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Abstract

Modern architectures support multiple size pages to facilitate applications that use large chunks

of contiguous memory either for buffer allocation, application specific memory management,

in-memory caching or garbage collection. Most general purpose processors support larger page

sizes, for e.g. x86 architecture supports 2MB and 1GB pages while PowerPC architecture

supports 64KB, 16MB, 16GB pages. Such larger size pages are also known as superpages

or huge pages. With the help of huge pages TLB reach can be increased significantly. The

Linux kernel can transparently use this huge pages to significantly bring down the cost of TLB

translations. With Transparent Huge Pages (THP) support in Linux kernel the end users or

the application developers need not make any modification to their application.

Memory fragmentation which has been one of the classical problems in computing systems

for decades is a key problem for the allocation of huge pages. Ubiquitous huge page support

across architectures makes effective fragmentation management even more critical for modern

systems. Applications tend to stress system TLB in the absence of huge pages, for virtual

to physical address translation, which adversely affects performance/energy characteristics in

long running systems. Since most kernel pages tend to be unmovable, fragmentation created

due to their misplacement is more problematic and nearly impossible to recover with memory

compaction.

In this work, we explore physical memory manager of Linux and the interaction of kernel

page placement with fragmentation avoidance and recovery mechanisms. Our analysis reveals

that not only a random kernel page layout thwarts the progress of memory compaction, it can

actually induce more fragmentation in the system. To address this problem, we propose a new

allocator which takes special care for the placement of kernel pages. We propose a new region

which represents memory area having kernel as well as user pages. Using this new region we

introduce a staged allocator which with change in fragmentation level adapts and optimizes the

kernel page placement. Later we introduce Illuminator which with zero overhead outperforms

default kernel in terms of huge page allocation success rate and compaction overhead with

respect to each huge page. We also show that huge page allocation is not a one dimensional
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Abstract

problem but a two fold concern with how the fragmentation recovery mechanism may potentially

interfere with the page clustering policy of allocator and worsen the fragmentation.

Our results show that with effective kernel page placements the mixed page block counts

reduces upto 70%, which allows our system to allocate 23% more huge pages than the default

Kernel. Using this additional huge pages we show up to 41% improvement in terms of energy

consumed and reduction in execution time up to 40% on standard benchmarks.
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Chapter 1

INTRODUCTION

Complex and large working sets of modern applications are known to gain substantial benefits

with huge pages. As a result, robust huge page support is available across general purpose

processors at different granularity. For example, x86 64 systems support 2MB and 1GB huge

pages while PowerPC facilitates huge pages of 64KB, 16MB and 16GB. When the working set

of an application surpasses system TLB reach, a large proportion of system effort goes into

translating virtual to physical addresses. While the memory capacity in systems has grown

exponentially the TLB entries available has not increased similarly. With increase in memory

availability, the application working set has also gone up. This has significantly widened the

memory to TLB reach ratio which means many of the pages referenced by applications incurs

a TLB miss which increases the translation cost by many folds. Huge pages can minimize this

translation cost by mapping large portions of process address space into a single TLB entry.

Further, huge pages can improve cache prefetching as now the prefetching need not be stopped

at 4KB page boundary. Also once the system is using huge pages, the page table walk cost

reduces due to lesser number of page tables required to map the same amount of memory as

show in Figure 1.1.

Linux kernel developers have made significant effort to make huge pages available and be

automatically used by applications with Transparent Huge Page(THP) support. THP is an

efficient way of using huge pages for the backing of virtual memory with huge pages that

supports the automatic promotion and demotion of page sizes. THP maximizes the usefulness of

free memory compared to the reservation approach of hugetlbfs by allowing all unused memory

to be used as cache or other movable (or even unmovable) entities. THP allows paging and all

other advanced virtual memory features to be available on the huge pages. Also no modifications

are required to application for making use of THP.

However, facilitating allocation of large contiguous blocks is a challenge for operating sys-
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Chapter 1. INTRODUCTION

Figure 1.1: Huge page in 64 bit Linux for x86 64

tems because of fragmentation.

Fragmentation, which is mainly categorized in two forms; internal and external, spans across

all forms of storage/memory domains (e.g., disks, process heaps, physical memory). External

fragmentation is a situation where sufficient free resources are available but allocation request

can not be satisfied because of the non-contiguity of free regions. Internal fragmentation occurs

when a larger block than the request size is allocated. Both internal and external fragmentation

leads to wastage of space but apart from that there are many other implications. It may also

incur performance/energy loss due to inefficient resource utilization like huge pages. In the

context of this thesis, we only talk about external fragmentation in physical memory at huge

page granularity (i.e., unavailability of free memory regions aligned with huge page size) and

refer to it as fragmentation for simplicity.

Defragmentation (also known as compaction) is a popular mechanism to recover from frag-

mentation in running systems. However, there are subtle differences in defragmenting physical

memory as compared to disks or process heaps. In the latter cases it is relatively easy to copy

objects from one place to another while physical memory can have significant number of un-

movable pages. Operating systems typically have a large pool of non-pageable kernel memory

objects which can neither be swapped to disk nor migrated in memory primarily due to the

lack of unmanaged references. Pages backing these objects are pinned in memory during their

lifetime and it is the placement of these pages on physical address space that decides the degree

to which compaction can accumulate large contiguous regions. As most of the operating sys-

tems typically have unmovable kernel pages [14], compaction is limited by these kernel pages

since it now can only move user pages.

2



Chapter 1. INTRODUCTION

Every kernel page, during its lifetime, prevents its memory block from being allocated

as huge page to user applications. Hence, facilitating huge page allocations in the presence of

unmovable pages demand different solutions for controlling fragmentation. It requires protecting

contiguous blocks (that constitute huge pages) from kernel memory allocations. Linux utilizes

page clustering based anti-fragmentation [10] to confine unmovable allocations within fewer

regions. It helps memory subsystem in two ways: delaying fragmentation and facilitating easy

recovery from it. However, page clustering suffers badly in its current form when memory gets

divided in smaller blocks. We show that it happens due to poor page selection in an infrequently

traversed path of underlying page allocator.

Interestingly, minimizing the number of blocks occupied by kernel pages is not sufficient.

Our experiments show that physical location of kernel pages also impact memory subsystem

and their interference with compaction can actually exacerbate fragmentation in long running

systems.

In this thesis we explore 4 different approaches to mitigate the gap between the policy

and implementation of page clustering anti fragmentation approach used by Linux kernel. We

modify the virtual memory subsystem of Linux kernel so as to adapt to the varying level of

fragmentation which in turn allows us to make an intelligent choice of kernel page selection.

We also propose Illuminator which introduces a new region which ensures better placement

of kernel pages and easy recovery from fragmentation. This ultimately helps in reducing the

external fragmentation caused due to misplacement of kernel pages and boost the system ability

to allocate more huge pages to applications.

The primary contributions of this thesis are:

1. Evaluating the gap between policy and implementation of page clustering in Linux kernel

2. Evaluating the impact of different kernel page layouts on memory compaction.

3. Propose and implement an adaptive allocator which monitors the fragmentation and

invests effort accordingly for kernel requests

4. Propose and implement Illuminator, which introduces a new region called composite

region which enables easy allocation and recovery of huge pages. It also reduces the

overhead on compaction when called for accumulating huge pages.

5. Performance analysis of the proposed allocator with respect to fragmentation, huge pages

allocation, execution time and power savings

3



Chapter 1. INTRODUCTION

The rest of this thesis is organized as following : Chapter 2 provides overview of Linux

memory manager, buddy allocator and issue related fragmentation and compaction. Chapter

3 discusses related work. Chapter 4 provides the design and implementation of our framework.

Results related in the context of memory fragmentation, huge page allocation success, TLB

miss reduction, execution time reduction with energy savings are discussed in Chapter 5 along

with the detailed evaluation of system performance with modified VM framework. Finally, we

present our conclusion and directions for future work in Chapter 6.

4



Chapter 2

BACKGROUND

This chapter discusses a subsystem of Linux virtual memory framework which manages the

physical memory and we outline the page allocation and page free operations. We modify this

part of the Linux VM to deal with the fragmentation arising due to the placement of kernel

pages.

2.1 Overview of Linux Memory Manager

Currently the Symmetric Multiprocessing (SMP) systems comes with processors that provide

local memory for improving the system performance in Non-Uniform Memory Access (NUMA)

architecture. Remote node memory access latency can be significantly higher based on the

distance between requesting CPU and memory. Commercial applications can perform poorly

upto 20% due to remote access. Operating systems generally are NUMA aware which try to

optimize the performance through allocating the memory from local node.

Linux divides the memory nodes into different groups called as memory zones. The standard

Linux kernel zone layout on x86 and x86 64 architectures are shown in Figure 2.1. The first

16MB of physical memory is represented by Zone DMA while Zone NORMAL is represented

by the portion of memory which can be directly mapped in kernel address space. 4 GB of

address space is typically divided in the ratio of 3GB and 1GB between user and kernel space

respectively. Kernel reserves 128MB for the mappings beyond 1GB and due to this the zone

NORMAL represents memory upto 896MB. The remaining memory if availbale is given to zone

HIGHMEM.

Zone HIGHMEM is not at all required in 64-bit architecture as most of the memory can be

directly mapped in the kernel address space and DMA32 occupies upto 4GB of memory which

can be addressed by modern DMA devices.

5



Chapter 2. Background

Figure 2.1: Standard Linux Kernel Zone Layout

Linux uses a variant of binary buddy allocator for managing page allocation and page freeing

operations as shown in Figure-2.2. Most commonly used page size across different architectures

and operating systems is 4KB 1. It maintains MAX ORDER (defined as 11 in x86) doubly

linked lists. The data structure used to represent this list is called free area in kernel source.

Each list, from order 0 to MAX ORDER-1, represents 2order contiguous pages in a single list

entry [10]. While allocating a page, buddy allocator searches a desired list and allocates first

page from it. A higher order page can be split into multiple smaller pages to satisfy a memory

allocation request if the list corresponding to required order page is empty. While freeing a

page, buddy allocator first checks if the neighboring page (also called as buddy) of the same

size is free. The pages are merged into a larger page if the buddy is found to be free before

inserting into the free list. The process is repeated until either the buddy is not free or the free

pages have already been merged to form the largest free page.

Pageblock is an order 9 page, which contains 512 contiguous 4KB pages. Pageblock is

aligned with default huge page size of x86 64 i.e., 2MB. Each pageblock has a migrate type

associated with it which represents the type of pages present in that pageblock. Allocations of

similar type are tried to be clustered inside a single pageblock. The pageblock migrate type is

also used to decide which list the freed page should be added.

Despite having both internal and external fragmentation problems, buddy allocator is pre-

ferred for its speed [10]. It can allocate even large chunk of contiguous pages in a single look-up

on free area structure as long as free memory is available. Internal fragmentation occurs when

the granularity of memory allocation is larger than the object size requested. External fragmen-

tation is a situation where sufficient memory is available for allocation but is split in multiple

blocks (non-contiguous) and hence can not be used. Slab allocator handles internal fragmen-

tation carefully which is used to allocate small objects. External fragmentation is somewhat

mitigated by eliminating the need for large contiguous chunks of physical memory from different

Linux subsystems and by providing virtually contiguous memory to process. However, larger

blocks are needed in allocation of huge pages which require contiguous area in physical address

1Larger than 4KB page size are also known as huge page or super pages

6



Chapter 2. Background

Figure 2.2: Layout of free area structure. Anti-fragmentation lists shown correspond to an
order 2 block and hence contain 4 pages in a single block.

space.

One important factor contributing to external fragmentation is the presence of non-movable

pages, pages that are pinned in memory and can not be moved to another physical location

using page migration. Generally these pages are owned by kernel and contain critical data like

process page tables or driver data. For user pages, there is a back trace from a page to the

set of page tables that are referring to it and migrating such a page is possible by copying

page content and modifying those page table entries. Kernel pages are accessed by kernel-

space pointers rather than page tables and hence can not be migrated without modifying these

pointers for which there is no back trace as of now.

When system runs out of large contiguous memory blocks and memory allocations start

failing, zone compaction is performed to cluster free pages together by migrating some pages

from one location to another. However, page migration is often restricted when non-movable

pages scatter throughout entire address space and leave very few (or none) contiguous blocks

with only movable pages.

2.2 Anti Fragmentation

To deal with the problem of non-movable pages, each order’s free list is divided in different

sub-lists as part of anti-fragmentation [10] which is a technique that tries to stop fragmentation

from happening in the first place. These sub-lists are managed by free list structure which is

embedded inside free area. Figure 2.2 shows layout of free area structure including relevant sub-

lists for order 2 free list. MIGRATE UNMOVABLE and MIGRATE RECLAIMABLE typically

represents memory used by kernel with one major distinction that UNMOVABLE pages can

not be easily moved or reclaimed while RECLAIMABLE are pages which kernel can directly

reclaim (such as those used by slab caches).

MIGRATE MOVABLE is associated with user applications and contain anonymous or page

7



Chapter 2. Background

Algorithm 1 : Kernel Memory Fallback Routine
1: fallback kernel(request order)
2: for order = 10 to request order do
3: if !list empty(USER, order) then
4: page = get head page(USER, order)
5: break
6: end if
7: end for
8: if page then
9: nr reserved = reserve page block pages(page)
10: if nr reserved >= page block nr pages/2 then
11: change page block domain(page, KERNEL)
12: end if
13: / ∗ split if page is large, before returning ∗ /
14: return page
15: else
16: return NULL
17: end if

cache pages that can be migrated any time. MIGRATE CMA (CMA stands for Contiguous

Memory Allocator) is for DMA devices that can take advantage of large contiguous blocks and

need not go through the complex set of structures to access memory pages. One difference

between CMA and MOVABLE migrate types is that migrate type of a pageblock containing

MIGRATE CMA pages cannot be changed explicitly. Pages belonging to MIGRATE ISOLATE

free lists are not used for allocation. It serves the purpose of temporarily removing pages from

the allocation path and is often required in cases like NUMA migration. There are a couple of

more lists as well but they are of no interest in the context of this thesis.

Another solution available in Linux for controlling fragmentation is the presence of op-

tional ZONE MOVABLE [11]. It creates a zone that is usable only for movable allocations

(anon/page-cache pages). Size of this zone is determined by the movablecore (or kernelcore)

parameter specified at boot-time. Similar to ZONE MOVABLE, we also consider everything

to be unmovable except MIGRATE MOVABLE and MIGRATE CMA pages.

2.2.1 Fallbacks

When an allocation request comes in, kernel knows its migrate type based on the source of

allocation for example the page fault, and allocates pages from the respective list. It can also

steal pages (called as fallback in kernel source) from another list if no pages are present in the

requested lists of same or higher order, we will refer to this event as fallback in future. The

trick is to steal the highest order available page (preferably 4MB) from the closest migrate type.

8



Chapter 2. Background

Stolen pages from a higher order list are used to satisfy subsequent requests of same type which

helps in clustering same migrate type pages together. Once non-movable pages are clustered in

large blocks, compaction can provide large free pages by migrating pages from movable memory

blocks.

2.3 Memory Compaction

When an allocation request fails, Linux kernel checks the fragmentation index to deduce if the

failure was due to low memory or due to external fragmentation. If the failure is due to low

memory then page caches are dropped and the allocation is tried again else if the failure was

due to external fragmentation than it calls memory compaction to compact physical memory

so as to make contiguous space for the allocation to be satisfied. If kernel pages are clustered

in a few page blocks, user pages can be moved around in memory relatively easily to enable

huge page allocations. For the purpose of understanding, compaction can be thought of as a

combination of two scanners:

1. The first one starts at the bottom of memory zone and prepares a list of in-use (but

movable) pages. We refer to them as source pages hereafter.

2. The other works at the top of memory zone and collects free pages in a linked list which

we call as target pages.

Once the two scanners meet, source pages are copied onto target list and their references are

updated properly. As shown in figure 2.3 before the compaction there was external fragmen-

tation due to which even order 1 (2 consecutive pages) request will fail, but after compaction,

even order 2 (4 consecutive pages) requests can be satisfied.

2.4 Experimental Study

Compilation of Linux kernel is popularly known for fragmenting physical memory. Hence, we

run kernel builds for analyzing Linux fragmentation management framework on a 4GB system.

Figure 2.3: Memory Compaction

9



Chapter 2. Background

Figure 2.4: The mixed page block formation rate with default and optimal algorithms on a
2GB system.

A detailed analysis of our experiments is discussed below:

2.4.1 Issues with Anti-Fragmentation

Anti-fragmentation works well in terms of restricting kernel memory within few page blocks as

long as kernel memory is being allocated from its respective domain or fallbacks are able to

reserve relatively large page blocks. However, its behavior is not sustainable in busy systems

running for long periods of time for following reasons:

1. A random page block selection during fallbacks is likely to result in insufficient pages

getting reserved especially when free pages are not available in high order buddy lists. It

causes consecutive kernel allocations to fallback on different user page blocks.

2. When fallbacks reserve pages without updating the page block ownership (i.e., if condition

fails on line 10 in Algorithm-1), page block gets divided between two domains. On one

hand, its free pages are allocated as kernel memory while pages that were already allocated

from it are freed back to user domain.

Such behavior of kernel memory fallbacks can cause a large number of page blocks containing

kernel pages in long run. Note that none of the page blocks containing kernel pages can be

used as huge page by user applications irrespective of the amount of free memory available in

them. Hence, we can measure the impact of kernel page placement on memory fragmentation

by calculating the number of tainted page blocks. A page block is called tainted if both kernel
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pages and user pages have been allocated from it. Figure-2.4 shows the number of tainted

page blocks for a single kernel build. Initially anti fragmentation approach works well but with

time the number of tainted page blocks shoots up in case of default kernel whereas our optimal

kernel (explained in Section 4.1) is able to limit the tainted page block significantly. This shows

that the anti fragmentation approach is prone to scatter kernel pages on physical address space

thereby greatly reducing the possibility of huge pages allocation to user applications.

Further, we define for each user page block the degree of pollution as the fraction of its

memory allocated as kernel pages. Table-2.1 shows the degree of pollution for all user tainted

page blocks at the end of two successive kernel builds. We find more than 80% (1345 out of

1667) user page blocks being mixed while majority of them are mixed because of the presence

of very few kernel pages (24 page blocks contain only 1 and more than 90% of page blocks

contain less than 10% kernel pages).

2.4.2 Issues with Memory Compaction

Memory compaction, in its current form, does not interact with buddy allocator1 while collecting

target pages. It scans memory from the upper end and prepares a list of free pages irrespective of

memory domains. Our observations indicate that its ignorance of anti-fragmentation is actually

a source of exacerbated fragmentation in long running systems for following reasons-

• If source pages are selected from page blocks containing kernel pages, free regions will not

be accumulated at huge page granularity.

• If target pages are selected from page blocks belonging to kernel domain, it will constrict

free space in kernel domain. It is more likely to cause future kernel memory requests to

fallback on user page blocks.

1Note that buddy allocator can not help much when most page blocks contain kernel pages. It is the primary
reason why compaction does not get target pages via buddy allocator.

Degree of Pollution # pageblocks
<1 112 (8%)
1-2 89 (7%)
2-4 241 (18%)
4-10 781 (58%)
>10 121 (9%)
>25 4
>40 0

Table 2.1: Distribution of kernel pages across all user page blocks. Note that more than 90%
page blocks are less than 10% polluted with kernel memory.
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Figure 2.5: Unusable free space index (lower is better) with different kernel memory arrange-
ments.

To investigate and validate the properties discussed above, we use two modified kernels

i.e., KML (Kernel Memory Lower) and KMU (Kernel Memory Upper) for placing kernel pages

towards the lower and upper end of memory respectively and measure the effectiveness of

memory compaction. We expect following behavior from the two variants-

• In KML, kernel pages are aligned towards the lower end of memory while page blocks

towards the upper end belong to user applications. Although pages can be allocated

arbitrarily under memory pressure (depending on the state of free memory), bulk of

kernel pages gets placed towards the lower end by default. Hence, compaction can not

produce free huge pages since source pages get selected from page blocks containing kernel

pages in KML.

• In KMU, since source pages are selected from user page blocks, it should be relatively

easy to free contiguous regions for immediate use. However, target pages come from

kernel page blocks which should result in exacerbated fragmentation even for a few kernel

memory allocations after compaction.

We can measure the success of memory compaction using unusable free space index [10], for

different memory block sizes as follows -

Fu(j) =
TotalFree−

∑max
i=j 2iki

TotalFree
(2.1)
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where TotalFree is the number of free pages in system, j is the order of desired memory

block size, max is the largest allocation order and k is the number of free blocks of order

i. F u(j ) essentially represents the fraction of free memory that cannot be used to satisfy a

memory request of order j. For example, a value of 0 means that any free block can be used

for a particular request and hence a lower value is desirable for F u(j ).

We invoke full memory compaction via proc interface after finishing kernel compilation with

KML, KMU and default kernel and measure the unusable free space index. While KML was

not able to accumulate any block greater than order 7, KMU performed better than the default

kernel. We monitor the KMU configuration a little longer after compaction is finished to observe

its long term consequences. Though KMU performed better than the other two variants at the

end of memory compaction, the unusable free space index reaches almost 1 for all memory

blocks (greater than order 5) in a short period of time which is worse than the other two from a

long term perspective. Figure-2.5 shows the unusable free space index across all configurations.

Note that KMU-1 and KMU-2 represents the KMU configuration immediately and sometime

after compaction. The experiments confirm our observations that the physical location of kernel

pages plays an important role in determining the success of memory compaction.

Another observation come from a different configuration of KML where we forced kernel

memory to fall aggressively towards the lower end of memory using page migration. We observed

that despite tainted page block count being very low, the unusable free space index for huge

pages was still very high at the end of our test. It indicates that minimizing the number of

tainted page blocks is necessary but not a sufficient condition for controlling fragmentation.

2.5 Summary of Motivation for Thesis

The complex interconnection among memory compaction, anti-fragmentation and the layout

of kernel pages makes fragmentation a challenging problem. While effective anti-fragmentation

and defragmentation are of paramount importance within their disciplines, a cooperative frag-

mentation management is required for a robust huge page friendly memory manager.

Fragmentation limits the use of huge pages for applications which in other case would have

improved the execution time and energy performance of this applications. As of now Linux does

not invest any effort to reduce the fragmentation due to kernel page placement under stressful

conditions.

The real problem with respect to fragmentation appears when kernel memory starts growing

beyond its domain. When this happens, kernel pages need to be allocated from user domain

(we call this event as memory fallback in the rest of the thesis). During fallback, a random

page is selected from the highest order non-empty buddy list and rest of the pages from its page
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block are stolen for future kernel memory allocations. However, a random page selection results

in an inefficient realization of page clustering causing interleaving of kernel and user pages on

majority of page blocks in long run. Compaction also suffers due to this interleaving as page

blocks containing kernel pages can not be freed entirely. Over a period of time, system finds it

difficult to provide applications with huge pages.

In this thesis we focus on improving the anti-fragmentation framework such that the frag-

mentation due to kernel page placement is minimized with minimum effort.

Our analysis shows that fallback is a rarely executed code path and hence there exists suffi-

cient scope to optimize its impact on fragmentation without sacrificing the overall performance

of memory allocator.
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RELATED WORK

Several fragmentation management schemes have been developed over the years which tries to

reduce the fragmentation caused in physical memory. Most of these solutions have gone with

separation of kernel memory and user memory into some kind of regions or domains. Some

have come up with smaller granularity separation for user and kernel memory which is flexible

while few approach follows static boot time separation. Internal fragmentation is a concern

when we fix the size of any domain. Thus there is a trade-off which these techniques try to

balance. Most of these frameworks have been explored and analyzed in Linux kernel.

Gorman et al. [10] introduced two approaches toward active anti-fragmentation. The list

method tries to maintain different lists at each order to allocate requests coming from kernel

or user. If the request cannot be satisfied from the designated list then it can steal from other

list. Other method is to separate allocations into different zones. At boot time the user can

specify the amount of memory that should be reserved for kernel allocations. This is a static

approach as the memory to be reserved has to be mentioned beforehand and clearly, specifying

a suitable value is difficult. Authors show that the list based and zone based techniques are

able to reserve huge pages after rigorously stressing the memory, but the zone based technique

is able to out perform the list. Trade-off between flexibility and performance is discussed which

points that list based is more suitable approach for current memory systems but it is the zone

based technique which gives best performance.

Gorman et al. [11] propose a memory compaction mechanism that migrates pages from

sparsely populated to dense regions when enough memory is free to avoid reclaiming pages.

Authors highlight that parallel allocators prevent contiguous allocations by taking free pages

from regions being reclaimed. They also propose a method for addressing this by making

pages temporarily unavailable to allocators. Both the papers by Gorman are considered to be

practical and hence they are incorporated in Linux as a primary countermeasure for memory
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fragmentation. However, the anti fragmentation or the page clustering policy mainly focuses

on ensuring physical contiguity of small-order pages and is insufficient for higher order pages

like the huge pages.

Gorman [9] proposed a scheme to group pages based on their mobility type to facilitate easy

recovery of huge pages in a fragmented system. Gorman also proposed a contiguity aware page

reclamation algorithm to free memory from huge page aligned regions. While the approach

works well when fragmentation is low, it fails to recover huge pages once the system is severely

fragmented.

Sang-Hoon Kim et al. [13] presented a proactive anti-fragmentation approach that groups

pages with the same lifetime, and stores them contiguously in fixed-size contiguous regions. In

Android Linux when a process is killed to secure free memory, a set of contiguous regions are

freed and subsequent contiguous memory allocations can be easily satisfied without incurring

additional overhead. The proposed scheme greatly alleviates fragmentation, thereby reducing

the I/O buffer allocation time, associated CPU usage, and energy consumption. The work

is very specific to Android as only in mobile space does the process is killed when memory

needs to be reclaimed as there is no swap space for swapping pages. Hence, while this solution

is quite effective in Android Linux it does not address fragmentation occurring in server and

workstations. Navarro et al. [17] proposed a reservation based scheme to support huge pages.

They claim that fragmentation must be in a controlled to benefit from huge pages. Their

approach is to recover from fragmentation rather than preventing the fragmentation beforehand,

thus inducing management overheads.

All the above approaches either create separate regions for distinguishing various types of

allocations or try to recover from fragmentation once higher order pages are not available. None

of the methods mentioned above puts the extra effort to decide on an action plan when enough

memory is not available in kernel region and it has to fallback to user region for kernel memory.

Even with our minimal modification of kernel and simple design shows significant improvements

with respect to huge page allocations.

Another orthogonal approach which one can follow is through minimizing the kernel memory

footprint itself. Aravinda et al. came up with Prudence, a dynamic memory allocator that is

tightly integrated with the synchronization mechanism to ensure visibility of deferred objects

to the memory allocator. Such an integration enables Prudence to (i) identify the safe time to

reclaim deferred objects memory, (ii) have an inclusive view of the allocated, free and about-

to-be-freed objects, and (iii) exploit optimizations based on the hints about the future during

important state transitions.

While all the above methods do not actually tackle the core problem of non movable kernel
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pages, some have tried to make parts of kernel itself movable. This patch enables moving of

balloon driver pages which are largely used in virtualization. There is a fair amount of work

required to support compaction in an arbitrary kernel subsystem. As a result, this support is

likely to be confined to a relatively small number of subsystems that use substantial amounts of

memory. Gioh’s patch adapts the balloon driver subsystem in this way; on systems employing

virtualization, balloon devices can (by their nature) use large amounts of memory, so making

it movable makes some sense. Other possible use cases include long-lived I/O buffers or drivers

(such as graphics drivers) that need to store large amounts of data.
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DESIGN AND IMPLEMENTATION

In this chapter, we discuss four approaches to tackle fragmentation due to kernel page place-

ments. Each has its own pros and cons with respect to running time efficiency, success rate and

novelty.

4.1 Optimal Page Block Selection (OPBS)

We define an optimal page block as the one that would result in maximum pages getting

reserved during kernel memory fallbacks. In OPBS, all order lists are linearly scanned to search

the best possible page block which has maximum number of free pages to reserve for future

kernel requests. To facilitate quick look-up for the number of free pages in a page block we

maintain free page count in each page block data structure. This allows us to check for free

page count in constant time.

Following are the issues related to OPBS

• Time consuming page block scanning: System having very large memory broken

in smaller pages might lead to very long scanning process of page blocks. This may

significantly increase the page allocation time.

• Running time inefficiency: Running time for this technique is linear, i.e. it will scan

all page blocks.

Even though the cost of scanning page blocks is high, following optimizations make fallback

a rarely executed code path in practice:

• The kernel is a highly organized system and its memory footprint is very low compared

to user applications. Hence, its contribution is a tiny fraction of all memory requests in

the system.
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• Slab allocators [4] have been implemented on top of buddy allocator to serve memory

requests of kernel objects. It is only when slab pages get exhausted that kernel memory

request is handled by buddy allocator.

• Memory domains tend to balance their size depending on the workloads. Hence, majority

of kernel allocations come from kernel domain.

4.2 Active Anti Fragmentation (AAF)

Active anti-fragmentation [12], originally proposed by Joonsoo Kim, has been discussed in the

community as another potential optimization for improving upon fragmentation in Linux. The

idea behind AAF is to always reserve an entire page block during kernel memory fallbacks. In

this approach when the kernel request fallbacks to a user page block, all user pages already

allocated in that page block are migrated to a different page block so as to reserve this free

pages for future kernel requests.

AAF is the closest approach to page clustering in Linux, as it strictly tries to reserve all

available pages for kernel even when they are allocated. It not only reserves the free pages but

moves all allocated user pages elsewhere in memory for future kernel requests.

Following are the issues related to AAF

• Migrating pages overhead: AAF will move all the movable pages elsewhere in memory

to reserve maximum pages for future kernel requests. This is costly in terms of allocation

of pages.

• Lock Contention: AAF technique uses locks to move pages and it may incur some

delay.

• TLB shootdowns: We observed an order of magnitude more TLB shootdowns with a

kernel memory intensive workload like kernel build.

4.3 Incremental Page Block Selection (IPBS)

Incremental page block selection adapts to the fragmentation in system and makes a clever page

block choice to avoid the spread of kernel pages. IPBS improves on the running time efficiency

of OPBS by trading slight optimality. It essentially works at 4 levels, which are described as

follows.

LOW: System boots and remains in LOW till page block size pages are available for reser-

vation on kernel fallbacks. Here the behavior of the allocator is similar to the one on default
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Algorithm 2 *

Algorithm-2: Incremental Page Block Selection (IPBS)

1: fallback kernel IPBS(request order)
2: ....
3: if level = LOW then
4: page = get head page(USER, request order)
5: else if level = MEDIUM then
6: page = get random page(USER, request order)
7: else if level = HIGH then
8: page = get optimal page in list(USER, request order)
9: else /* CRITICAL */
10: page = get page OPBS(USER, request order)
11: end if
12: ....
13: adjust level();
14: return page

kernel which facilitates speedy allocation. Here the overhead involved for kernel fallback is non-

existent. As the allocator is able to allocate page block size pages on kernel fallbacks, allocator

infers that fragmentation is not a concern as of now and hence, it allocates in default manner.

MEDIUM: Once the allocator fails to allocate page block size pages for kernel fallback a

situation we call MEDIUM fragmentation, it switches to MEDIUM in which it randomly picks

2 page blocks and allocates the one having more number of free pages which leads to more pages

being reserved for future kernel requests. This ultimately leads to fewer fallbacks for kernel.

HIGH: The allocator switches to HIGH once the pages being allocated for kernel fallback are

of order lower than 7. HIGH will scan only requested order list up to 64 page blocks to find the

most suitable candidate, this ensures that we remain proactive in delaying the fragmentation.

CRITICAL: Once the allocator realizes that the system is under intense fragmentation it

switches to OPBS with limit of 64 page block scan in each list and hopes to delay compaction

as much as possible. We call this modified OPBS with 64 page block limit as Restricted Page

Block Selection (RPBS).

The strategy works effectively and keeps the fragmentation at low and at the same time is

efficient. The key idea is to monitor the kernel fallback page size and make judicious choice

from the available page block candidates. This ensures that it adapts to the fragmentation

caused by kernel page placements and take proactive measures to negate it.

Following is the issue related to IPBS

• Running time inefficiency: Once IPBS disintegrates to RPBS the running time of the

algorithm can still be significant.
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Figure 4.1: Impact of stealing on huge pages and pageblock pollution. Red and green blocks
represent huge pages containing only wired and movable pages respectively while yellow repre-
sents pageblocks containing both movable and wired pages.

4.4 Illuminator

In this section, we explore the inefficiency of page-clustering in mitigating the impact of kernel

memory (we call kernel memory as wired memory and user memory is referred as movable

memory in this section) on huge pages which was the motivation for our final solution.

4.4.1 Anti-fragmentation and composite huge pages

Page-clustering labels each huge page with a color, let us say red (for wired zone) and green (for

movable zone). A 2-coloring approach, however, works well only as long as wired and movable

memory can be placed on isolated huge pages. Once memory pressure increases, zones start to

steal pages from each other. Since pages are always allocated from and freed to head of free

lists, stealing can quickly pollute all huge pages with kernel memory. This adverse behavior of

stealing based page-clustering is best descried with an example.

Let us say a system starts with 4 huge pages i.e., P1-P4, all of which belong to movable

zone at startup as shown in Figure 4.1. Page-clustering works well until system reaches state A

where P1, P4 belong to red and P2, P3 belong to green zone. At this point, P2 will be stolen

if P1 and P4 have no free page and kernel attempts an allocation. It would be added to wired

zone and contain both wired and movable pages as system reaches state B. We call such a huge

page as composite huge page and represent it with yellow color hereafter. Now consider this

sequence: a free operation in P1 followed by movable zone stealing it. This sequence would

convert P1 into a composite huge page as shown in Figure 4.1 through system transition from

state B→C and C→D. Similar sequence of free and stealing operations would convert first P4

and then P3 into composite huge pages via state transitions D→E, E→F, F→G and G→H. At

21



Chapter 4. Design and Implementation

this point, all huge page allocations will fail unless some wired memory is dropped explicitly

by the kernel. It is important to note that it took just 7 allocation/free operations for system

to reach state H (where all huge pages contain at least one wired page) from state A.

It is possible that sufficient free memory becomes available in the system with no significant

reduction in wired memory. Such a scenario represents a lost opportunity where huge pages

could have been helpful.

We observed that the behavior of page-clustering can be optimized as: while stealing, steal

from an already polluted page block if possible. For example, consider system transition from

state E to state F, where P1 was already polluted but P4 was stolen by wired zone. At this point,

stealing P1 (if it has some free memory) would protect P4 from getting polluted. Reaching till

P1, however, will involve list traversal which can be of arbitrary length and expensive.

4.4.2 Composite huge pages and memory compaction

Composite huge pages are not visible to memory compaction which is detrimental to system

performance in two ways. First, pages are migrated unnecessarily when a green composite huge

page falls in the path of migrate scanner. Second, it induces uncertainty in the behavior of

memory compaction as the location of composite huge pages determine the success of memory

compaction.

We present Illuminator, a framework to manage composite huge pages that shows memory

allocators what they need to see.

4.4.3 Design and Implementation

As show in Figure 4.2, the buddy allocator now classifies composite huge pages separately.

When wired zone is unable to satisfy the request for wired memory it first checks in movable

zone if it is able to steal completely empty huge page. On success it will use that stolen

huge page for future wired memory requests. Else it steals from composite zone which already

contains huge pages which are polluted by wired pages. Similarly, when movable zone is unable

to satisfy user memory request it first checks if can steal a completely empty huge page from

wired zone and if it succeeds in doing so it reserves that huge page. Else it steals pages from

composite zone.

Illuminator also tries to recover pages from composite zone to movable zone as and when

the wired pages get freed from a composite huge page. Whenever there are no wired pages

present in composite huge page the composite huge page is moved to movable zone so that user

applications can make use of that huge page. The allocation and freeing are both happening in

constant time and thus Illuminator has zero overhead with respect to allocation and freeing.

22



Chapter 4. Design and Implementation

Figure 4.2: Wired zone and movable zone steal only huge page or larger size pages from each
other if available, else they steal from composite.

We consider the same example for Illuminator that we explained for default buddy allocator

earlier. As shown in Figure 4.3, the system again starts with 4 huge pages i.e., P1-P4, all in

movable zone. Till the system reaches state A, the page clustering works well and the huge

pages are distributed to respective zones according to the need. At this point of time, kernel

attempts an allocation and it fails because of insufficient base pages in P1 and P4. This then

leads to stealing attempt from movable, but as movable does not completely free huge page the

attempt fails. Then the wired zone tries to allocate from composite, in which case composite

first steals from movable and then satisfies the wired request. Note that now the huge page P2

contains both movable and wired pages which is represented by yellow color in the diagram.

This huge page is categorized as composite due to the presence of both wired and movable pages.

Later on at point B, movable receives a request for allocation and it fails due to insufficient

free pages in P3. And so it tries to steal a completely empty huge page from wired zone. This

attempt fails as kernel (wired) does not have such huge page. Then the request is made to

composite for the allocation which also fails due to insufficient free pages in P2, which leads

to stealing from wired, i.e free pages from huge page P1. After this P1 now is categorized as

composite due to presence of both wired and movable pages. Then at later point of time when

some base page free happens in huge page P2 and wired pages are no more present in P2, the

huge page is recovered from composite and put into movable for future user applications that

might need huge page. This situation is represented by X in the figure. Here we see that the

situation that happened earlier with default buddy allocator does not repeat with Illuminator

and eventually we recover some huge pages back to movable when all wired pages are freed

from composite huge page.

By making compaction aware of the composite huge pages we reduce the overhead of com-

paction by skipping the whole composite huge page when compaction is called to accumulate

huge page size region. The migrate scanner of the compaction need not scan the inner base

pages of the composite huge page as migrating the inner base will not help in accumulating a

huge page size region.
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Figure 4.3: Stealing in Illuminator, where we limit the the number of composite huge pages
and also recover from composite.

4.5 Kernel Modifications

The final implementation of IPBS comes to roughly 600 lines of code including insertion, dele-

tion and modifications in Linux-4.1.13. Illuminator was implemented on Linux-4.5 and the

modifications were around 550 lines of code. Major part of these changes is contributed by the

page allocation and page freeing operations. Other changes represent the introduction of page

block data structure which holds the number of free pages in the page block and number of

kernel pages allocated from page block. Several functions are introduced to select optimal page

block and also modifications related to a new region called mixed region. The code changes are

minor which can be easily integrated into mainstream kernel tree.

4.6 Running time complexity

The running time efficiency of IPBS may degenerate to OPBS which is O(n), where n is the

number of page blocks that contain a free page which can be used for current request. We use

RPBS (OPBS with 64 page block limit while scanning) when fragmentation is critical which

scans all order lists for suitable page selection. The running time efficiency of OPBS is O(n),

IPBS is O(n) due to the above mentioned reason while that of AAF is O(1) + cost of moving

pages. Running time complexity of Illuminator is O(1).

Table 4.1: Run time complexity
Kernel Running time complexity
Default O(1)
AAF O(1) + cost of moving pages
OPBS O(n)
IPBS O(n)
Illuminator O(1)

24



Chapter 5

RESULTS AND EVALUATION

5.1 Experimental Setup

Our primary setup is a server machine equipped with Intel R© processor with 4*2 cores and

LLC (Last Level Cache) size of 8MB. Size of physical memory varies between 2GB and 4GB

depending on the benchmarks. Some of the benchmarks like Gorman [8] recommend to use

3GB memory and maximum up to 4GB. Fragmenting a system can take days in larger memory

setting and variations can be significant. Therefore, we run our benchmarks on 4GB or less

memory configuration. cpuid reports d-TLB supporting 64 entries for 4KB and 32 entries

for 2MB pages while i-TLB contains 64 entries for 4KB and 8 entries for 2MB pages. The

system provides robust support through hardware counters for measuring system wide energy

consumption across CPU cores, package (cores + LLC) and DRAM which can be accessed

through RAPL interface [18] available in perf.

5.1.1 Unusable Free Space Index

Table-5.1 depicts the number of tainted page blocks as well as the unusable free space index

(UFSI) for huge pages (i.e., order 9) on our system with 4GB physical memory. We run kernel

Kernel # Tainted page blocks UFSI
Default 1683 0.61
AAF 134 0.24
OPBS 508 0.21
IPBS 874 0.31
Illuminator 336 0.28

Table 5.1: Unusable free space index for huge pages (order 9) and huge page success rate with
different kernels on 4GB system.
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Kernel HP Success Rate Slowdown (%)
Default 0% 0
AAF 5% 8
OPBS 8% 3
IPBS 7% 1
Illuminator 16% 0

Table 5.2: Number of tainted page blocks and slowdown with different kernels.

builds for measuring the number of tainted kernel page blocks. Once the kernel builds are done

we record the number of tainted page blocks. Note that though AAF performed better in terms

of restricting kernel memory within fewer page blocks, it is OPBS that wins for unusable free

space index. Further analysis revealed that it was indeed happening due to the conflict between

memory compaction and anti-fragmentation as AAF page block selection was aligned towards

KML configuration discussed earlier in chapter 2. It also confirms our earlier observation

that minimizing tainted page block count is not sufficient for controlling fragmentation. IPBS

performs reasonably well in term of both restricting fallbacks to few page blocks as well as

reducing the unusable free space index. Illuminator outperforms all if we consider the combined

results.

5.2 Results

5.2.1 Reduction in Compaction Efforts

Illuminator reduces the compaction effort significantly by avoiding unnecessary migration of

pages. We measure the compaction efforts by running 2 sequential kernel builds which severely

fragments memory. Once the system is fragmented, we compact memory using proc interface

which invokes full compaction.

Figure-5.1 shows us that with increase in the Transparent Huge Page success rate we also

see reduction in allocation time and energy consumed per huge page allocation. In Illuminator,

we either succeed or fail quickly in terms of huge page allocation. That results in substantial

gain, which comes through skipping unnecessary scanning and migration of pages.

5.2.2 Benchmarking Huge Page Allocations

In an another experiment, we use stress-highalloc from mmtests [8] for benchmarking the success

rate of huge page allocations under rigorous memory pressure on a 3GB system. It attempts

to allocate huge pages three times after severely fragmenting physical memory with kernel

compilation. In the first attempt, when the success rate of default kernel was 0%, IPBS was
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Figure 5.1: Effort spent in accumulating huge pages by Illuminator.

able to allocate 7% of system memory as huge pages. When system was at rest in the last

attempt, IPBS was able to satisfy 37% of huge page allocations as compared to 13% of default

kernel. As shown in Table-5.2 we measured the success rate of different kernels out of which

the best success rate was achieved by Illuminator.

We also measured the huge page allocation success rate on 4GB systems and the results

were impressive. While default kernel was able to allocate 39% of huge pages, Illuminator was

able to allocate 78% of huge pages. This difference of 39% in huge page allocation turns out to

be around 800 more huge pages with Illuminator. Additional success rate of IPBS was found

to be varying between 25% and 30% with 4GB physical memory as well.

5.2.3 Performance/Energy Measurement

39% additional success rate yields more than 800 huge pages on a 4GB system. We bench-

mark the benefits of these pages, with both using libhugetlbfs library support and THP support

available for Linux systems, with some real applications. 800 huge pages were reserved be-

fore running the test applications which include stream, canneal (from PARSEC benchmark

suite), a few SPECjvm2008 benchmarks and some SpecCPU2006 benchmarks. We show the

improvements with THP on Virtual Machines, SpecCPU2006 benchmarks as well.

We measure the impact of additional huge pages on system TLB with the above mentioned

benchmarks. Reduced TLB load ultimately results in improved performance and energy savings

as system spends less time in translating virtual to physical addresses.

The runtime and throughput gains are shown in Table-5.4. Stream reports upto 20% re-

duction in runtime with default input array size while canneal benefits upto 13% with native

input set. Throughput gain for SPECjvm applications is also substantial (upto 6%). Also note

that huge page benefit varies across platforms depending on the system configuration (e.g.,
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TLB and Cache size). On an Ivy-Bridge cluster server, we observed 50% improvement in run-

time for stream and upto 12% throughput gain with SPECjvm applications which implies that

fragmentation management could be more crucial in server space.

Figure-5.3 shows energy savings across cores, LLC and DRAM for our test applications.

Our analysis shows energy gains to be high as compared to performance which further adds to

the motivation for better fragmentation management. For example, performance gain of 20% in

case of stream translates into 27% energy reduction. Note that energy savings shown here are

not absolute gains from the overall system perspective and the cost of page migration incurred

to facilitate the allocation of huge pages need to be taken into account. Further analysis shows

that it costs 5 Joules of energy to migrate 400MB pages across cores, LLC and DRAM which

is quite low and can be easily amortized with savings achieved with huge pages.

5.3 Performance Evaluation

5.3.1 SPECjvm2008

SPECjvm2008 (Java Virtual Machine Benchmark) is a benchmark suite for measuring the

performance of a Java Runtime Environment (JRE), containing several real life applications

and benchmarks focusing on core java functionality. The suite focuses on the performance of

the JRE executing a single application; it reflects the performance of the hardware processor

and memory subsystem, but has low dependence on file I/O and includes no network I/O

across machines. The SPECjvm2008 workload mimics a variety of common general purpose

application computations. These characteristics reflect the intent that this benchmark will be

applicable to measuring basic Java performance on a wide variety of both client and server

systems.

SPEC also finds user experience of Java important, and the suite therefore includes startup

benchmarks and has a required run category called base, which must be run without any tuning

of the JVM to improve the out of the box performance.

Benchmarks like compress, crypto.rsa, derby and sunflow showed throughput improvements

due to the use of huge pages. Improvements in Figure-5.2 comes from the fact that the trans-

lation cost is now reduced which reduces the stressing of TLB. As this benchmarks run for a

fixed duration energy savings are not relevant here.

5.3.2 Stream

Stream checks for the following type of operations:

• Copy: measures transfer rates in the absence of arithmetic.
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Figure 5.2: Gain in throughput for few of the SpecJVM benchmarks

• Scale: adds a simple arithmetic operation.

• Sum: adds a third operand to allow multiple load/store ports on vector machines to be

tested.

• Triad: allows chained/overlapped/fused multiply/add operations.

We see significant gain in terms of runtime and energy performance and that is largely due

to the reduced TLB misses as shown in table-5.3. Reduction in TLB misses for stream was

around 72% which goes on to suggest that huge pages are critical to such applications.

5.3.3 Canneal from Parsec

This kernel was developed by Princeton University. It uses cache-aware simulated annealing

(SA) to minimize the routing cost of a chip design. SA is a common method to approximate

Benchmark
TLB Miss Ratio

W/O HP W HP Reduction
Canneal 6.46% 0.18% 97%
Stream 0.07% 0.02% 72%

Table 5.3: TLB miss ratio for canneal and stream with (W HP) and without huge pages (W/O
HP).
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Benchmark
Runtime (milliseconds)

W/O HP W HP Gain
Stream 1549 1237 20%
Canneal 90360 78940 13%

Table 5.4: Runtime performance gain on canneal and stream with (W HP) and without huge
pages (W/O HP).

the global optimum in a large search space. Canneal pseudo-randomly picks pairs of elements

and tries to swap them. To increase data reuse, the algorithm discards only one element

during each iteration which effectively reduces cache capacity misses. The SA method accepts

swaps which increase the routing cost with a certain probability to make an escape from local

optima possible. This probability continuously decreases during runtime to allow the design to

converge. The program was included in the PARSEC program selection to represent engineering

workloads, for the fine-grained parallelism with its lock-free synchronization techniques and due

to its pseudo-random worst-case memory access pattern.

Canneal benefits from huge pages in a large way since the TLB miss rate comes down by

97% which improves the running time by 13%. The reduced running time give us energy gain

of around 14%.

5.3.4 SpecCPU2006

SPEC CPU2006 is a suite of benchmark applications designed to test the CPU performance.

The suite is composed of two sets of tests. The first being CINT (aka SPECint) which is for

evaluating the CPU performance in integer operations. The second set is CFP (aka SPECfp)

which is for evaluating the CPU floating point operations performance.
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Figure 5.3: Normalized energy consumption of stream and canneal with additional huge pages.
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Benchmark Name TLB miss reduction (%) Execution time gain Energy gain
429.mcf 88% 39% 38%
459.GemsFDTD 83% 14% 12%
471.omnetpp 68% 13% 12%
473.astar 70% 9% 8%
436.cactusADM 50% 20% 19%
410.bwaves 76% 4% 3%

Table 5.5: TLB miss reduction, execution time and energy gain for some of the SpecCPU2006
programs.

Figure 5.4: Energy savings for native hardware and virtual machine with huge pages.

The benchmark applications are programs that perform a strict set of operation that sim-

ulate real time situations, such as physical simulations, 3D graphics, and image processing.

These applications are written in different programming languages, C, C++ and Fortran. Many

SPECfp benchmark applications are derived from applications that are freely available to the

public and each application is assigned a weight based on its importance.

Quite a few benchmarks from SpecCpu2006 get advantage of huge pages. Benchmarks like

429.mcf and 436.cactusADM show significant improvement in terms of running time and energy

improvements.
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5.3.5 Virtual Machines

We also ran experiments to check if virtual machines benefit from huge pages as the TLB

miss cost in virtual machine(VM) environment can be quite significant as compared to native

machine. Most Virtual Machine Managers (VMM) use a shadow page tables or nested page

tables to limit the two level translation cost. But when a TLB miss is incurred it may cost

16 memory access in case of nested page table. The fact that there is 2 level translations

happening in case of virtualization i.e., 1st in guest OS and the other in host OS is the reason

behind better results in case of virtualization.

We use VirtualBox from Oracle as the VMM and run Fedora 23 as both host and guest

operating systems to measure the impact of huge pages on VM’s. We enable THP in the guest

OS as well in the Host OS before running canneal and stream benchmarks. As seen in Figure 5.4

the runtime and energy improvements are substantial which reaffirms our view that huge pages

will benefit VM environment.

5.3.6 Biobench

We select mummer, a genome level alignment application, and tigr, a sequence assembly appli-

cation, from biobench benchmark suite. These applications mostly operate on strings which is

quite different from integer and floating point applications of Spec CPU2006.

5.4 Huge page allocation

We show the success rate of huge page allocation with real application on default Linux and

Illuminator. For this experiment we run kernel compilation twice which puts the systems in

fragmented state. Then we run this applications sequentially and measure the successful huge

pages allocated to each applications during their run time. Figure-5.5 shows the gain in terms

of huge page allocation for various real applications from Biobench, Spec CPU2006 and Parsec.

Illuminator was able to allocate significantly more huge pages due to its composite huge page

framework as well as better coordination with compaction. This implies that with higher

allocation success rate of huge pages in Illuminator, it is able to out perform default Linux in

terms of execution time and energy consumption.
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Figure 5.5: Number of huge pages (superpages) successfully allocated to each application.
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Chapter 6

CONCLUSIONS

In this thesis, we discussed the interaction of kernel page placement with memory compaction

and anti-fragmentation framework. We proposed 2 simple allocators namely, OPBS and IPBS

which with minimum effort gives better performance in terms of reducing fragmentation. We

introduced a new domain with mixed page blocks using which we proposed a new page allo-

cator which takes care of controlling fragmentation at huge page granularity. We show how

fragmentation which occurs due to kernel page placement has severe effects on the huge page

allocation success rate and how huge pages could have benefited the application in terms of

running time at the same time being energy efficient. We also evaluated the benefits of these

huge pages with real applications.

6.1 Future Work

As we have shown memory compaction and anti-fragmentation policy of Linux does not co-

ordinate with each other and compaction can worsen the fragmentation in the system. This

calls for the a tightly coupled memory compaction and anti-fragmentation framework which can

potentially reduce this fragmentation. Other direction is to reduce the kernel memory footprint

itself by introducing coordination between buddy allocator with slab allocator. The ultimate

goal is to make kernel pages movable so as to remove the core issue of non-movable pages which

thwarts the success of compaction.
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