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Motivation Automata Learning Extending to Mealy Machines

Model Learning Problem

Given a (possibly black-box) implementation T (“System Under
Learning”), learn a finite-state machine M that “conforms” to T .
Learner is allowed to use membership and equivalence queries.
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a small state machine trying to get out. 
By choosing a proper set of input actions 
and by defining an appropriate mapper/ 
abstraction, we can make this small 
state machine visible to the learner.

Examples of Applications
During recent years, model learning has 
been successfully applied to numerous 
practical cases in different domains. 
There have been industrial applica-
tions, for instance, on regression test-
ing of telecommunication systems at 
Siemens,20 on integration testing at 
France Telecom,36 on automatic test-
ing of an online conference service of 
Springer Verlag,39 and on testing require-
ments of a brake-by-wire system from 
Volvo Technology.16 Below, I review some 
representative case studies that have 
been carried out at Radboud University 
related to smart cards, network proto-
cols, and legacy software.

Smartcards. Chalupar et al.13 used 
model learning to reverse engineer the 
e.dentifier2, a smartcard reader for 
Internet banking. To be able to learn a 
model of the e.dentifier2, the authors 
constructed a Lego robot, controlled 
by a Raspberry Pi that can operate the 
keyboard of the reader (see Figure 6). 
Controlling all this from a laptop, they 
then could use LearnLib26 to learn mod-
els of the e.dentifier2. They learned a 
four-state Mealy machine of one version of 
the e.dentifier2 that revealed the presence 
of a security flaw, and showed that the 
flaw is no longer present in a three-state 
model for the new version of the device.

In another study, Aarts et al.3 learned 
models of implementations of the EMV 
protocol suite on bank cards issued 
by several Dutch and German banks, 
on MasterCard credit cards issued by 
Dutch and Swedish banks, and on one 
UK Visa debit card. To learn the models, 
LearnLib performed between 855 and 
1,696 membership and test queries for 
each card and produced models with 
four to eight states. (Figure 7 shows one 
of the learned models.) All cards resulted 
in different models, only the applica-
tions on the Dutch cards were identical. 
The models learned did not reveal any 
security issues, although some peculiar-
ities were noted. The authors argue that 
model learning would be useful as part 
of security evaluations.

Network protocols. Our society has 
become completely dependent on the 

be smaller for a restricted number of 
stimuli. Models learned for a subset of 
the inputs may then be used to gener-
ate counterexamples while learning 
models for larger subsets. Yet another 
approach, which, for instance, has 
been applied by Chalupar et al.,13 is to 
merge several input actions that usually 
occur in a specific order into a single 

high-level action, thus reducing the 
number of inputs. Again, models that 
have been learned with a small number 
of high level inputs may be used to gen-
erate counterexamples in subsequent 
experiments in which these inputs are 
broken up into their constituents.

Paraphrasing C.A.R. Hoare, one could 
say that in every large program there is  

Figure 4. Model learning within the MAT framework.
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Figure 5. Model learning with a mapper.
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Figure 6. Lego robot used to reverse engineer the e.dentifier2 smartcard reader (picture 
courtesy of Chalupar13).

Fritz Vaandrager, CACM 2017
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(Mealy) State Machines

M = (I ,O,Q, qo , δ, λ) where

I , O are finite input and output alphabets

Q a finite set of states

δ : (Q × I )→ Q is transition function.

λ : (Q × I )→ O is the state output function.

Language of machine M, AM , is a map from I ∗ to O∗

(same-length string transducer).
Example with input alphabet = {a, b}, output alphabet = {A,B}.
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Peled et al.19,32 made the important 
observation that the MAT framework 
can be used to learn black box models 
of software and hardware components. 
Suppose we have a component, which 
we call the System Under Learning (SUL), 
whose behavior can be described by (an 
unknown) Mealy machine M. Suppose 
further that it is always possible to bring 
the SUL back to its initial state. A mem-
bership query can now be implemented 
by bringing the SUL to its initial state 
and then observing the outputs gener-
ated by the SUL in response to the given 
input sequence. Equivalence query can 
be approximated using a conformance 
testing (CT) tool29 via a finite number 
of test queries (TQs). A test query asks 
for the response of the SUL to an input 
sequence, similar to a membership 
query. If one of the test queries exhibits 
a counterexample then the answer to 
the equivalence query is no, otherwise 
the answer is yes. A schematic overview 
is shown in Figure 4. In this approach, 
the task of the learner is to construct 
hypotheses, whereas the task of the con-
formance testing tool is to test the valid-
ity of these hypotheses. As a testing tool 
can only pose a finite number of que-
ries, we can never be sure that a learned 
model is correct. However, a finite and 
complete conformance test suite does 
exists if we assume a bound on the num-
ber of states of machine M.29

The pioneering work of Peled et al.32  
and Steffen et al.8,20,23 established fas-
cinating connections between model 
learning and the area of formal meth-
ods, in particular model checking 
and model-based testing. Subsequent 
research has confirmed that, in the 
absence of a tractable white box model 
of a reactive system, a learned model is 
often an excellent alternative that may 
be obtained at relatively low cost.

In order to check properties of 
learned models, model checking15 can 
be used. In fact, Peled et al.32 showed 
how model learning and model check-
ing can be fully integrated in an 
approach called black box checking. The 
basic idea is to use a model checker 
as a “preprocessor” for the confor-
mance testing tool in Figure 4. When 
the teacher receives a hypothesis from 
the learner, it first runs a model checker 
to verify if the hypothesis model satis-
fies all the properties from the SUL’s 
specification. Only if this is true the 

proposed the problem of learning finite 
automata, provided an exponential 
algorithm and proved that the problem 
is inherently exponential. The prob-
lem has been studied under different 
names by different communities: con-
trol theorists refer to it as system iden-
tification, computation linguists speak 
about grammatical inference,22 some 
papers use the term regular inference,8 
regular extrapolation,20 or active autom-
ata learning,24 and security researchers 
coined the term protocol state fuzz-
ing.34 Here, we will use the term model 
learning in analogy with the commonly 
used term model checking.15 Whereas 
model checking is widely used for ana-
lyzing finite-state models, model learn-
ing is a complementary technique for 
building such models from observed 
input–output data.

In 1987, Angluin6 published a seminal 
paper in which she showed that finite 
automata can be learned using the so-called 
membership and equivalence queries. Even 
though faster algorithms have been 
proposed since then, the most efficient 
learning algorithms that are being used 
today all follow Angluin’s approach of a 
minimally adequate teacher (MAT). In the 
MAT framework, learning is viewed as a 
game in which a learner has to infer the 
behavior of an unknown state diagram  

by asking queries to a teacher. The teacher 
knows the state diagram, which in our 
setting is a Mealy machine M (see Mealy 
machines for the definition). Initially, the 
learner only knows the inputs I and 
outputs O of M. The task of the learner 
is to learn M through two types of queries:

•	With a membership query (MQ), 
the learner asks what the output is 
in response to an input sequence 
σ ∈ I*. The teacher answers with 
output sequence AM

(σ).
•	With an equivalence query (EQ), 

the learner asks if a hypothesized 
Mealy machine H with inputs I 
and outputs O is correct, that is, 
whether H and M are equivalent. 
The teacher answers yes if this is the 
case. Otherwise she answers no and 
supplies a counterexample σ ∈ I* 
that distinguishes H and M.

The L* algorithm of Angluin6 is able 
to learn Mealy machine M by asking 
a polynomial number of membership 
and equivalence queries (polynomial in 
the size of the corresponding canonical 
Mealy machine). In the Angluin’s algo-
rithm, we give a simplified presentation 
of the L* algorithm. Actual implemen-
tations, for instance in LearnLib26 and 
libalf,9 contain many optimizations.

A (deterministic) Mealy machine is a tuple M = (I, O, Q, q0, δ, λ), where I is 
a finite set of inputs, O is a finite set of outputs, Q is a finite set of states,  
q0 ∈ Q is the initial state, δ : Q × I → Q is a transition function, and λ : Q × I → O is 
an output function.

Figure 1 gives a graphical representation of a simple Mealy machine 
with inputs {a, b}, outputs {A, B, C}, states {q0, q1, q2}, and initial state q0.

Figure 1. A simple Mealy machine.
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Output function λ is extended to sequences of inputs by defining, for all q ∈ Q, 
i ∈ I, and σ ∈ I*, λ(q, ε) = ε, and λ(q, iσ) = λ(q, i)λ(δ(q, i), σ). The behavior of Mealy 
machine M is defined by function A

M 
: I* → O* with A

M
(σ) = λ(q0, σ),  

for σ ∈ I*. Mealy machines M and N are equivalent, denoted M ≈ N, iff A
M

 = A
N

. 
Sequence σ ∈ I* distinguishes M and N if and only if A

M
(σ) ≠ A

N
(σ).

Mealy Machines
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State Machine as a Program

enum StateType = {....};

StateType state;

state = ... // initialize

while (true) {

read(a); // read input

switch (state) {

0: switch(a) {

a: output(...); state = ...;

b: output(...); state = ...;

}

1: switch(a) {

a: output(...); state = ...;

b: output(...); state = ...;

}

...

}

}



Motivation Automata Learning Extending to Mealy Machines

Applications: Refactoring Equivalence
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exhibited a difference between A and B, 
and we changed either A or B (or both), 
depending on which response to σ  
was considered unsatisfactory behav-
ior. The implementations were learned 
and checked iteratively with increas-
ing sets of stimuli to handle scalability. 
Issues were found in both the refac-
tored and the legacy implementation 
in an early stage, before the compo-
nent was integrated. In this way, costly 
rework in a later phase of the develop-
ment was avoided.

Recent Advances
During recent years significant prog-
ress has been made on algorithms for 
model learning, which is crucial for 
scaling the application of these tech-
niques to larger systems.

Basic algorithms. Since 1987, the L* 
algorithm of Angluin’s6 has been con-
siderably improved. The original L* 
 performs a membership query for each 
entry in the observation table. This is 
often redundant, given that the sole 
purpose of membership queries is the 
distinction of states (rows). Therefore, 
Kearns and Vazirani28 replaced the obser-
vation table of the L* algorithm by the 
so-called discrimination trees, which 
are basically decision trees for deter-
mining equivalence of states.

Another inefficiency of L* is that all 
prefixes of a counterexample are added 
as rows to the table. Counterexamples 
obtained through conformance test-
ing or runtime monitoring may be 
extremely long and are rarely minimal, 
which results in numerous redun-
dant membership queries. Rivest and 
Schapire33 observed that, instead of 
adding all prefixes of a counterexample 
as rows to the table, it suffices to add a 
single, well-chosen suffix as a column.

The new TTT algorithm of Isberner 
et al.24, 25 is currently the most efficient 
algorithm for active learning. The algo-
rithm builds on the ideas of Kearns and 
Vazirani28 and Rivest and Schapire33 but 
eliminates overly long discrimination 
trees, which may arise when processing 
long counterexamples, by cleaning up 
the internal data structures and reorga-
nizing the discrimination tree. Suppose 
that a Mealy machine M has n states and 
k inputs, and that the length of the longest 
counterexample returned by the teacher 
is m. Then in the worst-case TTT requires 
O(n) equivalence queries and O(kn2 + 

that we do not know how to cope with 
but that are vital to our organization.”7 
Typically, these systems are based on 
obsolete technologies, documentation 
is limited, and the original developers 
are no longer available. In addition, 
existing regression tests will be limited. 
Given these characteristics, innovations 
that require changes of legacy compo-
nents are risky. Several techniques have 
been developed to extract the crucial 
business information hidden in legacy 
components, and to support the con-
struction of refactored implementa-
tions. Margaria et al.30 were the first to 
point out that model learning may help 
to increase confidence that a legacy 
component and a refactored imple-
mentation have the same behavior.

Schuts et al.,35 for instance, used 
model learning to support the rejuve-
nation of legacy embedded software 
in a development project at Philips. 
The project concerned the introduc-
tion of a new hardware component, 
the Power Control Component (PCC), 
which is used to start-up and shut-
down an interventional radiology 
system. All computers in the system 

have a software component, the Power 
Control Service (PCS) which commu-
nicates with the PCC over an internal 
control network during the execution 
of start-up and shutdown scenarios. 
To deal with the new hardware of the 
PCC, which has a different interface, 
a new implementation of the PCS was 
needed. Since different configurations 
had to be supported, with old and new 
PCC hardware, the old and new PCS 
software needed to have exactly the 
same external behavior. Figure 9 illus-
trates the approach that was followed. 
From both the legacy implementation 
A and the refactored implementation 
B, Mealy machine models MA resp. 
MB were obtained using model learn-
ing. These models were then compared 
using an equivalence checker. When 
the equivalence checker found a coun-
terexample σ, then we checked whether 
A and MA behaved the same on input 
σ and whether B and MB behaved the 
same on input σ. If there was a discrep-
ancy between A and MA, or between B 
and MB, then we asked the learner to 
construct an improved model based 
on counterexample σ. Otherwise σ 

Figure 9. Approach to compare legacy component and refactored implementation (diagram 
courtesy of Schuts et al.35).
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model learner model learner

Model MA Model MB

models
correct
for σ? 
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done

counter
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Figure 10. A register automaton.
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υ:=in
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w:=in

in = υ
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out = υ
Pop/Out(out)

out = υ
Pop/Out(out)
υ:=w

Push(in)/KO

Fritz Vaandrager, CACM 2017
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Other Applications

Checking for unxepected interactions allowed by Transport
Layer Security (TLS) protocol between Client and Server.
Learn model for both client and server, and model-check for
unwanted interactions.

Client-Server TCP protocol, unwanted interactions allowed.

Reverse-Engineer a smart card reader, and model-check for
security issues.

Similarities with PBE and CEGIS frameworks.



Motivation Automata Learning Extending to Mealy Machines

Other Applications

Checking for unxepected interactions allowed by Transport
Layer Security (TLS) protocol between Client and Server.
Learn model for both client and server, and model-check for
unwanted interactions.

Client-Server TCP protocol, unwanted interactions allowed.

Reverse-Engineer a smart card reader, and model-check for
security issues.

Similarities with PBE and CEGIS frameworks.



Motivation Automata Learning Extending to Mealy Machines

Angluin’s L∗ Algorithm

Basic approach is to use Dana Angluin’s L∗ algorithm to efficiently
learn an FSM.

Learning Regular Sets from Queries
and Counterexamples, in Information
& Computation, 1987.
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Angluin’s L∗ algorithm

Teacher has a regular language U in mind.
The Learner can ask two types of queries:

Is a given string w in U? Teacher answers “Yes” or “No”.

Does a given DFA A accept the language U? Teacher
answers “Yes” or gives a counterexample x .

Angluin’s algorithm for the Learner finds the canonical DFA for U,
in a number of steps polynomial in the number of states of the
canonical DFA for U and the length of the longest counterexample
returned by the teacher.



Motivation Automata Learning Extending to Mealy Machines

Angluin’s Algorithm by Example

Suppose the Teacher has in mind the language

U = {w ∈ {a, b}∗ | number of a’s is even and number of b’s is even}

The Learner asks the Teacher if ε, a, and b belong to U, and
obtains the following Observation Table:

ε
S ε 1

S .{a, b} a 0
b 0

The set of strings S represents the states of the automaton
constructed by the Learner.
Entry (s, e) of the table represents the fact that from state s the
automaton accepts/rejects the string e.

This table is not “closed” as there are no states (or “rows”)
corresponding to ε · a and ε · b.
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Angluin’s Algorithm by Example

Suppose the Teacher has in mind the language

U = {w ∈ {a, b}∗ | number of a’s is even and number of b’s is even}

The Learner asks the Teacher if ε, a, and b belong to U, and
obtains the following Observation Table:

ε
S ε 1

S .{a, b} a 0
b 0

The set of strings S represents the states of the automaton
constructed by the Learner.
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corresponding to ε · a and ε · b.



Motivation Automata Learning Extending to Mealy Machines

Angluin’s Algorithm by Example: 2

Learner closes table by adding string a to S , and asking
membership queries for aa and ab.
He now gets the observation table:

ε
S ε 1

a 0
b 0

S .{a, b} aa 1
ab 0

a
a

a, b

ε
1 o

b

A1

This table is closed and consistent, and represents the DFA A1.

Learner now asks the Teacher if A1 represents the language she
has in mind. Teacher replies with counterexample bb which is in U
but is not accepted by A1.
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Angluin’s Algorithm by Example: 2
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ε
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Angluin’s Algorithm by Example: 3

Learner adds bb and its prefixes to his set S , makes membership
queries for ba, bba, and bbb to obtain the observation table:

ε
ε 1

S a 0
b 0
bb 1
aa 1
ab 0

S .{a, b} ba 0
bba 0
bbb 0

This table is closed but not consistent. The rows for a and b are
identical, but aa and ba have different rows.
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Angluin’s Algorithm by Example: 4

Learner adds ε · a (that is, a) and its suffixes to the set E , and
makes membership queries to obtain the observation table:

ε a
ε 1 0

S a 0 1
b 0 0
bb 1 0
aa 1 0
ab 0 0

S .{a, b} ba 0 0
bba 0 1
bbb 0 0

10
ε a

01

A2

b
00

a

a

b

a

b

b

This table is closed and consistent. So Learner conjectures the
automaton A2.

Teacher responds with counterexample abb.
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Angluin’s Algorithm by Example: 4

Learner adds ε · a (that is, a) and its suffixes to the set E , and
makes membership queries to obtain the observation table:

ε a
ε 1 0

S a 0 1
b 0 0
bb 1 0
aa 1 0
ab 0 0

S .{a, b} ba 0 0
bba 0 1
bbb 0 0

10
ε a

01

A2

b
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a

b

a

b

b

This table is closed and consistent. So Learner conjectures the
automaton A2. Teacher responds with counterexample abb.
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Angluin’s Algorithm by Example: 5

Learner adds abb its prefixes to S , makes membership queries to
obtain the observation table:

ε a
ε 1 0

S a 0 1
b 0 0
ab 0 0
bb 1 0
abb 0 1
aa 1 0

S .{a, b} ba 0 0
aba 0 0
bba 0 1
bbb 0 0
abba 1 0
abbb 0 0

10
ε a

01

A2

b
00

a

a

b

a

b

b

This table is closed but not consistent since b and ab have same
row but different behaviour on seeing a b.
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Angluin’s Algorithm by Example: 6

Learner adds b and its suffixes to E , and makes membership
queries to obtain the observation table:

ε a b
ε 1 0 0

S a 0 1 0
b 0 0 1
ab 0 0 0
bb 1 0 0
abb 0 1 0
aa 1 0 0

S .{a, b} ba 0 0 0
aba 0 0 1
bba 0 1 0
bbb 0 0 1
abba 1 0 0
abbb 0 0 1

100
ε a

A3

ab
000

b
001

a

bb bb

010

a

a

a

Table is closed and consistent, so Learner conjectures DFA A3.

Teacher responds with “Yes!”.
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Angluin’s Algorithm by Example: 6

Learner adds b and its suffixes to E , and makes membership
queries to obtain the observation table:

ε a b
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bba 0 1 0
bbb 0 0 1
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100
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b
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a

bb bb

010

a

a

a

Table is closed and consistent, so Learner conjectures DFA A3.
Teacher responds with “Yes!”.
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Angluin’s L* Algorithm
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Complexity of Angluin’s Algorithm

Let minimal automaton for U have n states, and length of
longest counter-example given by Teacher be m. Then:

Makes at most n equivalence conjectures. (Since
counterexample increases number of states by at least 1.)

Total number of strings in E is at most n.

Table can be represented by table of size O(m2n2 + mn3).

At most n closed/consistency checks, each done in poly time
in size of table.

Total running time is polynomial in n and m.
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Extending to Mealy State Machines
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Peled et al.19,32 made the important 
observation that the MAT framework 
can be used to learn black box models 
of software and hardware components. 
Suppose we have a component, which 
we call the System Under Learning (SUL), 
whose behavior can be described by (an 
unknown) Mealy machine M. Suppose 
further that it is always possible to bring 
the SUL back to its initial state. A mem-
bership query can now be implemented 
by bringing the SUL to its initial state 
and then observing the outputs gener-
ated by the SUL in response to the given 
input sequence. Equivalence query can 
be approximated using a conformance 
testing (CT) tool29 via a finite number 
of test queries (TQs). A test query asks 
for the response of the SUL to an input 
sequence, similar to a membership 
query. If one of the test queries exhibits 
a counterexample then the answer to 
the equivalence query is no, otherwise 
the answer is yes. A schematic overview 
is shown in Figure 4. In this approach, 
the task of the learner is to construct 
hypotheses, whereas the task of the con-
formance testing tool is to test the valid-
ity of these hypotheses. As a testing tool 
can only pose a finite number of que-
ries, we can never be sure that a learned 
model is correct. However, a finite and 
complete conformance test suite does 
exists if we assume a bound on the num-
ber of states of machine M.29

The pioneering work of Peled et al.32  
and Steffen et al.8,20,23 established fas-
cinating connections between model 
learning and the area of formal meth-
ods, in particular model checking 
and model-based testing. Subsequent 
research has confirmed that, in the 
absence of a tractable white box model 
of a reactive system, a learned model is 
often an excellent alternative that may 
be obtained at relatively low cost.

In order to check properties of 
learned models, model checking15 can 
be used. In fact, Peled et al.32 showed 
how model learning and model check-
ing can be fully integrated in an 
approach called black box checking. The 
basic idea is to use a model checker 
as a “preprocessor” for the confor-
mance testing tool in Figure 4. When 
the teacher receives a hypothesis from 
the learner, it first runs a model checker 
to verify if the hypothesis model satis-
fies all the properties from the SUL’s 
specification. Only if this is true the 

proposed the problem of learning finite 
automata, provided an exponential 
algorithm and proved that the problem 
is inherently exponential. The prob-
lem has been studied under different 
names by different communities: con-
trol theorists refer to it as system iden-
tification, computation linguists speak 
about grammatical inference,22 some 
papers use the term regular inference,8 
regular extrapolation,20 or active autom-
ata learning,24 and security researchers 
coined the term protocol state fuzz-
ing.34 Here, we will use the term model 
learning in analogy with the commonly 
used term model checking.15 Whereas 
model checking is widely used for ana-
lyzing finite-state models, model learn-
ing is a complementary technique for 
building such models from observed 
input–output data.

In 1987, Angluin6 published a seminal 
paper in which she showed that finite 
automata can be learned using the so-called 
membership and equivalence queries. Even 
though faster algorithms have been 
proposed since then, the most efficient 
learning algorithms that are being used 
today all follow Angluin’s approach of a 
minimally adequate teacher (MAT). In the 
MAT framework, learning is viewed as a 
game in which a learner has to infer the 
behavior of an unknown state diagram  

by asking queries to a teacher. The teacher 
knows the state diagram, which in our 
setting is a Mealy machine M (see Mealy 
machines for the definition). Initially, the 
learner only knows the inputs I and 
outputs O of M. The task of the learner 
is to learn M through two types of queries:

•	With a membership query (MQ), 
the learner asks what the output is 
in response to an input sequence 
σ ∈ I*. The teacher answers with 
output sequence AM

(σ).
•	With an equivalence query (EQ), 

the learner asks if a hypothesized 
Mealy machine H with inputs I 
and outputs O is correct, that is, 
whether H and M are equivalent. 
The teacher answers yes if this is the 
case. Otherwise she answers no and 
supplies a counterexample σ ∈ I* 
that distinguishes H and M.

The L* algorithm of Angluin6 is able 
to learn Mealy machine M by asking 
a polynomial number of membership 
and equivalence queries (polynomial in 
the size of the corresponding canonical 
Mealy machine). In the Angluin’s algo-
rithm, we give a simplified presentation 
of the L* algorithm. Actual implemen-
tations, for instance in LearnLib26 and 
libalf,9 contain many optimizations.

A (deterministic) Mealy machine is a tuple M = (I, O, Q, q0, δ, λ), where I is 
a finite set of inputs, O is a finite set of outputs, Q is a finite set of states,  
q0 ∈ Q is the initial state, δ : Q × I → Q is a transition function, and λ : Q × I → O is 
an output function.

Figure 1 gives a graphical representation of a simple Mealy machine 
with inputs {a, b}, outputs {A, B, C}, states {q0, q1, q2}, and initial state q0.

Figure 1. A simple Mealy machine.

q0start q1 q2

b/B

a/A

b/B

a/A a/C

b/B

Output function λ is extended to sequences of inputs by defining, for all q ∈ Q, 
i ∈ I, and σ ∈ I*, λ(q, ε) = ε, and λ(q, iσ) = λ(q, i)λ(δ(q, i), σ). The behavior of Mealy 
machine M is defined by function A

M 
: I* → O* with A

M
(σ) = λ(q0, σ),  

for σ ∈ I*. Mealy machines M and N are equivalent, denoted M ≈ N, iff A
M

 = A
N

. 
Sequence σ ∈ I* distinguishes M and N if and only if A

M
(σ) ≠ A

N
(σ).
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hypothesis is forwarded to the confor-
mance tester. If one of the properties 
does not hold then the model checker 
produces a counterexample. Now there 
are two cases. The first possibility is 
that the counterexample can be repro-
duced on the SUL. This means we have 
demonstrated a bug in the SUL (or in its 
specification) and we stop learning. The 
second possibility is that the counter-
example cannot be reproduced on the 
SUL. In this case the teacher returns  
the counterexample to the learner 
since it follows that the hypothesis is 
incorrect. In later work,16,19 the black 
box checking approach has been fur-
ther refined and it has been success-
fully applied to several industrial cases.

The required number of member-
ship queries of most learning algori-
thms grows linearly with the number  
of inputs and quadratically with the 
number of states.24 This means that 
learning algorithms scale rather well 
when the number of inputs grows; in 
other words, formulating a new hypoth-
esis is easy. However, checking that a 
hypothesis is correct (conformance test-
ing), quickly becomes a bottleneck for 
larger numbers of inputs. If the current 
hypothesis has n states, the SUL has n′ 
states, and there are k inputs, then in the 
worst case we need to run test sequences 
that contain all possible sequences of n′ 
– n inputs, that is, k(n′ – n) possibilities.29 
As a result, model learning currently can 
only be applied if there are less than, say, 
100 inputs. Thus, we seek methods that 
help us to reduce the number of inputs.

Abstraction is the key for scaling 
model learning methods to realistic 
applications. Cho et al.14 succeeded to 
infer models of realistic botnet com-
mand and control protocols by plac-
ing an emulator/mapper between 
botnet servers and the learning software, 
which concretizes the alphabet sym-
bols into valid network messages and 
sends them to botnet servers. When 
responses are received, the emula-
tor does the opposite—it abstracts 
the response messages into the output 
alphabet and passes them on to the 
learning software. A schematic over-
view of this learning setup is shown in 
Figure 5. The idea of an intermediate 
mapper component that takes care of 
abstraction is very natural and is used, 
implicitly or explicitly, in many case 
studies on automata learning. Aarts  

et al.2 developed a mathematical the-
ory of such intermediate abstractions, 
with links to predicate abstraction and 
abstract interpretation.

A complementary, simple but 

practical approach is to apply model 
learning for multiple smaller subsets 
of inputs. This will significantly reduce 
the learning complexity, also because 
the set of reachable states will typically 

The L* algorithm incrementally constructs an observation table with 
entries taken from the set O of outputs. The rows are labeled by words in 
S ∪ S ⋅ I, where S is a nonempty finite prefix-closed language, and the col-
umns by a nonempty finite suffix-closed language E. Formally, an obser-
vation table is a triple (S, E, row), where row: S ∪ (S ⋅ I) → (E → O). For a 
given prefix w and suffix e, row(w)(e) returns the last output produced by 
the SUL in response to the membership query we. Initially, S only contains 
the empty word ε, and E equals set of inputs I.

Two crucial properties of the observation table allow for the construc-
tion of a Mealy machine: closedness and consistency. Observation table  
(S, E, row) is closed if for all w ∈ S ⋅ I there is a w′ ∈ S with row(w) = row(w′). It is 
consistent if whenever row(w1) = row(w2) for some w1, w2 ∈ S, then row(w1a) 
= row(w2a) for all a ∈ I.

If a table is closed and consistent, the learner constructs a Mealy 
machine H = (I, O, Q, q0, δ, λ) with Q = {row(w) | w ∈ S}, q0 = row(ε), δ(row(w), a) =  
row(w ⋅ a), and λ(row(w), a) = row(w)(a).

Assume the teacher knows the Mealy machine M from Figure 1. The 
learner starts to ask queries to fill the initial table. The result is shown in 
Figure 2 (left). As this table is both closed and consistent, the learner con-
structs an initial hypothesis H, shown in Figure 2 (right).

Figure 2. First table and hypothesis H.

O1 a b
ε A B
a A B
b A B

q0start a/A

b/B

Hypothesis H is incorrect since, for instance, sequence bba distinguishes 
H from M. Assume that the teacher returns counterexample bba to the 
learner. To process this counterexample, the learner adds bba and all its 
prefixes to S and constructs the table shown in Figure 3 (left). Since row(ε) = 
row(b) but row(b)(a) ≠ row(bb)(a) this table is not consistent. Thus, we add ba 
to set E and obtain the table shown in Figure 3 (right). This table is closed 
and consistent, and the corresponding Mealy machine is equivalent to M.

Figure 3. Second and third table.

O2 a b
ε A B
b A B
bb C B
bba A B
a A B
ba A B
bbb C B
bbaa A B
bbab C B

O3 a b ba
ε A B A
b A B C
bb C B C
bba A B C
a A B A
ba A B A
bbb C B C
bbaa A B A
bbab C B C
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hypothesis is forwarded to the confor-
mance tester. If one of the properties 
does not hold then the model checker 
produces a counterexample. Now there 
are two cases. The first possibility is 
that the counterexample can be repro-
duced on the SUL. This means we have 
demonstrated a bug in the SUL (or in its 
specification) and we stop learning. The 
second possibility is that the counter-
example cannot be reproduced on the 
SUL. In this case the teacher returns  
the counterexample to the learner 
since it follows that the hypothesis is 
incorrect. In later work,16,19 the black 
box checking approach has been fur-
ther refined and it has been success-
fully applied to several industrial cases.

The required number of member-
ship queries of most learning algori-
thms grows linearly with the number  
of inputs and quadratically with the 
number of states.24 This means that 
learning algorithms scale rather well 
when the number of inputs grows; in 
other words, formulating a new hypoth-
esis is easy. However, checking that a 
hypothesis is correct (conformance test-
ing), quickly becomes a bottleneck for 
larger numbers of inputs. If the current 
hypothesis has n states, the SUL has n′ 
states, and there are k inputs, then in the 
worst case we need to run test sequences 
that contain all possible sequences of n′ 
– n inputs, that is, k(n′ – n) possibilities.29 
As a result, model learning currently can 
only be applied if there are less than, say, 
100 inputs. Thus, we seek methods that 
help us to reduce the number of inputs.

Abstraction is the key for scaling 
model learning methods to realistic 
applications. Cho et al.14 succeeded to 
infer models of realistic botnet com-
mand and control protocols by plac-
ing an emulator/mapper between 
botnet servers and the learning software, 
which concretizes the alphabet sym-
bols into valid network messages and 
sends them to botnet servers. When 
responses are received, the emula-
tor does the opposite—it abstracts 
the response messages into the output 
alphabet and passes them on to the 
learning software. A schematic over-
view of this learning setup is shown in 
Figure 5. The idea of an intermediate 
mapper component that takes care of 
abstraction is very natural and is used, 
implicitly or explicitly, in many case 
studies on automata learning. Aarts  

et al.2 developed a mathematical the-
ory of such intermediate abstractions, 
with links to predicate abstraction and 
abstract interpretation.

A complementary, simple but 

practical approach is to apply model 
learning for multiple smaller subsets 
of inputs. This will significantly reduce 
the learning complexity, also because 
the set of reachable states will typically 

The L* algorithm incrementally constructs an observation table with 
entries taken from the set O of outputs. The rows are labeled by words in 
S ∪ S ⋅ I, where S is a nonempty finite prefix-closed language, and the col-
umns by a nonempty finite suffix-closed language E. Formally, an obser-
vation table is a triple (S, E, row), where row: S ∪ (S ⋅ I) → (E → O). For a 
given prefix w and suffix e, row(w)(e) returns the last output produced by 
the SUL in response to the membership query we. Initially, S only contains 
the empty word ε, and E equals set of inputs I.

Two crucial properties of the observation table allow for the construc-
tion of a Mealy machine: closedness and consistency. Observation table  
(S, E, row) is closed if for all w ∈ S ⋅ I there is a w′ ∈ S with row(w) = row(w′). It is 
consistent if whenever row(w1) = row(w2) for some w1, w2 ∈ S, then row(w1a) 
= row(w2a) for all a ∈ I.

If a table is closed and consistent, the learner constructs a Mealy 
machine H = (I, O, Q, q0, δ, λ) with Q = {row(w) | w ∈ S}, q0 = row(ε), δ(row(w), a) =  
row(w ⋅ a), and λ(row(w), a) = row(w)(a).

Assume the teacher knows the Mealy machine M from Figure 1. The 
learner starts to ask queries to fill the initial table. The result is shown in 
Figure 2 (left). As this table is both closed and consistent, the learner con-
structs an initial hypothesis H, shown in Figure 2 (right).

Figure 2. First table and hypothesis H.

O1 a b
ε A B
a A B
b A B
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Hypothesis H is incorrect since, for instance, sequence bba distinguishes 
H from M. Assume that the teacher returns counterexample bba to the 
learner. To process this counterexample, the learner adds bba and all its 
prefixes to S and constructs the table shown in Figure 3 (left). Since row(ε) = 
row(b) but row(b)(a) ≠ row(bb)(a) this table is not consistent. Thus, we add ba 
to set E and obtain the table shown in Figure 3 (right). This table is closed 
and consistent, and the corresponding Mealy machine is equivalent to M.

Figure 3. Second and third table.

O2 a b
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