
Reuse, recycle to de-bloat software

Suparna Bhattacharya1, Mangala Gowri Nanda2, K Gopinath1, and
Manish Gupta2

suparna@csa.iisc.ernet.in,mgowri@in.ibm.com,

gopi@csa.iisc.ernet.in,manishgupta@in.ibm.com

1 Indian Institute of Science
2 IBM Research

Abstract. Most Java programmers would agree that Java is a language
that promotes a philosophy of “create and go forth”. By design, tem-
porary objects are meant to be created on the heap, possibly used and
then abandoned to be collected by the garbage collector. Excessive gen-
eration of temporary objects is termed “object churn” and is a form of
software bloat that often leads to performance and memory problems.
To mitigate this problem, many compiler optimizations aim at identi-
fying objects that may be allocated on the stack. However, most such
optimizations miss large opportunities for memory reuse when dealing
with objects inside loops or when dealing with container objects.
In this paper, we describe a novel algorithm that detects bloat caused by
the creation of temporary container and String objects within a loop. Our
analysis determines which objects created within a loop can be reused.
Then we describe a source-to-source transformation that efficiently reuses
such objects. Empirical evaluation indicates that our solution can reduce
upto 40% of temporary object allocations in large programs, resulting in
a performance improvement that can be as high as a 20% reduction in
the run time, specifically when a program has a high churn rate or when
the program is memory intensive and needs to run the GC often.

1 Introduction

There are many forms of software bloat [1, 2]. The creation (and deletion) of
many temporary objects in Java programs is known as temporary object churn;
this is the form of software bloat that we address in this paper. As illustrated by
Jack Shirazi [3], creating too many temporary objects results in higher garbage
collection overhead, object construction costs and higher memory system stress
resulting in an increase in processing time and memory consumption. At the
end of the chapter on object creation in his book, Shirazi gives a long list of
performance improvement strategies of which we reproduce a few here:

– Reduce the number of temporary objects being used, especially in loops.
– Avoid creating temporary objects within frequently called methods.
– Reuse objects where possible.
– Empty collection objects before reusing them. (Do not shrink them unless

they are very large.)

2 Bhattacharya, S., Nanda, M. G., Gopinath, K. and Gupta, M.

class Klass {
Hashtable ftab;
void foo(int num, Hashtable tab) {

5 HashSet seen = new HashSet();
6 Stack work = new Stack();
7 Vector heap = new Vector();
8 doSomething(work, num);
9 while (!work.isEmpty()) {

10 Object w = work.pop();
11 if (seen.contains(w))

continue;
12 seen.add(w);
13 heap.add(w);

}
Integer inum = new Integer(num);

14 if (init()) {
15 ftab.put(inum, heap);

}
else {

16 tab.put(inum, heap);
}

}

void bar(int num) {
32 Hashtable tab = new Hashtable();
33 for (int n=0; n<num; n+=10) {
37 foo(n, tab);

}
43 dumpTabContent(tab);

}

void driver() {
44 for (int num=0; num<100; num+=5) {
45 bar(num);

}
}

}

(a) sample code

class Klass {
Hashtable ftab;
void foo(int num, Hashtable tab) {

5 HashSet seen = REUSE.REUSE_01();
6 Stack work = REUSE.REUSE_02();
7 Vector heap = new Vector();
8 doSomething(work, num);
9 while (!work.isEmpty()) {

10 Object w = work.pop();
11 if (seen.contains(w))

continue;
12 seen.add(w);
13 heap.add(w);

}
Integer inum = new Integer(num);

14 if (init()) {
15 ftab.put(inum, heap);

}
else {

16 tab.put(inum, heap);
}

}

void bar(int num) {
32 Hashtable tab = new Hashtable();
33 for (int n=0; n<num; n+=10) {
37 foo(n, tab);

}
43 dumpTabContent(tab);

}
}
class REUSE {

52 static HashSet hs_01 = new HashSet();
53 HashSet REUSE_01() {
54 hs_01.clear(); return hs_01;

}
57 static Stack st_02 = new Stack();
58 Stack REUSE_02() {
59 st_02.clear(); return st_02;

}
}

(b) Code reused

Fig. 1. Sample code.

However, this is easier said than done, especially for Java programmers who
have grown up with the luxury of creating and discarding temporary objects, on
the assumption that the discards would be efficiently garbage collected. Consider,
for example, a typical piece of Java code as shown in Figure 1(a):

In this program, foo() calls doSomething() which loads several objects into a
stack work. Then foo() picks up each element in the stack, checks for and discards
any duplicates using seen and loads the unique objects into heap. At the end,
based on some condition, heap is stored into either the field variable this.ftab

or into the Hashtable tab3 passed in as a parameter4. The method bar() calls
foo() iteratively and then dumps the contents of tab while the method driver()

calls bar() iteratively.

3
For ease of exposition we model a hashtable as directly containing the key and value fields e.g.,
tab.value instead of containing the fields only indirectly e.g., tab.bucket[i].element[j].value.

4
This code was modified from Xylem code (refer Section 5), the only modification being the ad-
dition of ftab and the corresponding lines of code at lines 14 and 15 to highlight that an object
may be reusable along one path but not another

Reuse, recycle to de-bloat software 3

Here we observe that foo() is called from inside a loop. Hence HashSet seen,
Stack work and Vector heap will be created once for every iteration of the loop.
Also, it is intuitively clear that seen and work can be reused, but heap may not
be reusable.

– Consider Stack work: it is created locally and is not accessible outside foo()—
that is, it does not escape foo(). It may be reused as shown in Figure 1(b).
Note, however, that the enclosing loop is in a different method than the ob-
jects being reused and thus requires interprocedural analysis. Nevertheless,
work is reusable within the innermost enclosing loop and hence is termed a
“Level 1” reusable object.

– Consider Vector heap: it is created locally but it is accessible outside foo()—
that is, it escapes foo().
• Consider the case when it escapes via tab: heap does not escape the

method bar, but it does “escape” the loop inside bar. Going further
back up the call flow graph, we find that bar is called from within a loop.
Since heap does not escape from this loop, it is potentially reusable. In
this case, heap is not reusable within the innermost enclosing loop, but it
is reusable within the next enclosing loop and hence is termed a “Level
2” reusable object.

• When it escapes via ftab: ftab is accessible outside bar and driver and
hence so is heap. Therefore, heap is not reusable along this path.

When we reused seen and work as shown in Figure 1(b), we observed a 9%
reduction in execution time (on a dual core Intel(R) Core(TM)2 Duo system
with 2GB RAM running Java Hotspot(TM) Server VM on Linux).

Thus we see that objects may be reused within the immediately enclosing
loop or a higher level loop. The same object may be reusable along one path but
not another. Similarly, the same object may be reusable at different levels along
different paths. Besides these, there are many issues related to this kind of code
transformation:

1. How do we determine automatically which variable can be reused and which
one cannot be

2. Which data structures do we target and how do we know how to “clear” the
structure before reuse

3. How do we determine when to perform the allocation and the “clear”. In the
example, we have given a trivial solution which does not always work

4. Where do we insert the reuse code so that it does not become an overhead
in itself

Although, in principle, it is possible to reuse any data structure, in our im-
plementation, we address only certain Collection classes—specifically HashSet,

Vector, Stack, PriorityQueue, LinkedList, ArrayList and TreeMap. This makes
it easy to clear the objects using the clear() method from the Collection class.
We also reuse memory in Strings (here we are referring to the reuse of the un-
derlying arrays and not reuse of the string representation by string interning).
This is far more complex and the details are given in Section 4.

4 Bhattacharya, S., Nanda, M. G., Gopinath, K. and Gupta, M.

Contributions In this paper we give a novel algorithm for automatically finding
sources of software bloat and then we give a solution to transform the code to
reduce the bloat. The main contributions are:

– An algorithm that can detect objects created within a loop and determine
whether an object created within a loop can be reused at the end of each
iteration. In the case of nested loops, the algorithm will tell us the innermost
enclosing loop in which the object can be reused.

– A solution that can automatically transform the source code to reuse the
object such as to mitigate the effects of software bloat.

– An implementation that validates our claims and shows that we can get upto
40% reduction in bytes of temporary objects generated and 20% improve-
ment in speed of execution.

Organization We start off with some definitions and a description of escape
analysis used in this paper in Section 2. In Section 3 we explain how to find
safe reusable allocations and in Section 4 we give an algorithm that achieves
the reuse through a source-to-source transformation. In Section 5 we report the
empirical justification for using our analysis, Section 6 positions our work with
respect to related work and we conclude in Section 7.

2 Preliminaries

The control-flow graph (CFG) for a method M contains nodes that represent
statements in M and edges that represent potential flow of control among the
statements.

We define here some terms used in the paper.

Definition 1. Dominator: A node Si dominates a node Sj iff Si 6= Sj and Si

is on every path from Entry to Sj.

Definition 2. Postdominator: A node Sj postdominates a node Si iff Si 6= Sj

and Sj is on every path from Si to Exit.

Definition 3. Control dependence: A node Sj postdominates a branch of a pred-
icate Si iff Sj is the successor of Si in that branch or Sj postdominates the
successor of Si in that branch.

A node Sj is control dependent on a predicate Si iff Sj postdominates a branch
of Si but Sj does not postdominate Si. A node can be directly control dependent
on itself. Note that a node with only one successor can never be the source of a
control dependence edge.

Definition 4. Backedge: A backedge in the CFG is an edge where the destina-
tion of the edge dominates the source of the edge.

Definition 5. Data Dependence: A node Sj is data dependent on a node Si, if
Si defines some variable x, Sj uses the variable x, and there exists a path from
Si to Sj without intervening definitions of x.

Reuse, recycle to de-bloat software 5

Definition 6. Loop Carried Data Dependence: A node Sj is data dependent on
a node Si, if Si defines some variable x, Sj uses the variable x, and there exists
a path from Si to Sj without intervening definitions of x and the path contains
a backedge.

Escape Analysis To locate reuse possibilities, we use escape analysis which is a
method for determining the dynamic scope of pointers. After constructing the
control-flow graph of each method, our solution uses flow- and context-sensitive
pointer analysis and escape analysis5. The escape analysis computes the escape-
in and escape-out sets for each method.

– The formal-in set for a method M contains the set of formal parameters.
The implicit this parameter (in non-static methods) is also a formal-in.

– The formal-out set for a non-void method M contains a single parameter R,
the designated return value. The formal-out set is empty for a void method.

– The escape-in set for a method M contains direct and indirect fields of the
formal parameters of M that are used, before possibly being defined, in M .
These represent the upwards-exposed uses in M .

– The escape-out set for M contains direct or indirect fields of the formal
parameters of M and the return value of M that are defined in M .

– At each Call site c that calls method M , the algorithm uses the escape-in
and escape-out information, to compute the actual-in and actual-out sets,
where

– we generate an actual-in for each formal-in and each escape-in and

– we generate an actual-out for each formal-out and escape-out in M .

The algorithm associates escape-in and formal-in sets with the Entry node of
the CFG, and escape-out and formal-out sets with the Exit node of the CFG;
likewise, the actual-in and actual-out sets are associated with call sites.

In the example shown in Figure 2, num (node 2) and tab (node 3) are formal-
in parameters in the method foo as is the this parameter although it is not
shown explicitly in the figure. this.ftab (node 4) is an escape-in parameter
where ftab is a field of the formal-in parameter this. There is no formal-out
parameter as both the functions are void functions, but this.ftab.key (node
20) and this.ftab.value (node 21) are escape-out parameters generated from
the put method of the Hashtable. Similarly, tab.key (node 22) and tab.value

(node 23) are escape-out parameters since they are fields of the formal-in tab.

In method bar at the call site for foo (node 37) we have generated actual-ins
and actual-outs and mapped them appropriately to the formal-in and escape-out
parameters in the called function.

5
A context-sensitive analysis propagates states along interprocedural paths that consist of valid
call–return sequences only—the path contains no pair of call and return that denotes control
returning from a method to a call site other than the one that invoked it. A flow-sensitive
analysis, on the other hand, takes into account the order of statements in a program.

6 Bhattacharya, S., Nanda, M. G., Gopinath, K. and Gupta, M.

heap = new Vector()

while (!work.isEmpty())

work = new Stack()

?

?

?

?

ftab.value = heap

1

2

4

5

6

7

8

9

10

11

12

13

14

15 16

17 18

23

30

31

32

34

38

39

40

41

3

19

22

33

35

36

37

20

21
?

Escapeout: this.ftab.value

Escapeout: this.ftab.key

n++
?

42

?
45EXIT

?

?

?

?-

?

?

?

?

�

??

?

?

�

?

?

QQs��=

?

��+QQs

?

�
�	

?-

-

?

?

-

-

?

�

�

??

?

?

?

?

���

?

?

if (seen.contains(w))

Escapein: this.ftab

seen = new HashSet()

Formalin: tab

Formalin: num

doSomething(work, num)

Actualin: tab

invoke foo

Formalin: num

tab = new Hashtable()

while(n < num)

Actualout: this.ftab.value

Actualout: tab.value

Escapeout: tab.key

Entry: void foo

w = work.pop()

tab.value = heap

tab.key = inumftab.key = inum

Actualin: n

n = 0

Entry: void bar

seen.add(w)

heap.add(w)

if (init())

Actualout: this.ftab.key

Actualout: tab.key

Escapeout: tab.value

Escapeout: this.ftab.value

Escapeout: this.ftab.key 43

44

24EXIT

Fig. 2. Escape Analysis.

3 Finding potential sources of bloat

In this section, we describe how to locate object allocation sites within loops that
can be reused. Our analysis first identifies whether an allocation site is within
a loop. This allocation site can be converted into a reuse site on the condition
that

1. it does not have a loop carried dependence
2. it is not accessed outside the loop. To determine whether it is local to an

enclosing loop, we need to check if it escapes the scope of the loop.

3.1 The Problem with Loop Carried Data Dependence

Consider the following piece of Java code

Reuse, recycle to de-bloat software 7

Vector vprev = new Vector();

while (cond) {

vsucc = new Vector();

process(vsucc);

if (vsucc.size() <= vprev.size()) {

}

vprev = vsucc;

}

Here there is a loop carried dependence from vsucc to vprev. So if we reset
and reuse vsucc inside the loop, then after the first iteration vsucc and vprev
will always point to the same Vector, which is not correct.

Knowing that vsucc can be reused after N cycles, it is possible to design
reuse as follows:

Vector tmp[] = new Vector()[N];

for (int j=0; j<N; j++) {

tmp[j] = new Vector();

}

Vector vprev = new Vector();

int i=0;

while (cond) {

tmp[i].clear();

vsucc = tmp[i];

i++;

if (i == N) {

i = 0;

}

process(vsucc);

if (vsucc.size() <= vprev.size()) {

}

vprev = vsucc;

}

Finding loop carried dependence is relatively simple. However, it is not always
possible to determine statically after how many cycles vsucc would be reusable,
as shown in the example below.

Vector vprev = new Vector();

while (cond) {

vsucc = new Vector();

process(vsucc);

if (vsucc.size() >= vprev.size()) {

vprev = vsucc;

...

}

}

Hence, we conservatively ignore reuse when there is a loop carried data de-
pendence.

8 Bhattacharya, S., Nanda, M. G., Gopinath, K. and Gupta, M.

3.2 The Basic Algorithm

The preliminary analysis consists of the following steps

– We compute flow and context sensitive data and control dependence, wherein
the data dependence includes points-to and escape analysis described in the
previous section. Each data dependence that is a loop carried dependence is
flagged appropriately.

– We determine which conditionals in the Java bytecode are loop conditionals.
We define a loop header as the destination of an edge in the CFG such that
the node at the destination of the edge dominates the node at the source of
the edge.

– We find all allocation sites in the code. For each allocation site Snew we com-
pute the transitive closure of control dependencies. This process is performed
interprocedurally. If Snew is not directly or transitively control dependent on
a loop header, then we can discard it as being uninteresting from the point
of reuse.

Computing transitive closure of control dependencies Intra-procedurally speak-
ing, every node is eventually control dependent on the ENTRY node of the
method. The ENTRY node is inter-procedurally control dependent on the CALL
node from where the method is invoked. The transitive closure thus includes all
nodes that the CALL node is control dependent upon.

In Figure 2, HashSet seen = new HashSet() is control dependent on the EN-
TRY node void foo(). The ENTRY node is inter-procedurally control depen-
dent on the CALL node foo(n, tab) in the method bar(). The CALL node is
control dependent on the for conditional n<num. Hence, the allocation seen =

new HashSet() is inter-procedurally and transitively control dependent on a loop
header.

Removing Unnecessary Loop Header Dependencies Note that a node that is
control dependent on a loop header is not necessarily within the loop. However,
we are only interested in finding allocations that are within a loop and hence
need to perform additional computation.

All nodes within the loop are directly or transitively control dependent on
the loop header. However there may be nodes outside the loop that are also
control dependent on the loop header. This happens when there is a return from
within the loop or when there is an exception flow edge from within the loop.
Since we are interested only in nodes within a loop, we need to filter out these
external-to-the-loop nodes. We do this by simply checking if there is a path from
the node to the loop header that ends with a back edge.

Having found an allocation site that lies within a loop, we perform the algorithm
given in Figure 1.

The algorithm takes as input Snew, the allocation site v = new Collection(),
where Collection is one of the classes mentioned in Section 1. It then computes
the forward slice for Snew as explained at lines 27–36. The forward slice consists

Reuse, recycle to de-bloat software 9

Algorithm 1 Locating reusable allocations within a loop
1: INPUT: Snew

2: φesc ← new Collection()
3: φreg ← new Collection()
4: computeForwardSlice({Snew}, φesc, φreg)
5: NCD ← controlDepPred(Snew)
6: while NCD 6= null do
7: if NCD is a loop header then
8: level++
9: if φesc = {} and contains(NCD, φreg) and noLoopDD(φreg) then

10: OUTPUT(level, Snew)
11: end if
12: else if NCD is an Entry node then
13: for all Ninvoke a call site of Entry do
14: newset ← map(Ninvoke, φesc)
15: φesc ← new Collection()
16: φreg ← new Collection()
17: computeForwardSlice(newset, φesc, φreg)
18: end for
19: else
20: reached the top of the call graph
21: report and exit
22: end if
23: NCD ← controlDepPred(NCD)
24: end while
25:
26: computeForwardSlice(newset, φesc, φreg) {
27: while !newset.empty() do
28: N ← newset.removeLast()
29: for all Ndd such that Ndd is data dependent on N do
30: if Ndd is a formal-out or an escape-out then
31: φesc ← φesc ∪Ndd

32: else
33: φreg ← φreg ∪Ndd

34: end if
35: end for
36: end while
37: }

10 Bhattacharya, S., Nanda, M. G., Gopinath, K. and Gupta, M.

of the transitive closure of all def-use sets starting with the definition at Snew.
The nodes in the slice are separated into two bags, one called the “Escape” bag
φesc that contains any formal-outs or escape-outs in the slice and the other bag
φreg that contains all other nodes.

Next we track backward along the control dependence edges.

– If we come to a loop conditional we check if φesc is empty and every node
in φreg lies within the loop and does not have a loop carried dependence.
If yes, then we have found the closest enclosing loop inside which Snew

can be reused—along this particular path. We record this path and stop
traversing the control flow graph any further for this path. For all other
loop conditionals or branch conditionals, continue climbing up the control
dependence graph.

– If we come to the Entry node of a method SM , then for each invocation site,
Scall, we map each node in the φesc set to the corresponding actual-out

nodes. The old φesc and φreg sets are discarded and fresh sets are computed
as the union of the forward slices of the actual-out nodes at the given invo-
cation site. Then the analysis continues up the control dependence graph,

– If we come to the top of the call flow graph, we conclude that Snew may not
be reusable along this path.

An illustrative example Consider the example in Figure 2.

1. We determine that the conditional nodes n < num (node 34) in bar and
!work.isEmpty() (node 9) in foo are loop headers.

2. Consider the statement seen = new HashSet() (node 5) in method foo in
Figure 1. It is an allocation site for the Collection class HashSet. This node
is control dependent only on the entry node void foo (node 1). This node
is call dependent on the invoke foo node (node 37) which in turn is control
dependent on the loop header n < num. Hence the allocation statement is
interprocedurally called from inside a loop and has potential to be reused.

3. The forward slice is computed as φreg = { seen.contains(w), seen.add(w) }
and φesc is empty as none of the nodes are formal-outs or escape-outs.

4. Now we traverse the control dependence path. At the entry node there is
nothing to be mapped to the invoke foo site as φesc is empty. We discard the
current φ sets and enter the method bar with empty sets. Next the invoke foo

is control dependent on the loop header n < num. Here the requisite conditions
are trivially true. Hence the allocation may be converted to reuse.

If we consider the allocation site heap = new Vector(), it has four escape-outs
in its φesc; these map into actual-out nodes in the calling function bar. These
actual-out statements are inside the loop but their forward slice contains nodes
that are outside the scope of the loop. Two of these escape out of bar as well as
its caller Driver(). Hence, this node is correctly not marked for reuse.

3.3 Multiple Control Dependence Paths

The basic analysis algorithm described above records the closest enclosing loop
along a control dependence path where reuse may be implemented safetly, if at

Reuse, recycle to de-bloat software 11

all. Since there may be multiple paths to an allocation site, several situations
may arise:

1. The site is not reusable along any control dependence path
2. The site is reusable along some control dependence paths, but not reusable

along other control dependence paths.
3. The site is reusable along all its control dependence paths, but the closest

enclosing loop where reuse can be implemented is not the same for all control
dependence paths

4. The site is reusable inside the same closest enclosing loop along all its control
dependence paths

One could take a conservative approach where only Case 4 is assumed to
be safe for reuse conversion. However, this tends to miss several sites with po-
tentially large churn (as we observe experimentally). A second approach is to
introduce extra code to perform runtime tracking of the conditions for safe reuse
in all situations. While this can enable more opportunities for reuse, it can be-
come fairly complicated and invasive. For example, in the worst case, this might
involve interprocedurally tracking path history along every branch leading to an
allocation site from enclosing loops located several call levels away.

Instead, we use a simpler scheme that achieves greater precision than the
conservative analysis but only exploits runtime state that needs to be introduced
anyway for implementing object reuse.

Let us define the height h of a loop L along a control dependence path from
an allocation site as the number of enclosing loop headers along that path upto
and including L. Then, the reuse level k for an allocation site along a particular
control dependence path is defined as the height of the closest enclosing loop
where the site is reusable for that path. This means that object reuse state for
that allocation site must be maintained across iterations of all the inner loops
upto height k − 1, and can only be reset across iterations of the loop at height
k or above. As long as this condition can be met across all control dependence
paths for the site without conflict, the object can be safetly converted for reuse
along certain paths (where it is found to reusable) without affecting correctness
along its other control dependence paths. This logic can be extended to address
not just Case 3, but Case 2 as well, since a path that does not support reuse
can be treated as a path with a very high reuse level. In other words, at some
outer loop level we can setup one control flow path to reuse and the another to
not reuse, provided the two paths do not intersect within the same outer loop
iteration.

Illustration: Consider the following variation of example in Figure 2, without
lines 14-15, so that the allocation to heap no longer escapes directly via ftab.
Now, suppose we add a couple of routines as follows:

void barPersist(int num) {
for (int n=0; n<num; n+=10) {

foo(n, ftab);
}

}

12 Bhattacharya, S., Nanda, M. G., Gopinath, K. and Gupta, M.

void driverPersist() {
for (int num=0; num<100; num+=5) {

barPersist(num);
}

}
void mainDriver() {

if (init()) {
driverPersist()

} else {
driver();

}
}

The allocation site heap = new Vector() in foo() is reusable at level k =
2, the loop in driver() that calls bar(), along one control dependence path,
but is not reusable along another path that goes through driverPersist() and
barPersist(). In this case, we notice that there is no conflict between these two
cases as the corresponding loops do not intersect.

Now, let us say the routines driverPersist() and mainDriver() were removed
and instead, the routine driver() modified as follows:

void driver() {
for (int num=0; num<100; num+=5) {

if (init()) {
barPersist(num);

} else {
bar(num);

}
}

}

This time, the outer loop is common to the two paths, which indicates a
potential conflict.

We perform an analysis of the loop sharing structure across control depen-
dence paths to eliminate such potential conflicts.

Figure 3 illustrates some examples of loop header sharing across control de-
pendence paths starting from two distinct nodes P and Q respectively. The loop
header nodes are numbered according to the height of the loop with respect to
the allocation site. In (a) the loops are embedded along both paths, hence there
is a conflict if a reuse site in the the inner loop is not reusable along either P
or Q. In (b), the loops are disjoint and both inner loops invoke the method con-
taining the reuse site. In this case, for reuse level k = 2 and above, the the k− 1
loop of one path never falls inside the other. Hence if the site is reusable at level
2 (or higher) along paths from P, then, even if it is not reusable from Q, our
transformation can be set up to safely exploit object reuse along the former. In
(c), the innermost loop is shared, but the outer loops are disjoint. Thus a reuse
transformation upto level 2 would be unsafe unless both paths share the same
reuse level. However, if the site is reusable at level 3 or higher along one path,
then, even if it isn’t reusable along the other, our transformation can be set up
safely to exploit object reuse at the appropriate level along that path.

Reuse, recycle to de-bloat software 13

P Q P Q P Q

1

2 2

33

111

2 2 2

(b) Disjoint Loops(a) Embedded Loops (c) Some Shared Loops

X X
X

Fig. 3. Loop header sharing for multiple control dependence paths

4 Object reuse, recycle transformations

In the previous section we described an approach for finding allocation sites
that are candidates for object reuse and the closest enclosing loops where they
can be safely reused. Now we discuss our automated code transformations for
implementing object reuse.

Object reuse optimizations may involve object memory reuse or object con-
tent reuse. The former recycles the memory and structural representation state
of objects of the same type, instead of allocating fresh objects each time. The
latter reuses at least some part of the actual object content (a form of memoiza-
tion/caching) to save repeated content construction costs6. Our static analysis
based detection technique mainly identifies the first kind of opportunities, hence
this forms the focus of our implementation. Our code transformations can, how-
ever, be used to support the second category of reuse as well, with slight modi-
fications7.

4.1 Basic reuse-recycle algorithm

The static analysis phase reports the safe reuse level and the corresponding loops
for each allocation site identified for reuse (hereafter referred to briefly as a reuse

6
object canonicalization is an extreme example of content reuse; object pooling involves memory
and sometimes partial content reuse

7
e.g. steps like clearing the object or simulating effects of a constructor may be skipped when
reusing object content, thus simplifying the implementation

14 Bhattacharya, S., Nanda, M. G., Gopinath, K. and Gupta, M.

site). We use this information to implement a basic reuse/recycle algorithm for
these reuse sites.

The simple reuse transformation illustrated in the introduction is efficient
but does not work in many situations. The allocation has been moved to a
static initializer where constructor parameters that are specified at the allocation
site may not be available. The conversion is only applicable for level 1 reuse,
i.e. for objects allocated in an inner loop which can be recycled at the next
iteration of this loop. In this case, it suffices to allocate a single reusable slot for
an allocation site, e.g. the variable REUSE.st 01 for Stack work. However, when
allocated objects need to be preserved across iterations of an inner loop, and can
only be recycled at a subsequent iteration of an outer loop, multiple reusable
slots must be maintained for the same allocation site. This happens for a level k
reuse with k > 1, (where k is the height of the closest enclosing loop at which the
object can be reused), e.g. k = 2 for Vector heap when foo() is invoked via bar().
In this case, static initialization cannot be used as the number of distinct slots
required (minimum outstanding allocations) may not be known until the inner
loop completes its first iteration sequence. It could even change dynamically.
The number of inner loop iterations and hence reuse slots maintained for Vector

heap varies with the loop upper bound num, e.g. when num = 50, 10 reuse slots
are used. We note that this also means that the number of reuse slots created
must be bounded to avoid causing memory overhead due to a blowup in the
number of inner loop iterations.

Therefore in our generalized implementation (Algorithm 2), the allocation
statement is not moved, but instead, tracked during the first iteration of the level
k loop by creating reuse slots as needed and initializing them with the result of
the allocations in inner loop iterations (lines 9-12). Note that Reusevar.numslots

is statically initialized to zero. It is incremented (line 10) each time a reuse
slot is created for this site, using Reusevar.addslot() (line 11). The objects from
these slots are then reused sequentially (lines 16-17) during subsequent iterations
of the level k loop. If the inner loop iterations exceed the number of available
reuse slots Reusevar.numslots (e.g. due to a varying loop bound), then additional
slots are created as required (upto a maximum allowed capacity) (lines 9-12).
If the maximum capacity of reuse slots is exceeded for a given allocation site,
then allocations required beyond the capacity simply fall back to a non-reusable
mode (lines 13-14).

This approach has the downside of an extra check in every inner loop iteration
to distinguish the first iteration8 of the level k loop from iterations which reuse
previous allocations. The overhead may be optimized using loop peeling and
specialization for common scenarios (like level 1 reuse for collection objects which
do not require a constructor parameter).

To enable an existing object to be recycled instead of issuing a fresh allo-
cation, some type specific steps need to be executed to re-initialize the object
for reuse. In general, this may require simulating (a part of) its constructor
functionality. We focus on reusing collection objects and strings.

8
and checks for dynamic expansion of slots

Reuse, recycle to de-bloat software 15

Algorithm 2 General level K reuse transformation

1: while condition K do
2: processing for Kth loop
3: slot← 0; maxslots←MAXSLOTS {ADDED TO ENABLE REUSE}
4: while condition K − 1 do
5: processing loops for K − 2 to 2
6: while condition 1 do
7: processing for inner loop
8: BEGIN: Transformed allocation statement {TO ENABLE REUSE}
9: if Reusevar.numslots ≤ slot < maxslots then

10: Reusevar.numslots← Reusevar.numslots+ 1
11: Reusevar.addslot()← new TY PE(params)
12: end if
13: if Reusevar.numslots ≤ slot then
14: var ← new TY PE(params)
15: else
16: var ← Reusevar.getslot(slot)
17: slot← slot+ 1
18: end if
19: END : transformed allocation statement {TO ENABLE REUSE}
20: some more processing for inner loop
21: end while
22: some more processing for loops for K − 2 to 2
23: end while
24: some more processing for Kth loop
25: end while

4.2 Reusing collections

Preparing a collection object for reuse is particularly simple. Most collections
provide a clear() method to reset a collection to zero entries while keeping the
capacity of the collection intact. The larger the collection being reused, the
greater the benefit as it saves a large portion of object construction costs.

4.3 Reusing strings

Recycling String objects requires simulating a part of its constructor function-
ality to re-populate the underlying character array with new content. Since a
String object is an immutable data structure, this can be implemented efficiently
only with special extension support from the class library or the JVM. For our
experimental evaluation, we use reflection to access/clear/overwrite the array
as required. This incurs a performance penalty, which is mitigated to some ex-
tent by caching the reflection results when the object is first allocated to avoid
the overhead on every iteration. Therefore our results provide a conservative
estimate of performance gain that can be attained through object reuse in this
case.

16 Bhattacharya, S., Nanda, M. G., Gopinath, K. and Gupta, M.

4.4 Implementation Details

We used a source to source transformation approach to evaluate the feasibility
of our automated object reuse/recycle conversion. Simplicity and clarity were
our primary motivation for choosing this approach, e.g. ability to perform a
visual inspection of the changes in source code after transformation. The con-
version may also be implemented using byte-code manipulation and JVM level
optimizations as discussed later.

The inputs required for the transformation are the output of the static anal-
ysis stage, and the source files of the application to convert.

Figure 4 illustrates our running example before and after automatic reuse
conversion. The transformations are performed in a single-pass over source. This
is a slightly modified version of our running example from previous sections,
without the ftab field. As heap no longer escapes via ftab, it is now reusable at
level 2 (i.e. the loop starting at lineno 38 in driver()).

class Klass {
void foo(int num, Hashtable tab) {

14: HashSet seen = new HashSet();

15: Stack work = new Stack();

16: Vector heap = new Vector();

doSomething(work, num);
while (!work.isEmpty()) {

Object w = work.pop();
if (seen.contains(w))

continue;
seen.add(w);
heap.add(w);

}
Integer inum = new Integer(num);
tab.put(inum, heap);

}

void bar(int num) {
Hashtable tab = new Hashtable();

31: for (int n=0; n<num; n+=10) {
foo(n, tab);

}
dumpTabContent(tab);

}

void driver() {
38: for (int num=100; num > 0; num-=5) {

bar(num);
}

}
}

(a) Before transformation

class Klass {
void foo(int num, Hashtable tab) {

14: HashSet seen = REUSE.ReuseHashSet_14();

15: Stack work = REUSE.ReuseStack_15();

16: Vector heap = REUSE.ReuseVector_16();

doSomething(work, num);
while (!work.isEmpty()) {

Object w = work.pop();
if (seen.contains(w))

continue;
seen.add(w);
heap.add(w);

}
Integer inum = new Integer(num);
tab.put(inum, heap);

}

void bar(int num) {
Hashtable tab = new Hashtable();

31: REUSE.idxVector_16 = 0;
REUSE.maxVector_16 = MAX_SLOTS;
for (int n=0; n<num; n+=10) {

foo(n, tab);
}
dumpTabContent(tab);

}

void driver() {
38: for (int num=100; num > 0; num-=5) {

bar(num);
}

}
}

(b) After transformation

At each listed allocation site to convert for reuse (lines 14,15,16), we replace
the call to new with a call to an allocation site specific reuse method which
performs allocation tracking and reuse. At the statement preceding a listed allo-

Reuse, recycle to de-bloat software 17

public class REUSE{
static HashSet HashSet_14;
public static HashSet ReuseHashSet_14() {

if (HashSet_14 != null) {
REUSEUtil.clearHashSet(HashSet_14);

} else {
HashSet_14 = new HashSet();

}
return HashSet_14;

}

static Stack Stack_15;
public static Stack ReuseStack_15() {

if (Stack_15 != null) {
REUSEUtil.clearStack(Stack_15);

} else {
Stack_15 = new Stack();

}
return Stack_15;

}
...

}

static int idxVector_16;
static ArrayList<Vector> Slot_Vector_16 =

new ArrayList<Vector>();
static Vector Vector_16;
public static Vector ReuseVector_16() {

if (idxVector_16 < Slot_Vector_16.size()) {
Vector_16 =
Slot_Vector_16.get(idxVector_16++);

REUSEUtil.clearVector(Vector_16);
} else {

Vector_16 = new Vector();
if (idxVector_16 < maxVector_16) {

Slot_Vector_16.add(Vector_16);
idxVector_16++;

}
}
return Vector_16;

}

Fig. 4. Code transformation example

cation site’s level k − 1 loop header, we insert code to reset the reuse slot index
for the allocation site and specify the maximum slots that may be created. Line
31 is the level 1 loop header corresponding to the level 2 reusable allocation of
heap (idxVector 16 is the corresponding reuse slot index).

A reuse context area and allocation site specific reuse methods are gener-
ated by the transformation. The reuse context fields maintain state correspond-
ing to every allocation site that is converted for reuse. Stack 15 maintains a
reference to the level 1 reusable allocation for work. The reuse methods encap-
sulate allocation tracking and reuse logic specific to these allocation sites, e.g.
ReuseVector 16() uses Slot Vector 16 to keep track of the reuse slots for the
allocation of heap at line 16. The size of the arraylist Slot Vector 16 thus cor-
responds to Reusevar.numslots in Algorithm 2. For level 1 reuse, as in the case
of seen and work, there is a single reuse slot which is accessed directly from
HashSet 14 and Stack 15 respectively. Before returning the reusable reference,
these methods invoke a type-specific utility method to enable reuse for that
object (clearHashSet() for seen, clearStack for work and clearVector for heap).

Reuse context entries are typically stored in a thread local reuse context
area. For single-threaded programs like the above example, we maintain a global
reuse context, to avoid the overhead of thread local context accesses in the
interprocedural case.

4.5 Dynamic analysis guided filtering of candidate reuse sites

A purely static analysis based detection scheme has insufficient information to
prioritize allocation sites to convert based on an estimate of expected savings.
We complement it with a dynamic analysis that profiles allocation sites with
high object churn to guide the selection of statically identified candidate reuse

18 Bhattacharya, S., Nanda, M. G., Gopinath, K. and Gupta, M.

sites that are worth converting. We then apply our object reuse transformation
for those reuse sites.

The dynamic analysis phase takes as input the reuse sites reported by static
analysis and the output of an allocation profiler that captures the volume of
allocated and live vs freed bytes generated at each allocation site under a typical
run of the program. It then generates statistics about the proportion of churn
generated by reuse sites which use collections or strings, and selects the top sites
with significant contribution to overall volume of temporary objects generated.

4.6 Discussion

Alternatives to full source to source transformation Instead of using
a pure source to source transformation approach, object reuse transformations
could also be implemented using byte code manipulation and JVM level opti-
mizations. A JVM can avoid costs of reflection and thread local accesses that we
incur and optimize the overhead of the check required in each iteration to distin-
guish first time allocation and reuse iterations. It can also enable profile guided
object reuse conversion to be applied at runtime for the reusable allocation sites
that exhibit the potential for highest savings.

Extending the technique to non-collection objects The technique may be
generalized further to any object type that is designed to support a special reuse
interface with a type specific reuse method. This method provides an alternative
to the constructor that is called to clear a previous instance of the object or
re-populate it with new content. Such an approach can also be used to enable
partial content reuse by implementing the reuse method to selectively preserve
the content of some fields of the object.

5 Empirical evaluation

We apply our analysis to a few large applications, the SPECjbb2005 benchmark
and the DaCapo benchmarks [4] lusearch, ps, pmd, antlr. We also apply it to
Xylem [5], a proprietary tool that has been built to statically detect null deref-
erences in Java. In this paper we analyze only a subset of Xylem. Table 1 lists a
brief description of the benchmarks used. The freed memory was measured from
the garbage collection (GC) logs saved during execution of the applications and
represents the total bytes freed over all GC cycles.

We apply the static analysis to all these applications, and use our dynamic
analysis to select the applications and candidate reuse sites to convert from
the safe reuse sites found. As shown in Table 3, SPECjbb2005, xylem and
lucene indicate the greatest potential for savings from object reuse for collections
(including Strings and arrays). Hence we apply our automatic transformation to
these applications and report the results in Table 4.

The following section presents our experimental results and analysis.

Reuse, recycle to de-bloat software 19

Application Description Freed Memory
(Object Churn)

SPECjbb2005 Server-side Java Benchmark 8 KB/txn

xylem Proprietary tool to detect null references 1203MB

DaCapo lusearch A text search tool 4913 MB

DaCapo pmd A source code analyzer for Java 1178 MB

DaCapo ps A postscript interpreter 2366 MB

DaCapo antlr A parser generator and translator generator 884 MB

Table 1. Benchmarks analysed

SPECjbb xylem lusearch pmd ps antlr

functions analysed 864 1679 2614 5587 1022 2486

statements analysed 864 33924 69688 126312 19078 100359

total analysis time 23s 33s 55s 8m 15s 20s 3m 16s

prelim analysis time 18s 25s 41s 3m 41s 16s 2m 29s

Results SPECjbb xylem lucene pmd ps antlr

no. of alloc sites 1014 1853 1549 2252 1013 2712

no. of alloc sites in loops 784 1456 776 1076 146 1852

no. of (safe) reuse sites found 251 400 688 577 77 375

no. of collection reuse sites 84 220 266 125 12 97

no. of string reuse sites 27 0 9 4 2 51

no. of sites reusable only 273 148 657 507 67 401
along some paths

pure level 1 reuse sites 90 274 197 166 28 79

pure level 2 reuse sites 4 3 2 0 0 0

min level 1 reuse 280 416 766 640 93 477

min level 2 reuse 15 6 9 1 0 2

Table 2. Reuse site detection statistics

5.1 Reuse site detection statistics (static analysis)

Table 2 summarizes the results of from the static analysis phase to find safe
reuse sites and the closest enclosing loop where they may be reused. We notice
that most opportunities exist at level 1 or level 2 reuse, and that a significant
number of sites are only reusable along some paths and not others. Less than
half of the safe reuse sites found are reusable at a single level along all paths.
Except for ps, most benchmarks have a significant number of collection or string
reuse sites.

Discussion: Analysis Time and Scalability Table 2 also reports the times
for analysis, and how much of that is spent on the preliminary analysis. We
rely on an underlying context-sensitive flow analysis. This is, in general, slow,
however, with suitable engineering, it can be reasonably scalable. Our analysis

20 Bhattacharya, S., Nanda, M. G., Gopinath, K. and Gupta, M.

SPECjbb xylem lusearch pmd ps antlr

%churn at (safe) reuse sites 54% 18.4% 77.5% 16.4% 6% 14.6%

%churn at collection 46.6% 16.5% 63% 5% 3.7% 4.25%
(and string) reuse sites

%churn at sites reusable 6.8% 3.28% 77.2% 15.9% 6% 14%
only along some paths

no of reuse sites with 7 3 22 9 5 12
more than 1% churn

no of collection reuse sites 5 2 8 1 2 1
with more than 1% churn

%churn at top 3 reuse sites 48% 16% 46% 10% 5.8% 5.8%

Distribution SPECjbb xylem lucene pmd ps antlr
of reuse levels

%churn at level 1 reuse sites 81% 99.98 36% 87.2% 50% 84%

%churn at level 2 reuse sites 18% 0.02 64% 12.4% 50% 16%

Distribution SPECjbb xylem lucene pmd ps antlr
of reuse levels
for collections

%churn at level 1 reuse sites 89% 99.98% 25% 42.8% 100% 99.3%

%churn at level 2 reuse sites 11% 0.02% 75% 57.2% 0% 0.7%

Table 3. Reuse site object churn statistics

is built on top of a basic slicer which we have previously run on programs that
are larger than 450,000 lines of code and the preliminary analysis took less than
10 minutes as reported in [5].

The additional analysis that we apply does an all-path exploration to de-
termine the reusability of an object. This is clearly an exponential algorithm.
pmd, at a little over 126K bytecode instructions analyzed, took 8 minutes and
15 seconds to analyze, of which the preliminary analysis took 3 minutes and
41 seconds. Here again, we use standard engineering tactics to contain the ex-
ponential state space exploration. If, for a given object, the analysis takes too
long (currently curtailed at 30 seconds), we abort analysis of the object and
conservatively mark it as not reusable.

5.2 Reuse site object churn statistics (dynamic analysis)

Table 3 captures some of the statistics gathered during the dynamic analysis
phase based on simple allocation profiling to identify reuse sites that generate
more temporary objects.

We observe that in many cases, a few potentially reusable sites cause a per-
ceptible amount of object churn, particularly in SPECjbb2005, lucene and xylem.
The results also reflect the importance of being able to handle reuse sites which
are safely reusable along some paths but not others. In some benchmarks, e.g.
lusearch, the sites that are the top contributors to temporary objects bloat are
of this nature.

Reuse, recycle to de-bloat software 21

5.3 Performance impact statistics

Object reuse conversion was applied only to the reuse sites that are indicated by
dynamic analysis to have a major contribution to object churn. The performance
comparisons between the original and converted application are presented in
Table 4.

In general, the performance impact of reducing object allocations depends on
the workload, choice of JVM used and both JVM and system parameters. For
example, the JVM heap size, the garbage collection algorithm, system memory
bandwidth characteristics (esp. on multi-core systems [6]) and workload specific
tuning can affect results of comparisons. However, in our evaluation we focus on
the effectiveness of our technique rather than characterization of the degree of
performance improvement expected from reducing object churn under different
conditions. Hence we directly use default configurations instead of explicitly
varying/tuning JVM and system parameters.

System Configuration Our performance measurements were taken on a dual core
Intel(R) Core(TM)2 Duo T7500, 2.2 GHz with 2GB RAM running Linux, Java
HotSpot(TM) Server VM (build 14.3-b01, mixed mode). For the SPECjbb2005
measurements, we used an 8-core Intel server (Intel(R) Xeon(R) X5460, 3.16
GHz) with 16GB RAM, running Linux, Java HotSpot(TM) Server VM (build
1.6.0-b105, mixed mode).

JVM settings For Xylem, we used a heap size of 1.6GB. We used out-of-the-box
configuration parameters for the other benchmarks. In the case of SPECjbb2005,
the heap size specified in the default benchmark properties file was 256MB. For
the DaCapo benchmarks, the default heap size was as determined by the JVM.
In all cases, the default garbage collection policy was determined by the specified
JVM.

Since the execution time impact of reducing object creation can be highly
dependent on the JVM and system parameters, we also measure other metrics
like the percentage reduction in bytes of temporary objects used estimated from
garbage collection statistics and relative scaling with larger input sizes. This
enables us to evaluate whether our transformation is efficient enough to exploit
potential for performance gains where opportunities exist.

We observe 20-40% reduction in object churn with our transformation. The
execution time improvements range between 6-20%.

In SPECjbb2005, a single heavy allocation site dominates the reuse counts.
Despite the fact that this is a string object and there are overheads due to
reflection and accessing thread local context, we see significant benefits from
object reuse automation. These improvements appear to be consistent with those
reported for a manual implementation of object reuse by researchers of [6]; their
results were for a well-tuned setup (large heap, GC tuning)9.

9
[6] also reports results of experiments conducted across a whole range of JVM settings (heap

size, GC policies) to show that performance degradation from excessive object allocation in this
case is not a mere artifact of GC algorithm or JVM parameters.

22 Bhattacharya, S., Nanda, M. G., Gopinath, K. and Gupta, M.

SMALL INPUT SIZE SPECjbb xylem lucene

No. of objects reused 24/txn 144851 232881

No. of element allocations reused 1920/txn - 125750

% Reduction in temporary objects generated 41 22 24

% improvement in execution time or throughput 7.9 16.4 6.6

LARGE INPUT SIZE SPECjbb xylem lucene

No. of objects reused 21/txn 342651 448787

No. of element allocations reused 1723/txn - 250739

% Reduction in temporary objects generated 41 27 24

% improvement in execution time or throughput 21.6 19.9 6.2

Table 4. Performance impact statistics: The percentages are baselined against the
correponding results for the original benchmark without object reuse conversion; for
example 100% reduction in temporary objects generated would mean that all object al-
locations were eliminated, 100% improvement in throughput would mean that through-
put doubled.

We note that execution time improvements do not uniformly reflect the per-
centage reduction in objects. As observed by previous researchers [7, 6, 8] the
relationship between percentage reduction in objects and performance is complex
and depends on many factors ranging from workload and program characteris-
tics, object construction costs, JVM tuning and hardware/system characteristics.

6 Related work

Object churn analysis, impact and solutions Many compiler and runtime opti-
mizations like escape analysis [9, 10, 11, 12], escape detection and improvements
in memory management and garbage collection techniques [13] have been devel-
oped to reduce the overheads of allocating and reclaiming temporary objects.
As part of their work on escape analysis, Blanchet [10] consider the problem of
stack size limitations in using stack allocation for loop objects and implement
a simple liveness check to enable reuse of stack allocated space in loops. Their
solution however does not consider higher levels of reuse in nested loops. They
also rely on the use of inlining in case the loop header and allocation site are not
within the same method, which is not practical in framework based applications
where the allocation may lie several levels deep in the call chain from the closest
enclosing loop.

Shankar et al [7] found that even a sophisticated escape analysis implemen-
tation in a high performance production JVM typically eliminates less than 10%
of allocations in component based applications. They experimented with the use
of aggressive guided inlining of regions with high object churn to enable the
JIT to detect more opportunities for stack allocation of objects. In contrast to
their approach we use static analysis approach to perform source code trans-
formations for object reuse, which enables us to detect additional opportunities
without incurring a runtime overhead.

Reuse, recycle to de-bloat software 23

Performance understanding techniques have been proposed [14, 15] for guid-
ing programmers in eliminating excess temporaries that cannot be automatically
detected by runtime optimizers. For example Buytaert et al [15] identify loca-
tions where code refactoring can be applied to reduce object creations. While
their goal is similar to ours, they do not propose automated transformations.
Their detection scheme uses dynamic traces unlike our static analysis approach
where the dynamic analysis phase is only used to estimate potential benefits
from the conversion.

Other approaches that help reduce the impact of excess temporary objects
include advancements in memory management techniques for ensuring faster
reclamation or reuse of temporary objects, e.g taking better advantage of allo-
cation phases in the application [16], or combining the benefits of explicit object
release [17, 18, 8] with garbage collection or scoped batch reclamation. Our
technique is complementary to these efforts as it avoids the creation of objects
wherever possible.

Zhao et al [6] analysed the implications of object allocation on scalability and
performance. They proposed the notion of an allocation wall that limits multi-
core scalability programs that perform high volumes of temporary objects. For
their experimentation they perform manual code modifications to implement a
form of object pooling for objects that are allocated very frequently and showed
significant benefits for SPECjbb and SPECjvm derby. In their paper they observe
that the process of manually converting an application for object reuse is time
consuming and hence impractical for application developers to use. Our work
succeeds in efficiently automating such optimizations for collection objects and
strings.

Analysis and measurement of software bloat Mitchell, Sevitsky and Srinivasan [19]
define metrics based on modeling runtime information flow to classify and char-
acterize the nature and volume of data transformations executed, though these
measures have not been automated till date. The notion of data structure health
signatures proposed by Mitchell and Sevitsky [20] has been used very effectively
in characterization and automated measurement [21] of Java memory bloat in
long lived heap objects. This is a relative measure of total memory bytes con-
sumed by actual data vs associated representational memory overhead. For some
categories of bloat, including the problem of temporary objects bloat which we
address in this paper, an explicit model may not always be available for distin-
guishing overhead from necessary data or activity. Researchers have therefore
used different measures of excesses like excessive volumes of temporary objects,
data copies and heavy object creation costs to recognize the presence of bloat.
For example, Xu et al use an instrumented JVM to summarize chains of runtime
data copies [22] and an abstract thin dynamic slicing technique to identify data
structures with high cost-benefit ratios [23]. Most approaches for detecting bloat
have employed dynamic analysis. [24] applies a static analysis scheme to detect
inefficient uses of container objects, particularly for underpopulated and over-
populated containers. All of these techniques are focused on aiding the process

24 Bhattacharya, S., Nanda, M. G., Gopinath, K. and Gupta, M.

of reducing bloat, however, they are intended for interpretation by experts, not
as fully automated solutions to de-bloat software like ours.

Dufour et al [14] apply blended static and dynamic analysis techniques to
runtime traces for characterizing the usage of temporaries. Their results show
that a significant number of temporary objects may be used several call lev-
els away from their allocation site, which makes them particularly difficult to
optimize. This motivates the need for techniques like ours.

7 Conclusion and future work

We presented an analysis technique to automatically detect and convert oppor-
tunities for object reuse in Java programs where there is significant potential
for benefit from reuse. This is a challenging problem because an object may be
reusable in loops that may be several levels above it in the callgraph. Further,
as our empirical results show, very often objects may be reusable only along
certain paths and not others. In this situation a conservative analysis can miss
most opportunities for reuse. We are able to improve precision in such situations
by checking whether the conditions required for the correctness of our runtime
transformation are met in the event these paths share the same loop header.
Our results show that this solution can detect such opportunities in real large
programs and reduce the generation of temporary objects significantly.

Further improvements in scalability and precision of our solution can be
attained by incorporating feedback from our dynamic analysis to focus static
analysis on the allocations sites that are likely to yield most benefits. Other
future work includes extending the applicability of our automated transformation
to other types of objects and using a combination of byte code manipulation and
JVM level optimizations to improve the performance of the transformed code.

Acknowledgments

We thank Gary Sevitsky, Matt Arnold, Kazuaki Ishigaki, Dibyendu Das, Vijay
Mann and Prasanna Kalle for their help, particularly their contribution to dis-
cussions on the problem of Java temporary objects bloat that motivated this
work. We also thank Rupesh Nasre, and our anonymous reviewers for their ex-
cellent feedback on the paper.

References

[1] Mitchell, N., Schonberg, E., Sevitsky, G.: Four trends leading to java runtime
bloat. IEEE Software 27(1) (2010) 56–63

[2] Xu, G.e.a.: Software bloat analysis: Finding, removing, and preventing perfor-
mance problems in modern large-scale object-oriented applications. In: Future of
Software Engineering Research ’10. (2010)

[3] Shirazi, J.: Java performance tuning, O’Reilly (2003)

Reuse, recycle to de-bloat software 25

[4] Blackburn, S.M.e.a.: The DaCapo benchmarks: Java benchmarking development
and analysis. (In: Object-Oriented Programming, Systems, Languages and Ap-
plications (OOPSLA))

[5] Nanda, M.G., Sinha, S.: Accurate interprocedural null-dereference analysis for
Java. In: Proc. of the 31st Intl. Conf. on Softw. Eng. (2009) 133–143

[6] Zhao, Y., Shi, J., Zheng, K., Wang, H., Lin, H., Shao, L.: Allocation wall: a limiting
factor of java applications on emerging multi-core platforms. In: Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA). (2009)

[7] Shankar, A., Arnold, M., Bodik, R.: Jolt: lightweight dynamic analysis and re-
moval of object churn. In: Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA). (2008)

[8] Guyer, S., McKinley, K., Frampton, D.: Free-me: A static analysis for automatic
individual object reclamation. In: Programming Language Design and Implemen-
tation (PLDI). (2006)

[9] Choi, J.D., Gupta, M., Serrano, M., Sreedhar, V.C., Midkiff, S.: Escape analysis
for java. SIGPLAN Not. 34(10) (1999) 1–19

[10] Blanchet, B.: Escape analysis for object-oriented languages: application to java.
SIGPLAN Not. 34(10) (1999) 20–34

[11] Gay, D., Steensgaard, B.: Fast escape analysis and stack allocation for object-
based programs. In: International Conference on Compiler Construction. (2000)

[12] Whaley, J., Rinard, M.: Compositional pointer and escape analysis for java pro-
grams. SIGPLAN Not. 34(10) (1999) 187–206

[13] Bacon, D.F., Cheng, P., Rajan, V.T.: A unified theory of garbage collection.
SIGPLAN Not. 39(10) (2004) 50–68

[14] Dufour, B., Ryder, B.G., Sevitsky, G.: A scalable technique for characterizing
the usage of temporaries in framework-intensive java applications. In: SIGSOFT
’08/FSE-16. (2008) 59–70

[15] Buytaert, D., Beyls, K., De Bosschere, K.: Hinting refactorings to reduce object
creation in java. In: ACES. (2005) 73–76

[16] Xian, F., Srisa-an, W., Jiang, H.: Microphase: an approach to proactively invoking
garbage collection for improved performance. In: Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA). (2007)

[17] Cherem, S., Rugina, R.: Uniqueness inference for compile-time object dealloca-
tion. In: ISMM. (2007)

[18] Inoue, H., Komatsu, H., Nakatani, T.: A study of memory management for web-
based applications on multicore processors. In: Programming Language Design
and Implementation (PLDI). (2009)

[19] Mitchell, N., Sevitsky, G., Srinivasan, H.: Modeling runtime behaviour in frame-
work based applications. In: European Conference on Object-Oriented Program-
ming (ECOOP). (2006)

[20] Mitchell, N., Sevitsky, G.: The causes of bloat, the limits of health. In: Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA). (2007)

[21] Mitchell, N., Schonberg, E., Sevitsky, G.: Making sense of large heaps. In: Euro-
pean Conference on Object-Oriented Programming (ECOOP). (2009)

[22] Xu, G., Arnold, M., Mitchell, N., Rountev, A., Sevitsky, G.: Go with the flow:
profiling copies to find runtime bloat. In: Programming Language Design and
Implementation (PLDI). (2010)

[23] Xu, G.e.a.: Finding low-utility data structures. In: Programming Language Design
and Implementation (PLDI). (2010)

[24] Xu, G.e.a.: Detecting inefficiently-used containers to avoid bloat. In: Programming
Language Design and Implementation (PLDI). (2010)

