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Abstract

Let P be a set of n points in R?. A point z is said to be a centerpoint of P
if x is contained in every convex object that contains more than ddfl points of
P. We call a point = a strong centerpoint for a family of objects C if x € P is
contained in every object C' € C that contains more than a constant fraction
of points of P. A strong centerpoint does not exist even for halfspaces in R2.
We prove that a strong centerpoint exists for axis-parallel boxes in R? and give
exact bounds. We then extend this to small strong e-nets in the plane and prove
upper and lower bounds for €§ where S is the family of axis-parallel rectangles,
halfspaces and disks. Here € represents the smallest real number in [0, 1] such

that there exists an e-net of size i with respect to S.
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1. Introduction

Let P be a set of n points in RY. A point x € R? is said to be a centerpoint
of P if any halfspace that contains x contains at least dLH points of P. Equiva-
lently, x is a centerpoint if and only if = is contained in every convex object that

contains more than #‘lln points of P. It has been proved that a centerpoint

exists for any point set P and the constant d;il is tight [24]. The computational
aspects related to centerpoint have been studied in [8, 12, 16]. The notion of
centerpoint has found many applications in statistics, combinatorial geometry,
geometric algorithms etc [17, 18, 26].

The centerpoint question has also been studied for certain special classes
of convex objects. [2] shows exact constants on centerpoints for halfspaces,
axis-parallel rectangles and disks in R2.

By the definition of centerpoint, x need not be a point in P. A natural
question to ask is the following: Does there exist a strong centerpoint i.e., the
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centerpoint must belong to P. In other words, for all point sets P, does there
exist a point p € P such that p is contained in every convex object that contains
more than a constant fraction of points of P? It can be clearly seen that a
strong centerpoint does not exist for convex objects by considering a point set
with points in convex position. By the same example, a strong centerpoint
does not exist even for objects like disks and halfspaces. The notion of strong
centerpoints has been studied with respect to wedges in [19] where it was shown
that there always exists a point p € P such that any 3T-wedge anchored at

2
p contains at least dLH points. We show that a strong centerpoint exists for

axis-parallel boxes in R? i.e. for any point set P with n points, there exists a
point z € P such that z is contained in every axis-parallel box that contains
more than 2‘3—;171 points of P. A natural extension of strong centerpoint will be
to allow more number of points and see what the bounds are. This question is

related to a well studied area called e-nets. First we shall define e-nets.

Definition 1. Let P be a set of n points in R? and R be a family of geometric
objects. N C P is called a (strong) e-net of P with respect to Rif NN R # 0
for all subsets R € R that has more than en points of P, that is, |[R N P| > en.
Moreover, N is called a weak e-net if N C R%, i.e. N need not be a subset of P.

The concept of e-nets was introduced by Haussler and Welzl [11] and has found
many applications in computational geometry, approximation algorithms, learn-
ing theory etc. It has been proved that for geometric objects with finite VC
dimension d, there exist enets of size O(%log2) [11]. It has been proved
that enets of size O(1) exist for halfspaces in R? and R? and pseudo-disks
in R? [13, 14, 23]. Alon [1] has shown a slightly super-linear lowerbound for
e-nets with respect to lines in R? thereby disproving the conjecture that there
exists linear-sized e-nets for families of geometric objects. Recently, it has been
shown that e-nets of size Q(£ loglog 1) is needed for the family of axis-parallel
rectangles in R? [22]. This bound is also tight by a previous result by Aronov
et al. [3].

The dual version of e-net is also well studied. Here, the input is a collection of
n geometric objects and we have to find a sub-collection of objects that cover all
points that are contained in more than en objects. This question is extensively
studied in [3, 9, 25]. Recently some tight lower bounds for dual e-nets are proved
in [22].

Strong e-nets of size independent of n do not exist for convex objects since
they have infinite VC dimension. However, it is shown that weak e-nets of size
polynomial in % exist for convex objects in R? [7, 15, 20]. Also, a lower bound

of Q(% log?~* 1) is proved in [6].
Weak e-nets are an extension of centerpoint. A centerpoint is precisely a
weak #‘ll-net of size one. Small weak e-nets have been studied for convex
objects, disks, axis-parallel rectangles and halfspaces in [2, 5, 10, 21]. Here the
size of the weak e-net is fixed as a small integer 7 and the value of ¢; is bounded.
In this paper, we initiate the study of small strong e-nets. Let S be a family

of geometric objects. Let e;s € [0,1] represent the smallest real number such



that, for any set of points P, there exists a set Q C P of size i which is an
e?-net with respect to S. Thus a strong centerpoint will be an e7-net. We
investigate bounds on € for small values of i where S is the family of axis-
parallel rectangles, halfspaces and disks.

1.1. Our Results

Let R,H,D be the family of axis-parallel rectangles, halfspaces and disks
respectively.

1. For axis-parallel boxes in R?, we show that strong centerpoint exists and
obtain tight bound of € = 2‘;;1. Note that strong centerpoint does not

exist for halfspaces, disks or convex objects.

2. We give upper and lower bounds for €~ in the plane for small values of
i. We also prove some general upper bounds for G;R which works for all
values of 7.

3. We give bounds for €!* which are tight for even values of i and almost
tight for odd values of i. These bounds are based on a result from [13].

4. For the family of disks, we give a non-trivial upper bound for €2.

In section 2, we give a general lower bound construction which will be used
in subsequent sections. Section 3 discusses small strong e-nets for axis-parallel
rectangles. Sections 4 and 5 give bounds for halfspaces and disks respectively.

2. General lower bound construction

In this section, we give a recursive construction to obtain lower bounds for
€2 where S is a family of compact convex objects in R?. More precisely, we give
a lower bound construction for e‘js ', based on the lower bound constructions of
e}s and 7. These lower bounds work for weak e-nets as well.

S_S
Theorem 1. G}erk > % forall j, k> 1
J

PROOF. Let P be a set of n points in R?, arranged as two subsets, P; and

S S
.. € € . .
P>, containing = jefn and = jrefn points respectively. Let P; be arranged

corresponding to the lower bound construction for e‘js and P, be arranged corre-
sponding to the lower bound construction for e‘,? . These two subsets are placed
sufficiently far from each other. Therefore, if V; is an 63-9 -net for P;, there exists
some S € S avoiding N; such that |S NP | = e]‘-S|P1|. Since S is compact and
P; is placed sufficiently far from Pj, S does not contain any point of P». Simi-
larly, if Ny is an €{-net for P», there exists some S € S avoiding Na such that
|SN Py| = €;|Py| and SN Py = . Let N be any €7, ;-net. Then N contains

either < j points of P; or < k points of P,. Therefore there always exists some
eSed .
6}57+6£ n points.

S € S that avoids N and contains
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Figure 1: Bounds for e}z in R?

Based on this theorem, we give improved lower bounds on ¢; for axis-parallel
rectangles in section 3.

3. Axis-parallel Rectangles

In this section, we show bounds on €X*.

Let P be a set of n points in R¢. Assume that all points in P have distinct
co-ordinates, i.e. if p = (p1,pa,...,pq) and ¢ = (¢1, 42, -..., ¢4) are two points in
P, then p; # ¢; for all 4, 1 <4 < d. This assumption can be easily removed by
slightly perturbing the input point set such that the co-ordinates are distinct. It
can be seen that an e-net for the perturbed set acts as an e-net for the original
set also (see section 4 in [2]).

3.1. Strong centerpoints in R?
Let R be the family of axis-parallel boxes in R?.

Theorem 2. e® = 2%—;1

PROOF. Let ’Hj and H; , 1 <7 < d, be two axis-parallel hyperplanes orthogonal
to the " dimension that divide P into three slabs. Let P;r be the subset of
P contained in the positive hyperspace defined by H?' and P;” be the subset
of P contained in the negative hyperspace defined by H; . H; and H; are
placed such that [P;| = |P; | = 24 — 1. The hyperplanes H; and H; , 1 <
i < d, partition R? into 3% axis-parallel d-dimensional boxes. Indexing the
partition along each dimension, these boxes are denoted as Ry, 4,..4,, Where
x; € {1,2,3} (see figure 1(a) for the upper bound construction in R?). Let

Prizy. 2y = Ruyzy. zy N P. We claim that Py o # 0.
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Figure 2: Bisection of P by vertical and horizontal lines

d
Let K = > (|P; |+ |P;|) = n — 2d. Since none of the points in Py o is
i=1

counted in any P;" or P;, K > n — | Py 2|. This implies that |Pys 2| > 2d.

Let p be any point in Pay_ 2. We claim that {p} is a degl-net. Any d-
dimensional box that does not contain p has to avoid some P;(P;" or P;)
containing 57 — 1 points. Hence it contains at most 2%—;171 points.

For the lower bound, place 2d subsets of J; points such that each axis has
two subsets at unit distance on either side of the origin. The lower bound
construction for €7 in R? is shown in figure 1(b). Let {q} be an e-net. Without
loss of generality, assume that ¢ is chosen from the subset placed at coordinates
(1,0,0,...0). Now the d-dimensional axis-parallel box =z < 0.5 avoids ¢ but
contains all the remaining 2d — 1 subsets thereby containing 2%—;171 points.

O

3.2. Upper Bounds on €F

Let P be a set of n points and R be the family of axis-parallel rectangles in R2.
We prove upper bounds for ezz.

Lemma 3. There exists a point p € P with coordinates (z',y’) such that the
halfspaces x > ' and y > y' contain at least 5 points of P.

Proor. Divide P into two horizontal and two vertical slabs such that each slab

contains § points (see figure 2).

e Case 1: DN P # (. Any point p € D N P has the desired property.

o Case 2: DN P =0. In this case, [ANP|=|CNP|=% and BNP = 0.
Then the point p € AN P with the smallest perpendicular distance to the

horizontal line has the desired property.

O
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Figure 3: Upper bound for 6%?‘
Lemma 4. €& < %
PRrROOF. Divide P into three horizontal slabs containing %", 7 and ‘%” points

respectively. Similarly, divide P into three vertical slabs in the same proportion
to get a grid with nine rectangular regions (figure 3(a)).
e Case 1: ENP # (): Let x be any point in E. Now {z} is a 2-net since
any axis-parallel rectangle that avoids x will avoid an extreme slab which
contains %n points.

e Case 22 ENP = (: Let Ry, Ry, R3, Ry be the regions AU BU D U
EBUCUEUF,DUFUGUH,EUFUH U I respectively and let P;
denote R; N P for all 4, 1 < i < 4. Since EN P = ), we have |P,| +
|P2| + |Ps| + |P4| = n+ [(BUDUFUH)NP| = 22 Therefore either
(|P1|+|Pys]) > 22 or (|Po|+|Ps|) > 22. Without loss of generality assume
that (|P2| + |Ps]) > 2. Using lemma 3, choose a point p = (p,,py) € P2
such that the halfspaces > p, and y > p, contain at least half of the
points in P,. Similarly, choose a point ¢ = (¢4, qy) € P3 such that the
halfspaces x < ¢, and y < g, contain at least half of the points in P3. We
claim that {p,q} is a %—net. Any axis-parallel rectangle that does not take
points from all the three rows and columns contains at most %" points of
P. So assume that R is an axis-parallel rectangle that takes points from
all the rows and columns. To avoid {p,q}, R must avoid at least half of
the points from P, as well as P3 (figure 3(b)). So it must avoid at least
%& = %" points. Therefore any axis-parallel rectangle that avoids

p,q} contains at most 32 points.
{p.a} 8

O
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Figure 4: General constructions for axis-parallel rectangles

Now we discuss two general recursive constructions for €.

R L z4y
17634—6}) foraz,y>0,2>y and z = [ 2]

R 3
Theorem 5. e, . .\ < max(3e

PrOOF. Construct an e)*-net {q} for P as described in Theorem 2. Let v and
h be vertical and horizontal lines through ¢ that divide P into two vertical and
two horizontal slabs respectively. Let § € [0,1] be a parameter that will be
fixed later. If either of the two vertical slabs contains at least dn points of P
then construct an eX-net for the points in the slab containing at least én points
and eZ}—net for the points in the other slab. If both the vertical slabs contain
less than én points, then construct an e”X-net for the points in each of the two
vertical slabs. Repeat the same construction for the horizontal slabs also. We
have thus added at most 2(z + y) + 1 points to our e-net Q.

Since g € @, any axis-parallel rectangle that avoids @ is contained in one of
the (vertical or horizontal) slabs and this slab has at most % points.

First consider the case where there is a vertical or horizontal slab with at
least dn points. After adding an e-net to @, any axis-parallel rectangle that
avoids ) contains at most %e?n points of P from this slab. Similarly, the
other slab has at most (1 — §)n points of P and any axis-parallel rectangle that
avoids ) contains at most (1 — 5)6?7}72 points of P from this slab. Thus an
axis-parallel rectangle that avoids @) and is contained in one of these slabs has
at most max($en, (1 — §)el¥n) points (see figure 4 (a)). In the case where
both the slabs have less than én points, any axis-parallel rectangle that avoids
Q has at most de®n points. Thus any axis-parallel rectangle that avoids @

R
has at most maz(3ein, (1 — §)ef¥n, 5ein) points. Setting § = E;ﬁ so that
k y 1€z

R_R
R _ s.R R R €y ¢
(1=20)e, = dez, we get €2 aty w,éﬁé;).

3
)1 < max(je



2eR (R .
Theorem 6. 6;2(30—2)(31—1)+jx+ky < max(=L, %) for all z,y > 2 and j, k > 0.

PRrROOF. Divide P into x horizontal slabs and y vertical slabs to get a grid with
each horizontal slab containing 2 points and each vertical slab containing %
points. Let the horizontal slabs be denoted as Hy, Ho, ..., H,. For a horizontal
slab H;, there are y — 1 vertical lines of the grid intersecting it. For each of
these lines, find two points(if present) of P in H; that has the least perpendicular
distance from that line on either side. Repeat this for all horizontal slabs H;, 2 <
i <x—1 (see figure 4 (b)). Add these (at most) 2(x — 2)(y — 1) points to the
eR-net Q.

We claim that any axis-parallel rectangle that avoids these points has at most
mam(%", %) points. If an axis-parallel rectangle intersects at most one vertical
slab or at most two horizontal slabs, then it contains at most ma:v(%", %) points.
Let R be an axis-parallel rectangle that intersects at least two vertical slabs and
at least three horizontal slabs. Let H;, H;y1,..., H,, be the horizontal slabs
intersected by R. R also intersects at least one vertical line and avoids the
nearest points to these vertical lines in all H;, i + 1 <[ < m — 1. Therefore R
cannot take points from any such H;. Thus R can only take points from H; and
H,, and hence contains at most 2?" points of P.

Now add an e}a—net for points in each horizontal slab and an e?—net for points
in each vertical slab and add these e-net points to Q. Now |Q| < 2(z — 2)(y —
1) + jz + ky and the result follows. O
Lemma 7. ESR < %; 6? < %,’ e? < %; 65 < %
PROOF. The results follow from the fact that ¥ = 1 and Theorem 5 with
z=1y=0foref; 2 =2,9y=0for e x=3y=0for Xz =4,y =0 for
ex. O

Rel. Ro2. R
Lemma 8. ¢, < 5; €3 <z €<

oW

PROOF. The results follow from the fact that ¥ = 1 and Theorem 6 with
v =4y =2j==Fkk=0for ef; with z = 5,y = 2,j = 0,k = 1 for €§;
r=4,y=2,7=1k=1for €. O

3.3. Lower Bounds on X
In this subsection, we call an axis-parallel rectangle R an a-big rectangle if

|[PNR| > a|P|. Let Q be an e-net and Py C P. We call Py as free if P,NQ = 0.

Lemma 9. 65 > g

PRrRoOOF. Divide the n points into three equal subsets of % points each and place
each subset uniformly on the bold segments as shown in figure 5. Let @ be an
e-net of size two. The different cases of choosing @) from this set are shown in
figure 5. Let z,y denote the fraction of points from a subset which lie on one
side of the point in ) as shown in the corresponding figure for each case. Let
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Figure 5: Lower bound for e?

f be a function that represents the maximum fraction of points of P that an

axis-parallel rectangle contains without containing any of the points in Q. In

each case, we compute the values of z and y that minimize f by considering all

the rectangles that avoids the e-net points.

(a) f = maw(%x + %, 1-— w, w + %). f is minimized when z = y =
which results in f =

1
3

(S

§.

(b) f=maz(% + 11— 28 2 4 12Uy f i minimized when z = 1,y = 1,

which results in f = g.

(c) f = max(l — =¥ 2 4 %7%’ + 1‘%,%) f is minimized when
r=y= %, which results in f = g.
(d) f=maz(5+%,++ %y, 1— Q(z;ry)). f is minimized when = = y = %, which

Y
results in f = §
So there always exists an axis-parallel rectangle that avoids all the points in the
e-net and contains at least %” points. O

Lemma 10. ¥ > 2

PROOF. Let P be arranged into 20 equal subsets. Each quadrant has a group

of five subsets, we will denote these groups as A, B,C, D as shown in figure 6.
Clearly, all the subsets of one of the groups will be free. Assume that all the

subsets in A are free. The three points in @) can be chosen in two ways.
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Figure 6: Lower bound for e?

o Case 1: One point is chosen from each of the other three groups: Any set
of eight consecutive subsets is contained in a %—big axis-parallel rectangle.
Since subsets in A are free, all the three subsets near A in B and D can-
not be free. This means a point has to be chosen from one of the subsets
b1,bs or bz. Now if a point is chosen from subset b; then the remaining
subsets in B are free and there exists a %—big axis-parallel rectangle con-
taining all those subsets and ai,as,as,as from A. Therefore b; has to
be free. Symmetrically, ds also has to be free. Clearly two points have
to be selected from the subsets by and d4 to avoid the %—big axis-parallel

rectangle with consecutive subsets from D, B and A (ds, a1, ...,as5,b1,bs

and d4,ds,as,...,a5,b1). If the subset c¢; is free then there is a %—big
axis-parallel rectangle containing the free subsets ds, a1, as, as, b3, by, bs, c1.

Therefore the three points have to be chosen from the subsets b, ¢y, dy.

Now there exists a 2-big axis-parallel rectangle as shown in figure 6(b)

5
that avoids these subsets.

o (Case 2: Two points are chosen from a group and the third point is chosen
from the diagonally opposite group: Assume that two points are chosen
from B and one point from D. Clearly, a point has to be chosen from
the subset ds to avoid the %-big axis-parallel rectangles with consecutive
subsets from D, A and D, C (ds,dy,ds,a1,...,a5 and cy,. .., c5,d1, d2, d3).
The other subsets in D are free. The next two points chosen have to be
from the subsets b; and b5 to avoid the %—big axis-parallel rectangles con-
taining consecutive subsets from B, C, D (bs,c1,...,¢5,d1,d2) and D, A, B
(dy,ds,a1,...,a5,b1). Now there exists a %—big axis-parallel rectangle as
shown in figure 6(c) which avoids the subsets by, bs, d3.

O
Lemma 11. € > 13—0

PROOF. Let P be arranged as ten equal subsets as shown in figure 7. The eight
subsets in between the topmost and bottommost subsets are arranged as two

10
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quadrilaterals. Let @ be an e-net of size four. We claim that there always exists
a %—big axis-parallel rectangle that avoids Q.

It is easy to see that there can be at most two free subsets in each of the
quadrilaterals since there is a f’—o—big axis-parallel rectangle that contains any
three free subsets from a quadrilateral. Hence all the four points of Q have
to be chosen from the subsets forming the two quadrilaterals(two points from
each quadrilateral). Therefore the top and bottom subsets are free. Both these
subsets form a %—big axis-parallel rectangle with the black subsets in the quadri-
lateral (see figure 7). Therefore two of the points in @ have to be chosen from the
black subsets. The two gray subsets in the lower(resp. upper) half form a f—o—big
axis-parallel rectangle with the bottommost(resp. topmost) subset. Hence the
remaining two points in @ have to be chosen from the gray subsets(one point
from the top gray subsets and one from the bottom gray subsets). Thus one
gray subset in the lower half is free which forms a %—big axis-parallel rectangle
that avoids @ as shown in figure 7. O

Lemma 12. ¢ > 1

PROOF. Let P be arranged as eight equal subsets, four in the outer layer and
four in the inner layer (see figure 8). Let @ be an e-net of size five. We claim
that there always exists a i—big axis-parallel rectangle that avoids Q.

It is clear that we have to choose a point each from at least three of the inner
layer subsets, otherwise there can be an axis-parallel rectangle that contains all
the points of two free subsets. Also, a point each has to be chosen from at least
two of the outer subsets to avoid the axis-parallel rectangles that contains all
the points of two consecutive subsets in the outer layer. Moreover, these two
points are to be chosen from diagonally opposite subsets. Let the e-net points
be chosen from the five black subsets as shown in figure 8. Now there exists

1

a 7-big axis-parallel rectangle containing the free subset in the inner layer and

the nearest free subset in the outer layer.

11



€1 €2 €3 €4 €5 €6 €7 €8 €9 €10
LB | 3/4|5/9 | 2/5 | 3/10 | 1/4 | 1/5 | 5/29 | 2/13 | 3/22 | 1/8
UB | 3/4 | 5/8 [ 9/16 | 1/2 | 15/32 | 15/32 | 3/7 | 2/5 | 5/13 | 3/8

Table 1: Summary of lower and upper bounds for eZ-z.

R~ 1. R R> 2. eR
Lemma 13. €5 > ¢, €7 229, €5 > 135 €9 x> €15 >

l\)‘w

1
27 8

ProOF. The results follow from theorem 1 with j = k = 3 for 56 1 J=2,k=5
for e¥; j =3,k =5 for ef; j =4,k =5 for €; j =5, k—5forew

1 .
Lemma 14. e? > 9—?, fori>2

Proof. We use mathematical induction to prove this The lemma holds for i = 2
and i = 3 since eX 2 > 9><2 (by lemma 9) and e¥ 2 > 9><3 (by lemma 10).

Now assume the 1emma holds for i = k, ie., ef > ég or gok‘ > E% Thus,
k

D42 + 9 (k+2) > %F< . Theref > L s 10
5= R Rv Le., 15 (ReR - Lherelore, €hp2 > RFeR = 9(k+2)

(from theorem 1) Hence the result follows for all values of ¢.
O

The summary of lower and upper bounds for eX is given in table 1.

4. Half spaces

Let P be a set of n points in R? and #H be the family of halfspaces. In this

section, we prove bounds on ez".

H
Lemma 15. €/* < z+1

Proof. The proof of this lemma is similar to that of Theorem 4.1 in [13]. For
i =2, [13] gives a constructive proof to show that e} < 2. For i > 3, [13] gives
an existential proof showing that a strong e-net of size [£] — 1 exists. Based on
this proof, we give an explicit construction for ﬁ -net of size 1.

Let ¢q,co,. .., cp be the vertices of the convex hull of P, in clockwise order.
Let N represent the e-net. We will denote the chosen e-net points as ni,no,....
Initially N = {¢1} and = = ¢;.

Let ¢, be the first vertex encountered in the clockwibe direction such that
the halfspace formed by Z¢,;1 and containing c, has > + —=-n points. Add ¢, to
N and set = c,. Repeat this procedure till we have considered all vertices of
the convex hull i.e, we have added the point ng4; to N such that ng4; is ¢; or
the halfspace npng11 contains ¢;. In the latter case, there are two possibilities:

® nir1 = ne: Now nj is redundant and is removed from N. Rename ny as
niy.

® nyy1 lies between nqy and ny @ ngyq is a redundant point and is removed
from N.

12
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Clearly any halfspace that avoids IV has at most Z%n points. Hence N is a
H%—net. We claim that N has at most ¢ points.
Let N have [ points and let H; be the halfspace formed by the line 7; 17,1

and containing n;. Let h; = |H; N P|. From the above construction, we know

l
that h; > zi_—"l for all j, 1 < j <. Therefore ) h; > z_%n Since any point
j=1
1

in P is present in at most two H;’s, > h; < 2n. Combining the above two
j=1
inequalities, we have [ < i+ 1 and the result follows.
O

Lemma 16. [13]
2 .
M {Hg'l for i,0dd

v p) for i,even

PROOF. The result follows from the lower bounds given in [13]. For odd values
of i, consider a point set divided into % equal subsets, as described in [13].
For any e-net N of size i, there exists a halfspace that avoids NV and contains

all the H%n points from one subset. For even values, the lower bound for €}t
follows from that for €t .

O

Lemma 17. eg‘ > %

PROOF. Let P be a set of n points arranged as a subset .S of 3?” points uniformly
placed on the arc of a circle with angle less than 7 and a subset T' of %” points
placed close together, at a sufficiently large distance from S so that the tangent
to the arc at any point p € S has S\{p} and T on different sides of it (see
figure 9(a)).

If only one point in the e-net is chosen from S, the tangent to the arc passing
through it results in a halfspace containing 2% —1 points (figure 9(b)). So assume
that both the e-net points are chosen from S. Let p; and py be the es-net points
chosen from S. The points in S are divided into three arcs by p; and py. One of
the arcs contain at least ¢ points. There exists a halfspace avoiding p; and p;
that contains all the points of this arc and all the points of T' (see figure 9(c)).

13
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Figure 10: Upper bound for 62D

5. Disks

In this section, we consider the family of disks. We show an upper bound for
€2. The proof is motivated by the construction for e} given in [13].

Theorem 18. I < %

PROOF. Let P be a set of n points and p be the centerpoint of P. Let T be the
Delaunay triangulation of P. Let a,b,c be points in P such that they are the
vertices of the delaunay triangle in T that contains p. For all x € P\ {a,b, c},
consider the line segment connecting x and p. Each of these n — 3 line segments
intersect one of the edges ab,bc or ac and at least one of them, say ab, has at
least one-third of these line segments intersecting it. We claim that {a,b} is a
%—net.

Let P, C P be the set of points g such that the line segment pq intersects
the edge ab. Consider the circumcircle C' of triangle abc and let Cy; be the
arc between a and b that is intersected by the line segment pq, for any q € P;.
By the definition of delaunay triangulation, C' does not contain any point of
P. Any disk D that avoids {a,b} and contains more than 2 points of P
contains the centerpoint p and at least one point ¢ € P, since |P;| > %‘3
Therefore D intersects C' at two points y, z. If exactly one of these points lie
on the arc Cy, then D contains either a or b (see figure 10(a)). Similarly if
both y and z are outside the arc Cyp, then D contains both the points a and
b (see figure 10(b)). Therefore assume that both y and z lie on the arc Cyp.
In this case, D contains only points from P;. Then we can have another disk
D’ such that (DN P) C (D'NP) and p ¢ D' (see figure 10(c)). This implies
that D’ contains more than %" points and does not contain the centerpoint, a
contradiction.

O
The lower bounds eiD > Z% for odd values of ¢ and e? > h% for even values
of ¢ follow from the lower bound results for halfspaces.

14



Rectangles | Half Spaces Disks
LB\ UB LB\ UB LB\UB

€1 3/4 1 1
& | 5/9] 5/3 | 3/5] 2/3 | 3/5]2/3
s | 2/5 | 9/16 172 172 | 2/3

Table 2: Summary of lower and upper bounds for ;.

Conclusions and Open Questions

In this paper, we have shown lower and upper bounds for ef where S is

the family of axis-parallel rectangles, halfspaces and disks. A summary of the
bounds for ¢ < 3 are given in Table 2. An interesting open question is to find
the exact value of € for small values of i.
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