

# Scalable Context-Sensitive Flow Analysis

## Assignment

Given below is a C program and the type instantiation constraints generated using the rules in figure 3 of the paper.

### Program:

```

1 main () {
2     int a, b, c, d, e;
3     int *p, *q, *f;
4     int **x, **y;
5     p = &a;
6     q = &b;
7     x = &q;
8     y = &p;
9     c = foo (x);
10    d = bar (p);
11    e = foo (y);
12    f = *x;
13 }
14 int foo (int **z) {
15     return **z;
16 }
17 int bar (int *w) {
18     return *w;
19 }
```

### Constraints :

$$\begin{aligned}
&\{\alpha_{foo} = ptr^{l1}(ptr^{l2}(\alpha_z)) \rightarrow \alpha_{ret(foo)}, \alpha_{ret(foo)} = \alpha_z, \\
&\alpha_{bar} = ptr^{l3}(\alpha_w) \rightarrow \alpha_{ret(bar)}, \alpha_{ret(bar)} = \alpha_w, \\
&\alpha_p = ptr^{la}(\alpha_a), \alpha_q = ptr^{lb}(\alpha_b), \alpha_x = ptr^{lq}(\alpha_q), \alpha_y = ptr^{lp}(\alpha_p), \\
&\alpha_{foo} \leq_+^9 \alpha_x \rightarrow^{l9} \alpha_c, \alpha_{bar} \leq_+^{10} \alpha_p \rightarrow^{l10} \alpha_d, \\
&\alpha_{foo} \leq_+^{11} \alpha_y \rightarrow^{l11} \alpha_e, \alpha_x = ptr^{l5}(\alpha_\gamma), \alpha_f = \alpha_\gamma\}
\end{aligned}$$

1. Apply the semi-unification algorithm, given in figure 4 in the paper, on the constraints to generate the *Type Instantiation Graph*. Sample TIGs are given in figures 7 and 8 in the paper.
2. Construct the flow graph for the program using the type instantiation graph, as described in section 4 of the paper. Sample flow graphs may also be seen in figures 7 and 8.
3. Answer the following queries using the flow graph:
  - (a) What values flow into the variables c, d, e, f?

(b) Give the final points-to information of the program, i.e. which variable points to which other variables. The answer should be given as the points-to set corresponding to each variable.