretizes the alphabet sym-
bols into valid network messages and
sends them to botnet servers. When
responses are received, the emula-
tor does the opposite—it abstracts
the response messages into the output
alphabet and passes them on to the
learning software. A schematic over-
view of this learning setup is shown in
Figure 5. The idea of an intermediate
mapper component that takes care of
abstraction is very natural and is used,
implicitly or explicitly, in many case
studies on automata learning. Aarts

et al.2 developed a mathematical the-
ory of such intermediate abstractions,
with links to predicate abstraction and
abstract interpretation.

A complementary, simple but

practical approach is to apply model
learning for multiple smaller subsets
of inputs. This will significantly reduce
the learning complexity, also because
the set of reachable states will typically

The L* algorithm incrementally constructs an observation table with
entries taken from the set O of outputs. The rows are labeled by words in
S ∪ S ⋅ I, where S is a nonempty finite prefix-closed language, and the col-
umns by a nonempty finite suffix-closed language E. Formally, an obser-
vation table is a triple (S, E, row), where row: S ∪ (S ⋅ I) → (E → O). For a
given prefix w and suffix e, row(w)(e) returns the last output produced by
the SUL in response to the membership query we. Initially, S only contains
the empty word ε, and E equals set of inputs I.

Two crucial properties of the observation table allow for the construc-
tion of a Mealy machine: closedness and consistency. Observation table
(S, E, row) is closed if for all w ∈ S ⋅ I there is a w′ ∈ S with row(w) = row(w′). It is
consistent if whenever row(w1) = row(w2) for some w1, w2 ∈ S, then row(w1a)
= row(w2a) for all a ∈ I.

If a table is closed and consistent, the learner constructs a Mealy
machine H = (I, O, Q, q0, δ, λ) with Q = {row(w) | w ∈ S}, q0 = row(ε), δ(row(w), a) =
row(w ⋅ a), and λ(row(w), a) = row(w)(a).

Assume the teacher knows the Mealy machine M from Figure 1. The
learner starts to ask queries to fill the initial table. The result is shown in
Figure 2 (left). As this table is both closed and consistent, the learner con-
structs an initial hypothesis H, shown in Figure 2 (right).

Figure 2. First table and hypothesis H.

O1 a b
ε A B
a A B
b A B

q0start a/A

b/B

Hypothesis H is incorrect since, for instance, sequence bba distinguishes
H from M. Assume that the teacher returns counterexample bba to the
learner. To process this counterexample, the learner adds bba and all its
prefixes to S and constructs the table shown in Figure 3 (left). Since row(ε) =
row(b) but row(b)(a) ≠ row(bb)(a) this table is not consistent. Thus, we add ba
to set E and obtain the table shown in Figure 3 (right). This table is closed
and consistent, and the corresponding Mealy machine is equivalent to M.

Figure 3. Second and third table.

O2 a b
ε A B
b A B
bb C B
bba A B
a A B
ba A B
bbb C B
bbaa A B
bbab C B

O3 a b ba
ε A B A
b A B C
bb C B C
bba A B C
a A B A
ba A B A
bbb C B C
bbaa A B A
bbab C B C

Angluin’s Algorithm

FEBRUARY 2017 | VOL. 60 | NO. 2 | COMMUNICATIONS OF THE ACM 89

review articles

hypothesis is forwarded to the confor-
mance tester. If one of the properties
does not hold then the model checker
produces a counterexample. Now there
are two cases. The first possibility is
that the counterexample can be repro-
duced on the SUL. This means we have
demonstrated a bug in the SUL (or in its
specification) and we stop learning. The
second possibility is that the counter-
example cannot be reproduced on the
SUL. In this case the teacher returns
the counterexample to the learner
since it follows that the hypothesis is
incorrect. In later work,16,19 the black
box checking approach has been fur-
ther refined and it has been success-
fully applied to several industrial cases.

The required number of member-
ship queries of most learning algori-
thms grows linearly with the number
of inputs and quadratically with the
number of states.24 This means that
learning algorithms scale rather well
when the number of inputs grows; in
other words, formulating a new hypoth-
esis is easy. However, checking that a
hypothesis is correct (conformance test-
ing), quickly becomes a bottleneck for
larger numbers of inputs. If the current
hypothesis has n states, the SUL has n′
states, and there are k inputs, then in the
worst case we need to run test sequences
that contain all possible sequences of n′
– n inputs, that is, k(n′ – n) possibilities.29
As a result, model learning currently can
only be applied if there are less than, say,
100 inputs. Thus, we seek methods that
help us to reduce the number of inputs.

Abstraction is the key for scaling
model learning methods to realistic
applications. Cho et al.14 succeeded to
infer models of realistic botnet com-
mand and control protocols by plac-
ing an emulator/mapper between
botnet servers and the learning software,
which concretizes the alphabet sym-
bols into valid network messages and
sends them to botnet servers. When
responses are received, the emula-
tor does the opposite—it abstracts
the response messages into the output
alphabet and passes them on to the
learning software. A schematic over-
view of this learning setup is shown in
Figure 5. The idea of an intermediate
mapper component that takes care of
abstraction is very natural and is used,
implicitly or explicitly, in many case
studies on automata learning. Aarts

et al.2 developed a mathematical the-
ory of such intermediate abstractions,
with links to predicate abstraction and
abstract interpretation.

A complementary, simple but

practical approach is to apply model
learning for multiple smaller subsets
of inputs. This will significantly reduce
the learning complexity, also because
the set of reachable states will typically

The L* algorithm incrementally constructs an observation table with
entries taken from the set O of outputs. The rows are labeled by words in
S ∪ S ⋅ I, where S is a nonempty finite prefix-closed language, and the col-
umns by a nonempty finite suffix-closed language E. Formally, an obser-
vation table is a triple (S, E, row), where row: S ∪ (S ⋅ I) → (E → O). For a
given prefix w and suffix e, row(w)(e) returns the last output produced by
the SUL in response to the membership query we. Initially, S only contains
the empty word ε, and E equals set of inputs I.

Two crucial properties of the observation table allow for the construc-
tion of a Mealy machine: closedness and consistency. Observation table
(S, E, row) is closed if for all w ∈ S ⋅ I there is a w′ ∈ S with row(w) = row(w′). It is
consistent if whenever row(w1) = row(w2) for some w1, w2 ∈ S, then row(w1a)
= row(w2a) for all a ∈ I.

If a table is closed and consistent, the learner constructs a Mealy
machine H = (I, O, Q, q0, δ, λ) with Q = {row(w) | w ∈ S}, q0 = row(ε), δ(row(w), a) =
row(w ⋅ a), and λ(row(w), a) = row(w)(a).

Assume the teacher knows the Mealy machine M from Figure 1. The
learner starts to ask queries to fill the initial table. The result is shown in
Figure 2 (left). As this table is both closed and consistent, the learner con-
structs an initial hypothesis H, shown in Figure 2 (right).

Figure 2. First table and hypothesis H.

O1 a b
ε A B
a A B
b A B

q0start a/A

b/B

Hypothesis H is incorrect since, for instance, sequence bba distinguishes
H from M. Assume that the teacher returns counterexample bba to the
learner. To process this counterexample, the learner adds bba and all its
prefixes to S and constructs the table shown in Figure 3 (left). Since row(ε) =
row(b) but row(b)(a) ≠ row(bb)(a) this table is not consistent. Thus, we add ba
to set E and obtain the table shown in Figure 3 (right). This table is closed
and consistent, and the corresponding Mealy machine is equivalent to M.

Figure 3. Second and third table.

O2 a b
ε A B
b A B
bb C B
bba A B
a A B
ba A B
bbb C B
bbaa A B
bbab C B

O3 a b ba
ε A B A
b A B C
bb C B C
bba A B C
a A B A
ba A B A
bbb C B C
bbaa A B A
bbab C B C

Angluin’s Algorithm

	Motivation
	Automata Learning
	Extending to Mealy Machines

