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Abstract

Let P be a set of n points in Rd. A point x is said to be a centerpoint of P
if x is contained in every convex object that contains more than dn

d+1 points of
P . We call a point x a strong centerpoint for a family of objects C if x ∈ P is
contained in every object C ∈ C that contains more than a constant fraction
of points of P . A strong centerpoint does not exist even for halfspaces in R2.
We prove that a strong centerpoint exists for axis-parallel boxes in Rd and give
exact bounds. We then extend this to small strong ε-nets in the plane and prove
upper and lower bounds for εSi where S is the family of axis-parallel rectangles,
halfspaces and disks. Here εSi represents the smallest real number in [0, 1] such
that there exists an εSi -net of size i with respect to S.

Keywords: centerpoint, ε-nets, axis-parallel rectangles

1. Introduction

Let P be a set of n points in Rd. A point x ∈ Rd is said to be a centerpoint
of P if any halfspace that contains x contains at least n

d+1 points of P . Equiva-
lently, x is a centerpoint if and only if x is contained in every convex object that
contains more than d

d+1n points of P . It has been proved that a centerpoint

exists for any point set P and the constant d
d+1 is tight [24]. The computational

aspects related to centerpoint have been studied in [8, 12, 16]. The notion of
centerpoint has found many applications in statistics, combinatorial geometry,
geometric algorithms etc [17, 18, 26].

The centerpoint question has also been studied for certain special classes
of convex objects. [2] shows exact constants on centerpoints for halfspaces,
axis-parallel rectangles and disks in R2.

By the definition of centerpoint, x need not be a point in P . A natural
question to ask is the following: Does there exist a strong centerpoint i.e., the
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centerpoint must belong to P . In other words, for all point sets P , does there
exist a point p ∈ P such that p is contained in every convex object that contains
more than a constant fraction of points of P? It can be clearly seen that a
strong centerpoint does not exist for convex objects by considering a point set
with points in convex position. By the same example, a strong centerpoint
does not exist even for objects like disks and halfspaces. The notion of strong
centerpoints has been studied with respect to wedges in [19] where it was shown
that there always exists a point p ∈ P such that any 3π

2 -wedge anchored at
p contains at least n

d+1 points. We show that a strong centerpoint exists for

axis-parallel boxes in Rd i.e. for any point set P with n points, there exists a
point x ∈ P such that x is contained in every axis-parallel box that contains
more than 2d−1

2d n points of P . A natural extension of strong centerpoint will be
to allow more number of points and see what the bounds are. This question is
related to a well studied area called ε-nets. First we shall define ε-nets.

Definition 1. Let P be a set of n points in Rd and R be a family of geometric
objects. N ⊂ P is called a (strong) ε-net of P with respect to R if N ∩ R 6= ∅
for all subsets R ∈ R that has more than εn points of P , that is, |R ∩ P | > εn.
Moreover, N is called a weak ε-net if N ⊂ Rd, i.e. N need not be a subset of P .

The concept of ε-nets was introduced by Haussler and Welzl [11] and has found
many applications in computational geometry, approximation algorithms, learn-
ing theory etc. It has been proved that for geometric objects with finite VC
dimension d, there exist ε-nets of size O(dε log

1
ε ) [11]. It has been proved

that ε-nets of size O( 1ε ) exist for halfspaces in R2 and R3 and pseudo-disks
in R2 [13, 14, 23]. Alon [1] has shown a slightly super-linear lowerbound for
ε-nets with respect to lines in R2 thereby disproving the conjecture that there
exists linear-sized ε-nets for families of geometric objects. Recently, it has been
shown that ε-nets of size Ω( 1ε log log

1
ε ) is needed for the family of axis-parallel

rectangles in R2 [22]. This bound is also tight by a previous result by Aronov
et al. [3].

The dual version of ε-net is also well studied. Here, the input is a collection of
n geometric objects and we have to find a sub-collection of objects that cover all
points that are contained in more than εn objects. This question is extensively
studied in [3, 9, 25]. Recently some tight lower bounds for dual ε-nets are proved
in [22].

Strong ε-nets of size independent of n do not exist for convex objects since
they have infinite VC dimension. However, it is shown that weak ε-nets of size
polynomial in 1

ε exist for convex objects in Rd [7, 15, 20]. Also, a lower bound

of Ω( 1ε log
d−1 1

ε ) is proved in [6].
Weak ε-nets are an extension of centerpoint. A centerpoint is precisely a

weak d
d+1 -net of size one. Small weak ε-nets have been studied for convex

objects, disks, axis-parallel rectangles and halfspaces in [2, 5, 10, 21]. Here the
size of the weak ε-net is fixed as a small integer i and the value of εi is bounded.

In this paper, we initiate the study of small strong ε-nets. Let S be a family
of geometric objects. Let εSi ∈ [0, 1] represent the smallest real number such
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that, for any set of points P , there exists a set Q ⊂ P of size i which is an
εSi -net with respect to S. Thus a strong centerpoint will be an εS1 -net. We
investigate bounds on εSi for small values of i where S is the family of axis-
parallel rectangles, halfspaces and disks.

1.1. Our Results

Let R,H,D be the family of axis-parallel rectangles, halfspaces and disks
respectively.

1. For axis-parallel boxes in Rd, we show that strong centerpoint exists and
obtain tight bound of εR1 = 2d−1

2d . Note that strong centerpoint does not
exist for halfspaces, disks or convex objects.

2. We give upper and lower bounds for εRi in the plane for small values of
i. We also prove some general upper bounds for εRi which works for all
values of i.

3. We give bounds for εHi which are tight for even values of i and almost
tight for odd values of i. These bounds are based on a result from [13].

4. For the family of disks, we give a non-trivial upper bound for εD2 .

In section 2, we give a general lower bound construction which will be used
in subsequent sections. Section 3 discusses small strong ε-nets for axis-parallel
rectangles. Sections 4 and 5 give bounds for halfspaces and disks respectively.

2. General lower bound construction

In this section, we give a recursive construction to obtain lower bounds for
εSi where S is a family of compact convex objects in Rd. More precisely, we give
a lower bound construction for εSj+k based on the lower bound constructions of

εSj and εSk . These lower bounds work for weak ε-nets as well.

Theorem 1. εSj+k ≥ εSj εSk
εSj +εSk

for all j, k ≥ 1

Proof. Let P be a set of n points in Rd, arranged as two subsets, P1 and

P2, containing
εSk

εSj +εSk
n and

εSj
εSj +εSk

n points respectively. Let P1 be arranged

corresponding to the lower bound construction for εSj and P2 be arranged corre-

sponding to the lower bound construction for εSk . These two subsets are placed
sufficiently far from each other. Therefore, if N1 is an εSj -net for P1, there exists

some S ∈ S avoiding N1 such that |S ∩ P1| = εSj |P1|. Since S is compact and
P2 is placed sufficiently far from P1, S does not contain any point of P2. Simi-
larly, if N2 is an εSk -net for P2, there exists some S ∈ S avoiding N2 such that
|S ∩ P2| = εSk |P2| and S ∩ P1 = ∅. Let N be any εSj+k-net. Then N contains
either ≤ j points of P1 or ≤ k points of P2. Therefore there always exists some

S ∈ S that avoids N and contains
εSj εSk
εSj +εSk

n points.
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Figure 1: Bounds for εR1 in R2

Based on this theorem, we give improved lower bounds on εi for axis-parallel
rectangles in section 3.

3. Axis-parallel Rectangles

In this section, we show bounds on εRi .
Let P be a set of n points in Rd. Assume that all points in P have distinct

co-ordinates, i.e. if p = (p1, p2, ..., pd) and q = (q1, q2, ...., qd) are two points in
P , then pi 6= qi for all i, 1 ≤ i ≤ d. This assumption can be easily removed by
slightly perturbing the input point set such that the co-ordinates are distinct. It
can be seen that an ε-net for the perturbed set acts as an ε-net for the original
set also (see section 4 in [2]).

3.1. Strong centerpoints in Rd

Let R be the family of axis-parallel boxes in Rd.

Theorem 2. εR1 = 2d−1
2d

Proof. LetH+
i andH−

i , 1 ≤ i ≤ d, be two axis-parallel hyperplanes orthogonal
to the ith dimension that divide P into three slabs. Let P+

i be the subset of
P contained in the positive hyperspace defined by H+

i and P−
i be the subset

of P contained in the negative hyperspace defined by H−
i . H+

i and H−
i are

placed such that |P+
i | = |P−

i | = n
2d − 1. The hyperplanes H+

i and H−
i , 1 ≤

i ≤ d, partition Rd into 3d axis-parallel d-dimensional boxes. Indexing the
partition along each dimension, these boxes are denoted as Rx1x2...xd

, where
xi ∈ {1, 2, 3} (see figure 1(a) for the upper bound construction in R2). Let
Px1x2...xd

= Rx1x2...xd
∩ P . We claim that P22...2 6= ∅.
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Figure 2: Bisection of P by vertical and horizontal lines

Let K =
d∑

i=1

(|P−
i | + |P+

i |) = n − 2d. Since none of the points in P22...2 is

counted in any P+
i or P−

i , K ≥ n− |P22...2|. This implies that |P22...2| ≥ 2d.
Let p be any point in P22...2. We claim that {p} is a 2d−1

2d -net. Any d-

dimensional box that does not contain p has to avoid some Pi(P+
i or P−

i )
containing n

2d − 1 points. Hence it contains at most 2d−1
2d n points.

For the lower bound, place 2d subsets of n
2d points such that each axis has

two subsets at unit distance on either side of the origin. The lower bound
construction for εR1 in R2 is shown in figure 1(b). Let {q} be an ε-net. Without
loss of generality, assume that q is chosen from the subset placed at coordinates
(1, 0, 0, ...0). Now the d-dimensional axis-parallel box x ≤ 0.5 avoids q but
contains all the remaining 2d− 1 subsets thereby containing 2d−1

2d n points.

3.2. Upper Bounds on εRi
Let P be a set of n points and R be the family of axis-parallel rectangles in R2.
We prove upper bounds for εRi .

Lemma 3. There exists a point p ∈ P with coordinates (x′, y′) such that the
halfspaces x ≥ x′ and y ≥ y′ contain at least n

2 points of P .

Proof. Divide P into two horizontal and two vertical slabs such that each slab
contains n

2 points (see figure 2).

� Case 1: D ∩ P 6= ∅. Any point p ∈ D ∩ P has the desired property.

� Case 2: D ∩ P = ∅. In this case, |A ∩ P | = |C ∩ P | = n
2 and B ∩ P = ∅.

Then the point p ∈ A∩P with the smallest perpendicular distance to the
horizontal line has the desired property.
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Figure 3: Upper bound for εR2

Lemma 4. εR2 ≤ 5
8

Proof. Divide P into three horizontal slabs containing 3n
8 , n

4 and 3n
8 points

respectively. Similarly, divide P into three vertical slabs in the same proportion
to get a grid with nine rectangular regions (figure 3(a)).

� Case 1: E ∩ P 6= ∅: Let x be any point in E. Now {x} is a 5
8 -net since

any axis-parallel rectangle that avoids x will avoid an extreme slab which
contains 3

8n points.

� Case 2: E ∩ P = ∅: Let R1, R2, R3, R4 be the regions A ∪ B ∪ D ∪
E,B ∪ C ∪ E ∪ F,D ∪ E ∪ G ∪H,E ∪ F ∪H ∪ I respectively and let Pi

denote Ri ∩ P for all i, 1 ≤ i ≤ 4. Since E ∩ P = ∅, we have |P1| +
|P2| + |P3| + |P4| = n + |(B ∪ D ∪ F ∪ H) ∩ P | = 3n

2 . Therefore either
(|P1|+ |P4|) ≥ 3n

4 or (|P2|+ |P3|) ≥ 3n
4 . Without loss of generality assume

that (|P2|+ |P3|) ≥ 3n
4 . Using lemma 3, choose a point p = (px, py) ∈ P2

such that the halfspaces x ≥ px and y ≥ py contain at least half of the
points in P2. Similarly, choose a point q = (qx, qy) ∈ P3 such that the
halfspaces x ≤ qx and y ≤ qy contain at least half of the points in P3. We
claim that {p, q} is a 5

8 -net. Any axis-parallel rectangle that does not take
points from all the three rows and columns contains at most 5n

8 points of
P . So assume that R is an axis-parallel rectangle that takes points from
all the rows and columns. To avoid {p, q}, R must avoid at least half of
the points from P2 as well as P3 (figure 3(b)). So it must avoid at least
|P2|+|P3|

2 = 3n
8 points. Therefore any axis-parallel rectangle that avoids

{p, q} contains at most 5n
8 points.
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Figure 4: General constructions for axis-parallel rectangles

Now we discuss two general recursive constructions for εRi .

Theorem 5. εR2(x+y)+1 ≤ max( 34ε
R
x ,

εRy εRz
εRy +εRz

) for x, y ≥ 0, x ≥ y and z = bx+y
2 c

Proof. Construct an εR1 -net {q} for P as described in Theorem 2. Let v and
h be vertical and horizontal lines through q that divide P into two vertical and
two horizontal slabs respectively. Let δ ∈ [0, 1] be a parameter that will be
fixed later. If either of the two vertical slabs contains at least δn points of P
then construct an εRx -net for the points in the slab containing at least δn points
and εRy -net for the points in the other slab. If both the vertical slabs contain

less than δn points, then construct an εRz -net for the points in each of the two
vertical slabs. Repeat the same construction for the horizontal slabs also. We
have thus added at most 2(x+ y) + 1 points to our ε-net Q.

Since q ∈ Q, any axis-parallel rectangle that avoids Q is contained in one of
the (vertical or horizontal) slabs and this slab has at most 3n

4 points.
First consider the case where there is a vertical or horizontal slab with at

least δn points. After adding an εRx -net to Q, any axis-parallel rectangle that
avoids Q contains at most 3

4ε
R
x n points of P from this slab. Similarly, the

other slab has at most (1− δ)n points of P and any axis-parallel rectangle that
avoids Q contains at most (1 − δ)εRy n points of P from this slab. Thus an
axis-parallel rectangle that avoids Q and is contained in one of these slabs has
at most max( 34ε

R
x n, (1 − δ)εRy n) points (see figure 4 (a)). In the case where

both the slabs have less than δn points, any axis-parallel rectangle that avoids
Q has at most δεRz n points. Thus any axis-parallel rectangle that avoids Q

has at most max( 34ε
R
x n, (1 − δ)εRy n, δεRz n) points. Setting δ =

εRy
εRy +εRz

so that

(1− δ)εRy = δεRz , we get εR2(x+y)+1 ≤ max( 34ε
R
x ,

εRy εRz
εRy +εRz

).
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Theorem 6. εR2(x−2)(y−1)+jx+ky ≤ max(
2εRj
x ,

εRk
y ) for all x, y ≥ 2 and j, k ≥ 0.

Proof. Divide P into x horizontal slabs and y vertical slabs to get a grid with
each horizontal slab containing n

x points and each vertical slab containing n
y

points. Let the horizontal slabs be denoted as H1,H2, . . . , Hx. For a horizontal
slab Hi, there are y − 1 vertical lines of the grid intersecting it. For each of
these lines, find two points(if present) of P inHi that has the least perpendicular
distance from that line on either side. Repeat this for all horizontal slabsHi, 2 ≤
i ≤ x − 1 (see figure 4 (b)). Add these (at most) 2(x− 2)(y − 1) points to the
εR-net Q.

We claim that any axis-parallel rectangle that avoids these points has at most
max( 2nx , n

y ) points. If an axis-parallel rectangle intersects at most one vertical

slab or at most two horizontal slabs, then it contains at most max( 2nx , n
y ) points.

Let R be an axis-parallel rectangle that intersects at least two vertical slabs and
at least three horizontal slabs. Let Hi,Hi+1, . . . ,Hm be the horizontal slabs
intersected by R. R also intersects at least one vertical line and avoids the
nearest points to these vertical lines in all Hl, i + 1 ≤ l ≤ m − 1. Therefore R
cannot take points from any such Hl. Thus R can only take points from Hi and
Hm and hence contains at most 2n

x points of P .
Now add an εRj -net for points in each horizontal slab and an εRk -net for points

in each vertical slab and add these ε-net points to Q. Now |Q| ≤ 2(x − 2)(y −
1) + jx+ ky and the result follows.

Lemma 7. εR3 ≤ 9
16 ; ε

R
5 ≤ 15

32 ; ε
R
7 ≤ 3

7 ; ε
R
9 ≤ 5

13

Proof. The results follow from the fact that εR0 = 1 and Theorem 5 with
x = 1, y = 0 for εR3 ; x = 2, y = 0 for εR5 ; x = 3, y = 0 for εR7 ; x = 4, y = 0 for
εR9 .

Lemma 8. εR4 ≤ 1
2 ; ε

R
8 ≤ 2

5 ; ε
R
10 ≤ 3

8

Proof. The results follow from the fact that εR0 = 1 and Theorem 6 with
x = 4, y = 2, j = k = 0 for εR4 ; with x = 5, y = 2, j = 0, k = 1 for εR8 ;
x = 4, y = 2, j = 1, k = 1 for εR10.

3.3. Lower Bounds on εRi
In this subsection, we call an axis-parallel rectangle R an α-big rectangle if

|P ∩R| ≥ α|P |. Let Q be an ε-net and P1 ⊂ P . We call P1 as free if P1∩Q = ∅.

Lemma 9. εR2 ≥ 5
9

Proof. Divide the n points into three equal subsets of n
3 points each and place

each subset uniformly on the bold segments as shown in figure 5. Let Q be an
ε-net of size two. The different cases of choosing Q from this set are shown in
figure 5. Let x, y denote the fraction of points from a subset which lie on one
side of the point in Q as shown in the corresponding figure for each case. Let

8
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Figure 5: Lower bound for εR2

f be a function that represents the maximum fraction of points of P that an
axis-parallel rectangle contains without containing any of the points in Q. In
each case, we compute the values of x and y that minimize f by considering all
the rectangles that avoids the ε-net points.

(a) f = max( 2x3 + 1
3 , 1−

2(x+y)
3 , 2(1−x)

3 + y
3 ). f is minimized when x = y = 1

3 ,
which results in f = 5

9 .

(b) f = max( 2y3 + 1
3 , 1 −

2x+y
3 , 2x

3 + 1−y
3 ). f is minimized when x = 1

2 , y = 1
3 ,

which results in f = 5
9 .

(c) f = max(1 − x+y
3 , 2x

3 + 1−y
3 , 2y

3 + 1−x
3 , 2(x+y)−1

3 ). f is minimized when
x = y = 2

3 , which results in f = 5
9 .

(d) f = max( 13 +
2x
3 , 1

3 +
2y
3 , 1− 2(x+y)

3 ). f is minimized when x = y = 1
3 , which

results in f = 5
9 .

So there always exists an axis-parallel rectangle that avoids all the points in the
ε-net and contains at least 5n

9 points.

Lemma 10. εR3 ≥ 2
5

Proof. Let P be arranged into 20 equal subsets. Each quadrant has a group
of five subsets, we will denote these groups as A,B,C,D as shown in figure 6.

Clearly, all the subsets of one of the groups will be free. Assume that all the
subsets in A are free. The three points in Q can be chosen in two ways.

9
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Figure 6: Lower bound for εR3

� Case 1: One point is chosen from each of the other three groups: Any set
of eight consecutive subsets is contained in a 2

5 -big axis-parallel rectangle.
Since subsets in A are free, all the three subsets near A in B and D can-
not be free. This means a point has to be chosen from one of the subsets
b1, b2 or b3. Now if a point is chosen from subset b1 then the remaining
subsets in B are free and there exists a 2

5 -big axis-parallel rectangle con-
taining all those subsets and a1, a2, a3, a4 from A. Therefore b1 has to
be free. Symmetrically, d5 also has to be free. Clearly two points have
to be selected from the subsets b2 and d4 to avoid the 2

5 -big axis-parallel
rectangle with consecutive subsets from D,B and A (d5, a1, . . . , a5, b1, b2
and d4, d5, a1, . . . , a5, b1). If the subset c1 is free then there is a 2

5 -big
axis-parallel rectangle containing the free subsets d5, a1, a2, a3, b3, b4, b5, c1.
Therefore the three points have to be chosen from the subsets b2, c1, d4.
Now there exists a 2

5 -big axis-parallel rectangle as shown in figure 6(b)
that avoids these subsets.

� Case 2: Two points are chosen from a group and the third point is chosen
from the diagonally opposite group: Assume that two points are chosen
from B and one point from D. Clearly, a point has to be chosen from
the subset d3 to avoid the 2

5 -big axis-parallel rectangles with consecutive
subsets from D,A and D,C (d3, d4, d5, a1, . . . , a5 and c1, . . . , c5, d1, d2, d3).
The other subsets in D are free. The next two points chosen have to be
from the subsets b1 and b5 to avoid the 2

5 -big axis-parallel rectangles con-
taining consecutive subsets from B,C,D (b5, c1, . . . , c5, d1, d2) andD,A,B
(d4, d5, a1, . . . , a5, b1). Now there exists a 2

5 -big axis-parallel rectangle as
shown in figure 6(c) which avoids the subsets b1, b5, d3.

Lemma 11. εR4 ≥ 3
10

Proof. Let P be arranged as ten equal subsets as shown in figure 7. The eight
subsets in between the topmost and bottommost subsets are arranged as two

10



Figure 7: Lower bound for εR4
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Figure 8: Lower bound for εR5

quadrilaterals. Let Q be an ε-net of size four. We claim that there always exists
a 3

10 -big axis-parallel rectangle that avoids Q.
It is easy to see that there can be at most two free subsets in each of the

quadrilaterals since there is a 3
10 -big axis-parallel rectangle that contains any

three free subsets from a quadrilateral. Hence all the four points of Q have
to be chosen from the subsets forming the two quadrilaterals(two points from
each quadrilateral). Therefore the top and bottom subsets are free. Both these
subsets form a 3

10 -big axis-parallel rectangle with the black subsets in the quadri-
lateral (see figure 7). Therefore two of the points in Q have to be chosen from the
black subsets. The two gray subsets in the lower(resp. upper) half form a 3

10 -big
axis-parallel rectangle with the bottommost(resp. topmost) subset. Hence the
remaining two points in Q have to be chosen from the gray subsets(one point
from the top gray subsets and one from the bottom gray subsets). Thus one
gray subset in the lower half is free which forms a 3

10 -big axis-parallel rectangle
that avoids Q as shown in figure 7.

Lemma 12. εR5 ≥ 1
4

Proof. Let P be arranged as eight equal subsets, four in the outer layer and
four in the inner layer (see figure 8). Let Q be an ε-net of size five. We claim
that there always exists a 1

4 -big axis-parallel rectangle that avoids Q.
It is clear that we have to choose a point each from at least three of the inner

layer subsets, otherwise there can be an axis-parallel rectangle that contains all
the points of two free subsets. Also, a point each has to be chosen from at least
two of the outer subsets to avoid the axis-parallel rectangles that contains all
the points of two consecutive subsets in the outer layer. Moreover, these two
points are to be chosen from diagonally opposite subsets. Let the ε-net points
be chosen from the five black subsets as shown in figure 8. Now there exists
a 1

4 -big axis-parallel rectangle containing the free subset in the inner layer and
the nearest free subset in the outer layer.
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ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10
LB 3/4 5/9 2/5 3/10 1/4 1/5 5/29 2/13 3/22 1/8
UB 3/4 5/8 9/16 1/2 15/32 15/32 3/7 2/5 5/13 3/8

Table 1: Summary of lower and upper bounds for εRi .

Lemma 13. εR6 ≥ 1
5 ; ε

R
7 ≥ 5

29 ; ε
R
8 ≥ 2

13 ; ε
R
9 ≥ 3

22 ; ε
R
10 ≥ 1

8

Proof. The results follow from theorem 1 with j = k = 3 for εR6 ; j = 2, k = 5
for εR7 ; j = 3, k = 5 for εR8 ; j = 4, k = 5 for εR9 ; j = 5, k = 5 for εR10.

Lemma 14. εRi ≥ 10
9i , for i ≥ 2

Proof. We use mathematical induction to prove this. The lemma holds for i = 2
and i = 3 since εR2 ≥ 5

9 ≥ 10
9×2 (by lemma 9) and εR3 ≥ 2

5 ≥ 10
9×3 (by lemma 10).

Now assume the lemma holds for i = k, i.e., εRk ≥ 10
9k or 9

10k ≥ 1
εRk

. Thus,

9
10k+

9
5 ≥ 1

εRk
+ 1

εR2
, i.e., 9

10 (k+2) ≥ εRk +εR2
εRk εR2

. Therefore, εRk+2 ≥ εRk εR2
εRk +εR2

≥ 10
9(k+2)

(from theorem 1). Hence the result follows for all values of i.

The summary of lower and upper bounds for εRi is given in table 1.

4. Half spaces

Let P be a set of n points in R2 and H be the family of halfspaces. In this
section, we prove bounds on εHi .

Lemma 15. εHi ≤ 2
i+1

Proof. The proof of this lemma is similar to that of Theorem 4.1 in [13]. For
i = 2, [13] gives a constructive proof to show that εH2 ≤ 2

3 . For i ≥ 3, [13] gives
an existential proof showing that a strong ε-net of size d 2

ε e− 1 exists. Based on
this proof, we give an explicit construction for 2

i+1 -net of size i.
Let c1, c2, . . . , cm be the vertices of the convex hull of P , in clockwise order.

Let N represent the ε-net. We will denote the chosen ε-net points as n1, n2, . . . .
Initially N = {c1} and x = c1.

Let cz be the first vertex encountered in the clockwise direction such that
the halfspace formed by xcz+1 and containing cz has > 2

i+1n points. Add cz to
N and set x = cz. Repeat this procedure till we have considered all vertices of
the convex hull i.e, we have added the point nk+1 to N such that nk+1 is c1 or
the halfspace nknk+1 contains c1. In the latter case, there are two possibilities:

� nk+1 = n2: Now n1 is redundant and is removed from N . Rename nk as
n1.

� nk+1 lies between n1 and n2 : nk+1 is a redundant point and is removed
from N .

12



Figure 9: Lower bound for εH2

Clearly any halfspace that avoids N has at most 2
i+1n points. Hence N is a

2
i+1 -net. We claim that N has at most i points.

Let N have l points and let Hj be the halfspace formed by the line nj−1nj+1

and containing nj . Let hj = |Hj ∩ P |. From the above construction, we know

that hj > 2n
i+1 for all j, 1 ≤ j ≤ l. Therefore

l∑
j=1

hj > 2l
i+1n. Since any point

in P is present in at most two Hj ’s,
l∑

j=1

hj ≤ 2n. Combining the above two

inequalities, we have l < i+ 1 and the result follows.

Lemma 16. [13]

εHi ≥

{
2

i+1 for i,odd
2

i+2 for i,even

Proof. The result follows from the lower bounds given in [13]. For odd values
of i, consider a point set divided into i+1

2 equal subsets, as described in [13].
For any ε-net N of size i, there exists a halfspace that avoids N and contains
all the 2

i+1n points from one subset. For even values, the lower bound for εHi
follows from that for εHi+1.

Lemma 17. εH2 ≥ 3
5

Proof. Let P be a set of n points arranged as a subset S of 3n
5 points uniformly

placed on the arc of a circle with angle less than π and a subset T of 2n
5 points

placed close together, at a sufficiently large distance from S so that the tangent
to the arc at any point p ∈ S has S\{p} and T on different sides of it (see
figure 9(a)).

If only one point in the ε-net is chosen from S, the tangent to the arc passing
through it results in a halfspace containing 3n

5 −1 points (figure 9(b)). So assume
that both the ε-net points are chosen from S. Let p1 and p2 be the ε2-net points
chosen from S. The points in S are divided into three arcs by p1 and p2. One of
the arcs contain at least n

5 points. There exists a halfspace avoiding p1 and p2
that contains all the points of this arc and all the points of T (see figure 9(c)).
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Figure 10: Upper bound for εD2

5. Disks

In this section, we consider the family of disks. We show an upper bound for
εD2 . The proof is motivated by the construction for εH2 given in [13].

Theorem 18. εD2 ≤ 2
3

Proof. Let P be a set of n points and p be the centerpoint of P . Let T be the
Delaunay triangulation of P . Let a, b, c be points in P such that they are the
vertices of the delaunay triangle in T that contains p. For all x ∈ P \ {a, b, c},
consider the line segment connecting x and p. Each of these n−3 line segments
intersect one of the edges ab, bc or ac and at least one of them, say ab, has at
least one-third of these line segments intersecting it. We claim that {a, b} is a
2
3 -net.

Let P1 ⊂ P be the set of points q such that the line segment pq intersects
the edge ab. Consider the circumcircle C of triangle abc and let Cab be the
arc between a and b that is intersected by the line segment pq, for any q ∈ P1.
By the definition of delaunay triangulation, C does not contain any point of
P . Any disk D that avoids {a, b} and contains more than 2n

3 points of P
contains the centerpoint p and at least one point q ∈ P1, since |P1| ≥ n−3

3 .
Therefore D intersects C at two points y, z. If exactly one of these points lie
on the arc Cab then D contains either a or b (see figure 10(a)). Similarly if
both y and z are outside the arc Cab, then D contains both the points a and
b (see figure 10(b)). Therefore assume that both y and z lie on the arc Cab.
In this case, D contains only points from P1. Then we can have another disk
D′ such that (D ∩ P ) ⊂ (D′ ∩ P ) and p /∈ D′ (see figure 10(c)). This implies
that D′ contains more than 2n

3 points and does not contain the centerpoint, a
contradiction.

The lower bounds εDi ≥ 2
i+1 for odd values of i and εDi ≥ 2

i+2 for even values
of i follow from the lower bound results for halfspaces.

14



Rectangles Half Spaces Disks
LB UB LB UB LB UB

ε1 3/4 1 1
ε2 5/9 5/8 3/5 2/3 3/5 2/3
ε3 2/5 9/16 1/2 1/2 2/3

Table 2: Summary of lower and upper bounds for εi.

Conclusions and Open Questions

In this paper, we have shown lower and upper bounds for εSi where S is
the family of axis-parallel rectangles, halfspaces and disks. A summary of the
bounds for i ≤ 3 are given in Table 2. An interesting open question is to find
the exact value of εSi for small values of i.
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[14] J. Matoušek, R. Seidel, and E. Welzl. How to net a lot with little: small
epsilon-nets for disks and halfspaces. In Proceedings of the sixth annual
symposium on Computational geometry, pages 16–22, 1990.

[15] J. Matousek and U. Wagner. New constructions of weak ε-nets. Discrete
& Computational Geometry, 32(2):195–206, 2004.

[16] G. Miller and D. Sheehy. Approximate centerpoints with proofs. Compu-
tational Geometry, 43(8):647–654, 2010.

[17] G. Miller, S. Teng, W. Thurston, and S. Vavasis. Automatic mesh parti-
tioning. Institute for Mathematics and Its Applications, 56:57, 1993.

[18] G. Miller, S. Teng, W. Thurston, and S. Vavasis. Separators for sphere-
packings and nearest neighbor graphs. Journal of the ACM (JACM),
44(1):1–29, 1997.

[19] G. L. Miller, T. Phillips, and D. R. Sheehy. The centervertex theorem for
wedge depth. In Proceedings of the 21st Canadian Conference on Compu-
tational Geometry (CCCG2009), pages 79–82, 2009.

[20] N. Mustafa and S. Ray. Weak ε-nets have basis of size o( 1ε log
1
ε ) in any

dimension. Computational Geometry, 40(1):84–91, 2008.

[21] N. Mustafa and S. Ray. An optimal extension of the centerpoint theorem.
Computational Geometry, 42(6-7):505–510, 2009.

[22] J. Pach and G. Tardos. Tight lower bounds for the size of epsilon-nets. In
Proceedings of the 27th annual ACM symposium on Computational geom-
etry, pages 458–463, 2011.

16



[23] E. Pyrga and S. Ray. New existence proofs for ε-nets. In Proceedings
of the twenty-fourth annual symposium on Computational geometry, pages
199–207, 2008.

[24] R. Rado. A theorem on general measure. Journal of the London Mathe-
matical Society, 1(4):291–300, 1946.

[25] K. Varadarajan. Epsilon nets and union complexity. In Proceedings of the
25th annual symposium on Computational geometry, pages 11–16, 2009.

[26] F. Yao. A 3-space partition and its applications. In Proceedings of the
fifteenth annual ACM symposium on Theory of computing, pages 258–263,
1983.

17


