

# Model Learning

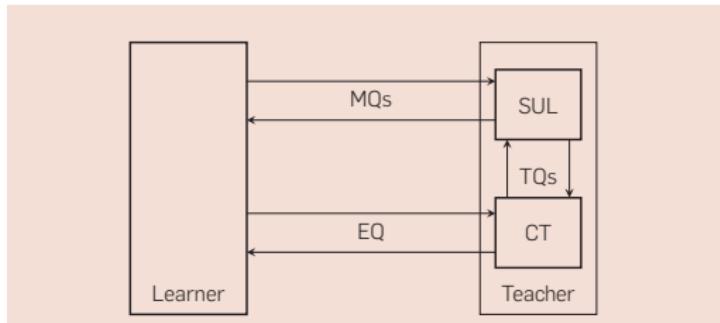
Deepak D'Souza

Department of Computer Science and Automation  
Indian Institute of Science, Bangalore.

05 Feb 2020.

## Model Learning Problem

Given a (possibly **black-box**) implementation  $T$  (“System Under Learning”), learn a finite-state machine  $M$  that “conforms” to  $T$ . Learner is allowed to use membership and equivalence queries.



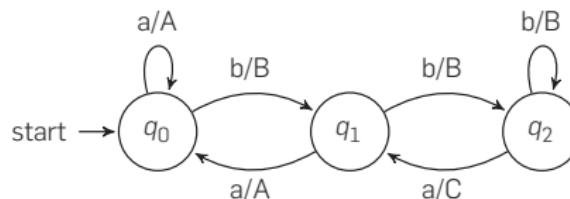
## (Mealy) State Machines

$M = (I, O, Q, q_0, \delta, \lambda)$  where

- $I, O$  are finite input and output alphabets
- $Q$  a finite set of states
- $\delta : (Q \times I) \rightarrow Q$  is transition function.
- $\lambda : (Q \times I) \rightarrow O$  is the state output function.

Language of machine  $M$ ,  $A_M$ , is a **map** from  $I^*$  to  $O^*$   
(same-length string transducer).

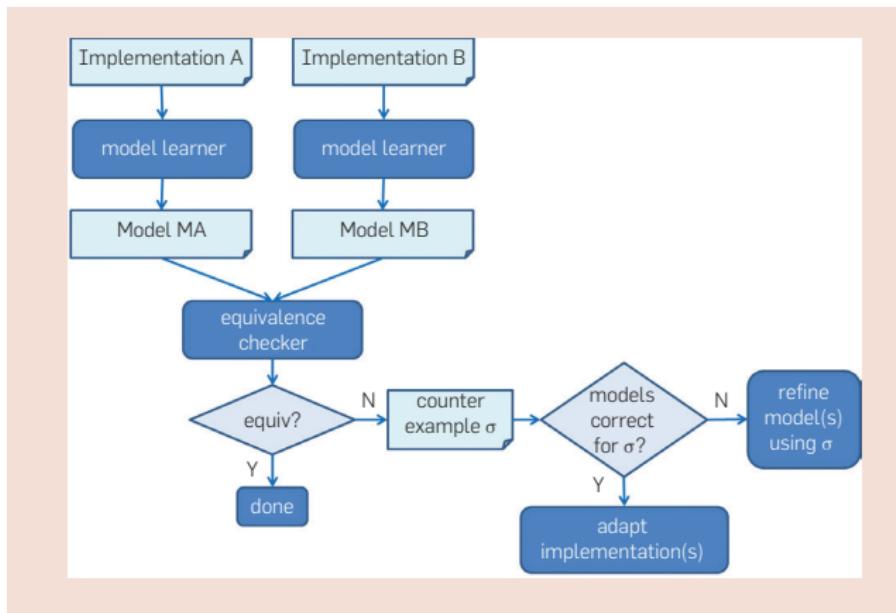
Example with input alphabet =  $\{a, b\}$ , output alphabet =  $\{A, B\}$ .



## State Machine as a Program

```
enum StateType = {....};  
StateType state;  
  
state = ... // initialize  
  
while (true) {  
    read(a); // read input  
    switch (state) {  
        0: switch(a) {  
            a: output(...); state = ...;  
            b: output(...); state = ...;  
        }  
        1: switch(a) {  
            a: output(...); state = ...;  
            b: output(...); state = ...;  
        }  
        ...  
    }  
}
```

# Applications: Refactoring Equivalence



## Other Applications

- Checking for unexpected interactions allowed by Transport Layer Security (TLS) protocol between Client and Server. Learn model for both client and server, and model-check for unwanted interactions.
- Client-Server TCP protocol, unwanted interactions allowed.
- Reverse-Engineer a smart card reader, and model-check for security issues.

## Other Applications

- Checking for unexpected interactions allowed by Transport Layer Security (TLS) protocol between Client and Server. Learn model for both client and server, and model-check for unwanted interactions.
- Client-Server TCP protocol, unwanted interactions allowed.
- Reverse-Engineer a smart card reader, and model-check for security issues.

Similarities with PBE and CEGIS frameworks.

## Angluin's $L^*$ Algorithm

Basic approach is to use Dana Angluin's  $L^*$  algorithm to efficiently learn an FSM.



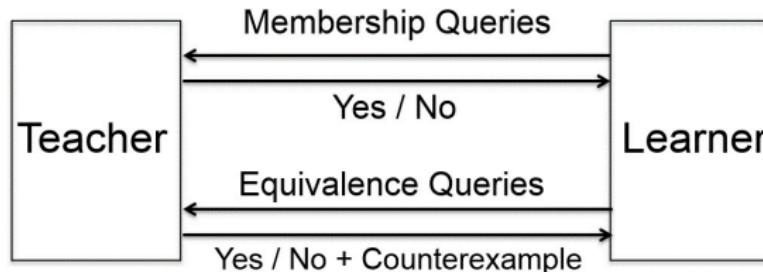
Learning Regular Sets from Queries  
and Counterexamples, in *Information  
& Computation*, 1987.

## Angluin's $L^*$ algorithm

Teacher has a regular language  $U$  in mind.

The Learner can ask two types of queries:

- Is a given string  $w$  in  $U$ ? Teacher answers “Yes” or “No”.
- Does a given DFA  $\mathcal{A}$  accept the language  $U$ ? Teacher answers “Yes” or gives a counterexample  $x$ .



Angluin's algorithm for the Learner finds the canonical DFA for  $U$ , in a number of steps **polynomial** in the number of states of the canonical DFA for  $U$  and the length of the longest counterexample returned by the teacher.

## Angluin's Algorithm by Example

Suppose the Teacher has in mind the language

$$U = \{w \in \{a, b\}^* \mid \text{number of } a\text{'s is even and number of } b\text{'s is even}\}$$

The Learner asks the Teacher if  $\epsilon$ ,  $a$ , and  $b$  belong to  $U$ , and obtains the following **Observation Table**:

|               |            |            |
|---------------|------------|------------|
|               |            | $\epsilon$ |
| $S$           | $\epsilon$ | 1          |
| $S. \{a, b\}$ | $a$        | 0          |
|               | $b$        | 0          |

The set of strings  $S$  represents the states of the automaton constructed by the Learner.

Entry  $(s, e)$  of the table represents the fact that from state  $s$  the automaton accepts/rejects the string  $e$ .

## Angluin's Algorithm by Example

Suppose the Teacher has in mind the language

$$U = \{w \in \{a, b\}^* \mid \text{number of } a\text{'s is even and number of } b\text{'s is even}\}$$

The Learner asks the Teacher if  $\epsilon$ ,  $a$ , and  $b$  belong to  $U$ , and obtains the following **Observation Table**:

|              |            |            |
|--------------|------------|------------|
|              |            | $\epsilon$ |
| $S$          | $\epsilon$ | 1          |
| $S.\{a, b\}$ | $a$        | 0          |
|              | $b$        | 0          |

The set of strings  $S$  represents the states of the automaton constructed by the Learner.

Entry  $(s, e)$  of the table represents the fact that from state  $s$  the automaton accepts/rejects the string  $e$ .

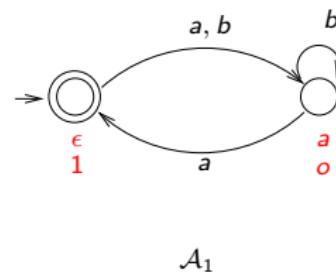
This table is not “closed” as there are no states (or “rows”) corresponding to  $\epsilon \cdot a$  and  $\epsilon \cdot b$ .

## Angluin's Algorithm by Example: 2

Learner closes table by adding string  $a$  to  $S$ , and asking membership queries for  $aa$  and  $ab$ .

He now gets the observation table:

| $S$        | $\epsilon$ |
|------------|------------|
| $\epsilon$ | 1          |
| $a$        | 0          |
| $b$        | 0          |
| $aa$       | 1          |
| $ab$       | 0          |



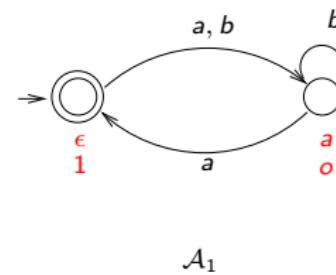
This table is **closed** and **consistent**, and represents the DFA  $\mathcal{A}_1$ .

## Angluin's Algorithm by Example: 2

Learner closes table by adding string  $a$  to  $S$ , and asking membership queries for  $aa$  and  $ab$ .

He now gets the observation table:

|              |            |            |
|--------------|------------|------------|
| $S$          |            | $\epsilon$ |
|              | $\epsilon$ | 1          |
|              | $a$        | 0          |
|              | $b$        | 0          |
| $S.\{a, b\}$ | $aa$       | 1          |
|              | $ab$       | 0          |



This table is **closed** and **consistent**, and represents the DFA  $\mathcal{A}_1$ . Learner now asks the Teacher if  $\mathcal{A}_1$  represents the language she has in mind.

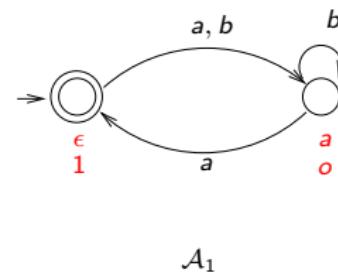
## Angluin's Algorithm by Example: 2

Learner closes table by adding string  $a$  to  $S$ , and asking membership queries for  $aa$  and  $ab$ .

He now gets the observation table:

|      |            |            |
|------|------------|------------|
| $S$  |            | $\epsilon$ |
|      | $\epsilon$ | 1          |
| $a$  | 0          |            |
| $b$  | 0          |            |
| $aa$ | 1          |            |
| $ab$ | 0          |            |

$S.\{a, b\}$



This table is **closed** and **consistent**, and represents the DFA  $\mathcal{A}_1$ . Learner now asks the Teacher if  $\mathcal{A}_1$  represents the language she has in mind. Teacher replies with counterexample  $bb$  which is in  $U$  but is not accepted by  $\mathcal{A}_1$ .

## Angluin's Algorithm by Example: 3

Learner adds  $bb$  and its prefixes to his set  $S$ , makes membership queries for  $ba$ ,  $bba$ , and  $bbb$  to obtain the observation table:

$S$

$S.\{a, b\}$

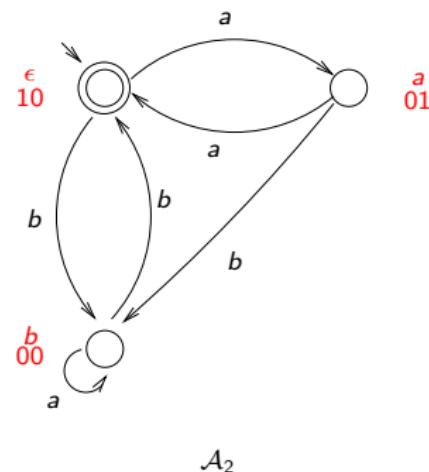
|            | $\epsilon$ |
|------------|------------|
| $\epsilon$ | 1          |
| $a$        | 0          |
| $b$        | 0          |
| $bb$       | 1          |
| $aa$       | 1          |
| $ab$       | 0          |
| $ba$       | 0          |
| $bba$      | 0          |
| $bbb$      | 0          |

This table is **closed** but not **consistent**. The rows for  $a$  and  $b$  are identical, but  $aa$  and  $ba$  have different rows.

## Angluin's Algorithm by Example: 4

Learner adds  $\epsilon \cdot a$  (that is,  $a$ ) and its suffixes to the set  $E$ , and makes membership queries to obtain the observation table:

|              | $\epsilon$ | $a$ |
|--------------|------------|-----|
| $S$          | $\epsilon$ | 1 0 |
|              | $a$        | 0 1 |
|              | $b$        | 0 0 |
|              | $bb$       | 1 0 |
| $S.\{a, b\}$ | $aa$       | 1 0 |
|              | $ab$       | 0 0 |
|              | $ba$       | 0 0 |
|              | $bba$      | 0 1 |
|              | $bbb$      | 0 0 |

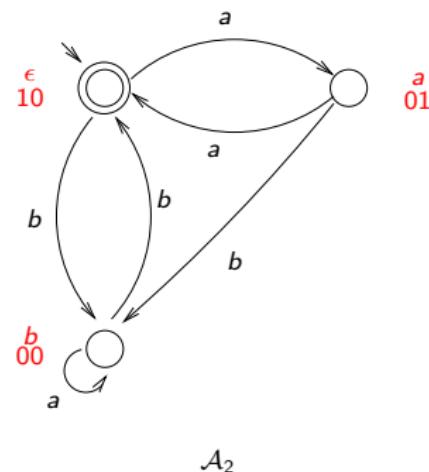


This table is **closed** and **consistent**. So Learner conjectures the automaton  $\mathcal{A}_2$ .

## Angluin's Algorithm by Example: 4

Learner adds  $\epsilon \cdot a$  (that is,  $a$ ) and its suffixes to the set  $E$ , and makes membership queries to obtain the observation table:

|               | $\epsilon$ | $a$ |
|---------------|------------|-----|
| $S$           | $\epsilon$ | 1 0 |
|               | $a$        | 0 1 |
|               | $b$        | 0 0 |
|               | $bb$       | 1 0 |
| $S. \{a, b\}$ | $aa$       | 1 0 |
|               | $ab$       | 0 0 |
|               | $ba$       | 0 0 |
|               | $bba$      | 0 1 |
|               | $bbb$      | 0 0 |

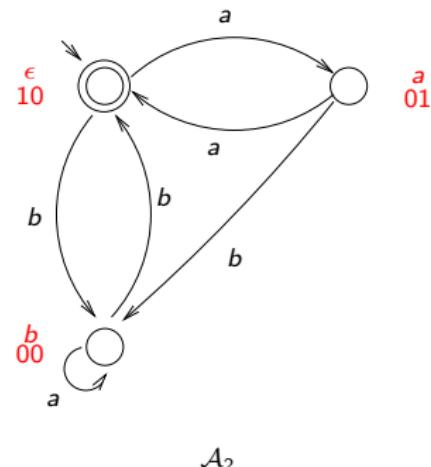


This table is **closed** and **consistent**. So Learner conjectures the automaton  $\mathcal{A}_2$ . Teacher responds with counterexample  $abb$ .

## Angluin's Algorithm by Example: 5

Learner adds  $abb$  its prefixes to  $S$ , makes membership queries to obtain the observation table:

|            | $\epsilon$ | $a$ |
|------------|------------|-----|
| $\epsilon$ | 1          | 0   |
| $a$        | 0          | 1   |
| $b$        | 0          | 0   |
| $ab$       | 0          | 0   |
| $bb$       | 1          | 0   |
| $abb$      | 0          | 1   |
| $aa$       | 1          | 0   |
| $ba$       | 0          | 0   |
| $aba$      | 0          | 0   |
| $bba$      | 0          | 1   |
| $bbb$      | 0          | 0   |
| $abba$     | 1          | 0   |
| $abbb$     | 0          | 0   |



## Angluin's Algorithm by Example: 6

Learner adds  $b$  and its suffixes to  $E$ , and makes membership queries to obtain the observation table:

|              | $\epsilon$ | $a$ | $b$ |
|--------------|------------|-----|-----|
| $S$          | $\epsilon$ | 1   | 0   |
|              | $a$        | 0   | 1   |
|              | $b$        | 0   | 0   |
|              | $ab$       | 0   | 0   |
|              | $bb$       | 1   | 0   |
|              | $abb$      | 0   | 1   |
| $S.\{a, b\}$ | $aa$       | 1   | 0   |
|              | $ba$       | 0   | 0   |
|              | $aba$      | 0   | 1   |
|              | $bba$      | 0   | 0   |
|              | $bbb$      | 0   | 1   |
|              | $abba$     | 1   | 0   |
|              | $abbb$     | 0   | 0   |

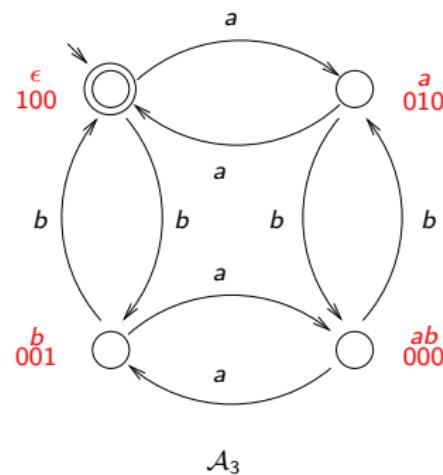


Table is **closed** and **consistent**, so Learner conjectures DFA  $\mathcal{A}_3$ .

## Angluin's Algorithm by Example: 6

Learner adds  $b$  and its suffixes to  $E$ , and makes membership queries to obtain the observation table:

|              | $\epsilon$ | $a$ | $b$ |
|--------------|------------|-----|-----|
| $S$          | $\epsilon$ | 1   | 0   |
|              | $a$        | 0   | 1   |
|              | $b$        | 0   | 0   |
|              | $ab$       | 0   | 0   |
|              | $bb$       | 1   | 0   |
|              | $abb$      | 0   | 1   |
| $S.\{a, b\}$ | $aa$       | 1   | 0   |
|              | $ba$       | 0   | 0   |
|              | $aba$      | 0   | 1   |
|              | $bba$      | 0   | 0   |
|              | $bbb$      | 0   | 1   |
|              | $abba$     | 1   | 0   |
|              | $abbb$     | 0   | 0   |

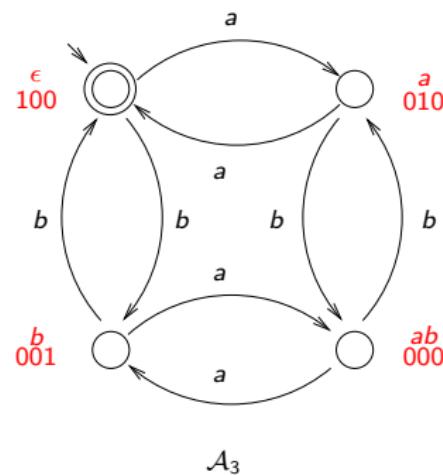


Table is **closed** and **consistent**, so Learner conjectures DFA  $\mathcal{A}_3$ . Teacher responds with “Yes!”.

## Angluin's L\* Algorithm

Initialize  $S$  and  $E$  to  $\{\lambda\}$ .

Ask membership queries for  $\lambda$  and each  $a \in A$ .

Construct the initial observation table  $(S, E, T)$ .

Repeat:

While  $(S, E, T)$  is not closed or not consistent:

If  $(S, E, T)$  is not consistent,

then find  $s_1$  and  $s_2$  in  $S$ ,  $a \in A$ , and  $e \in E$  such that

$\text{row}(s_1) = \text{row}(s_2)$  and  $T(s_1 \cdot a \cdot e) \neq T(s_2 \cdot a \cdot e)$ ,

add  $a \cdot e$  to  $E$ ,

and extend  $T$  to  $(S \cup S \cdot A) \cdot E$  using membership queries.

If  $(S, E, T)$  is not closed,

then find  $s_1 \in S$  and  $a \in A$  such that

$\text{row}(s_1 \cdot a)$  is different from  $\text{row}(s)$  for all  $s \in S$ ,

add  $s_1 \cdot a$  to  $S$ ,

and extend  $T$  to  $(S \cup S \cdot A) \cdot E$  using membership queries.

Once  $(S, E, T)$  is closed and consistent, let  $M = M(S, E, T)$ .

Make the conjecture  $M$ .

If the Teacher replies with a counter-example  $t$ , then

add  $t$  and all its prefixes to  $S$

and extend  $T$  to  $(S \cup S \cdot A) \cdot E$  using membership queries.

Until the Teacher replies *yes* to the conjecture  $M$ .

Halt and output  $M$ .

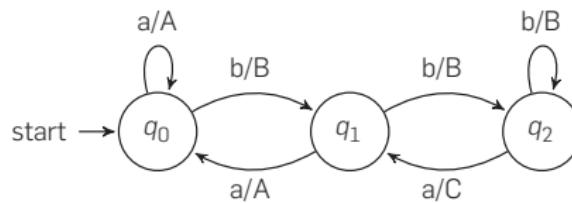
FIG. 1. The Learner  $L^*$ .

## Complexity of Angluin's Algorithm

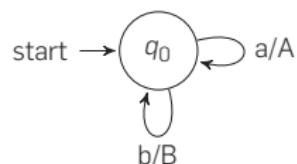
Let minimal automaton for  $U$  have  $n$  states, and length of longest counter-example given by Teacher be  $m$ . Then:

- Makes at most  $n$  equivalence conjectures. (Since counterexample increases number of states by at least 1.)
- Total number of strings in  $E$  is at most  $n$ .
- Table can be represented by table of size  $O(m^2 n^2 + mn^3)$ .
- At most  $n$  closed/consistency checks, each done in poly time in size of table.
- Total running time is polynomial in  $n$  and  $m$ .

# Extending to Mealy State Machines



| $\mathcal{O}_1$ | a | b |
|-----------------|---|---|
| $\epsilon$      | A | B |
| a               | A | B |
| b               | A | B |



| $\mathcal{O}_2$ | a | b |
|-----------------|---|---|
| $\epsilon$      | A | B |
| b               | A | B |
| bb              | C | B |
| bba             | A | B |
| a               | A | B |
| ba              | A | B |
| bbb             | C | B |
| bbaa            | A | B |
| bbab            | C | B |

| $\mathcal{O}_3$ | a | b | ba |
|-----------------|---|---|----|
| $\epsilon$      | A | B | A  |
| b               | A | B | C  |
| bb              | C | B | C  |
| bba             | A | B | C  |
| a               | A | B | A  |
| ba              | A | B | A  |
| bbb             | C | B | C  |
| bbaa            | A | B | A  |
| bbab            | C | B | C  |