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Abstract— Variability reduction and business process syn-
chronization are acknowledged as key to achieving sharp
and timely deliveries in supply chain networks. In this paper,
we introduce a new notion, which we call six sigma supply
chains to describe and quantify supply chains with sharp
and timely deliveries, and develop an innovative approach
for designing such networks. We show that design of six
sigma supply chains can be formulated as a mathematical
programming problem, opening up a rich, new framework
for studying supply chain design optimization problems. To
show the efficacy of the notion and the design methodology,
we focus on a design optimization problem, which we call as
the Inventory Optimization (IOPT) problem. We formulate
and solve the IOPT problem for a four stage, make-to-
order liquid petroleum gas supply chain. The solution of
the problem offers rich insights into inventory - service level
tradeoffs in supply chain networks and proves the potential
of the new approach presented in this paper.

I. INTRODUCTION

Lead times of individual business processes and the
variabilities in the lead times are key determinants of end-
to-end delivery performance in supply chain networks.
When the number of resources, operations, and organi-
zations in a supply chain increases, variability destroys
synchronization among the individual processes, leading
to poor delivery performance. On the other hand, by
reducing variability all along the supply chain in an intel-
ligent way, proper synchronization can be achieved among
the constituent processes. This motivates us to explore
variability reduction as a means to achieving outstanding
delivery performance. We approach this problem in an
innovative way by looking at a striking analogy from
mechanical design tolerancing.

Variability reduction is a key idea in the statistical
tolerancing approaches that are widely used in mechanical
design tolerancing [1]. A complex supply chain network is
much like a complex electro-mechanical assembly. Each
individual business process in a given supply chain process
is analogous to an individual subassembly. Minimizing
defective or out-of-date deliveries in supply chains can
therefore be viewed as minimizing tolerancing defects in
electro-mechanical assemblies. This analogy provides the
motivation and foundation for this paper.

A. Contributions

The contribution of this paper is two fold. First, we
introduce the notion of six sigma supply chains. We show
that the design of six sigma supply chains can be expressed

in a natural way as a mathematical programming problem.
This provides an appealing framework for studying a
rich variety of design optimization and tactical decision
making problems in the supply chain context.

The second part of the paper proves the potential
of the proposed methodology by focusing on a specific
design optimization problem which we call the Inven-
tory Optimization (IOPT) problem. We investigate this
problem with the specific objective of tying up design
of six sigma supply chains with supply chain inventory
optimization. Given a multistage supply chain network,
the IOPT problem seeks to find optimal allocation of
lead time variabilities and inventories to individual stages,
so as to achieve required levels of delivery performance
in a cost-effective way. The study uses a representative
liquid petroleum gas (LPG) supply chain network, with
four stages: supplier, inbound logistics, manufacturer, and
outbound logistics. The results obtained are extremely
useful for a supply chain asset manager to quantitatively
assess inventory-service level trade offs. For example, a
supply chain manager for the LPG supply chain will be
able to determine the optimal number of LPG trucks to
keep at the regional depot and the optimal way of choosing
logistics providers, so as to ensure six sigma delivery of
LPG trucks to destinations.

In our view, the concepts and approach developed in
this paper provide a framework in which a rich variety of
supply chain design and tactical decision problems can be
addressed.

B. Relevant Work

Lead time compression in supply chains is the sub-
ject of several recent papers, see for example, Narahari,
Viswanadham, and Rajarshi [2]. Statistical design toler-
ancing is a mature subject in the design community. The
key ideas in statistical design tolerancing which provide
the core inputs to this paper are: (1) theory of process
capability indices [3]; (2) tolerance analysis and tolerance
synthesis techniques [4], [5]; (3) Motorola six sigma
program [6]; and (4) design for tolerancing [1], [7].

Inventory optimization in supply chains is the topic
of numerous papers in the past decade. Important ones
of relevance here are on multiechelon supply chains [8].
Recent work by Schwartz and Weng [9] is particularly
relevant here. This paper discusses the joint effect of lead
time variability and demand uncertainty, as well as the

Proceedings of the 2003 IEEE 
International Conference on Robotics & Automation 
     Taipei, Taiwan, September 14-19, 2003 

0-7803-7736-2/03/$17.00 ©2003 IEEE 1737



effect of ”fair-shares” allocation, on safety stocks in a four-
link JIT supply chain. The paper by Garg, Narahari, and
Viswanadham [10] contains some of the preliminary ideas
of this current paper.

II. SIX SIGMA SUPPLY CHAINS

We define a six sigma supply chain as a network of
supply chain elements which, given the customer specified
window and the target delivery date, results in a delivery
probability (DP) of at most 3.4 ppm (i.e. at most 3.4
defective deliveries in one million opportunities). All
triples (Cp,Cpk,Cpm) that guarantee an actual yield of at
least 3.4 ppm (or DP=6σ ) would correspond to a six
sigma supply chain. The indices Cp and Cpm completely
determine the delivery probability and we need the index
Cpm to specify how concentrated the deliveries are around
the target delivery date. For this reason, we call the index
Cpm as delivery sharpness (DS) [11]. It is important to note
that in order to achieve DP=6σ , the delivery sharpness
needs to assume appropriately high values. In a given
setting, however, there may be a need for extremely sharp
deliveries (highly accurate deliveries) implying that the
Cpm index is required to be very high. This can be specified
as an additional requirement of the designer.

A. Design of Six Sigma Supply Chains

A major design objective in supply chain networks is to
deliver finished products to the customers within a time as
close to the target delivery date as possible, with as few
defective deliveries as possible at the minimum cost. To
give an idea of how the design problem can be formulated,
let us consider a supply chain with n business processes
such that each of them contributes to the order-to-delivery
cycle of customer desired products. Let Xi be the cycle
time of process i. It is realistic to assume that each Xi is
a continuous random variable with mean µi and standard
deviation σi. The order-to-delivery time Y can then be
considered as a deterministic function of Xi’s:

Y = f (X1, . . . ,Xn)

If we assume that the cost of delivering the products
depends only on the first two moments of these random
variables, the total cost of the process can be described
as:

Z = g(µ1,σ1, . . . ,µn,σn)

where g is some deterministic function.
The customer specifies a lower specification limit L, an

upper specification limit U , and a target value τ for this
order-to-delivery lead time. With respect to this customer
specification, we are required to choose the parameters
of X1, . . .Xn so as to minimize the total cost involved in
reaching the products to the customers, achieving a six
sigma level of delivery performance.

Thus the design problem can be stated as the following
mathematical programming problem:

Minimize Z = g(µ1,σ1, . . . ,µn,σn)
subject to

DS for order-to-delivery time ≥ C∗
pm

DP for order-to-delivery time ≥ 6σ
µi > 0 ∀i

σi > 0 ∀i

where C∗
pm is a required lower bound on delivery sharp-

ness. The objective function Z of this formulation cap-
tures the total cost involved in taking the product to the
customer, going through the individual business processes.
We have assumed that this cost is determined by the first
two moments of lead times of the individual business
processes. One can define Z in a more general way if
necessary. The decision variables in this formulation are
means and/or standard deviations of individual processes.
The constraints of this formulation guarantee a minimum
level of delivery sharpness (C∗

pm is the minimum level of
delivery sharpness required) and at least a six sigma level
of delivery probability.

Depending on the nature of the objective function and
decision variables chosen, the six sigma supply chain
design problem assumes interesting forms. We consider
some problems below under two categories: (1) generic
design problems and (2) concrete design problems.

Generic Design Problems:
• Optimal allocation of process means
• Optimal allocation of process variances
• Optimal allocation of customer windows
Concrete Design Problems:
• Due date setting
• Choice of customers
• Inventory allocation
• Capacity planning
• Vendor selection
• Choice of logistics modes, logistics providers
• Choice of manufacturing control policies

These problems can arise at any level of the hierarchi-
cal design. Thus in order to develop a complete suite
for designing a complex supply chain network for six
sigma delivery performance through the hierarchical de-
sign scheme, we need to address all such sub problems
beforehand. In the next section, we consider one such sub-
problem, optimal allocation of inventory in a multistage
six sigma supply chain, and develop a methodology for
this problem.

III. INVENTORY OPTIMIZATION IN A MULTISTAGE
SUPPLY CHAIN

In this section, we describe a representative supply
chain example for liquid petroleum gas (LPG), with four
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stages: supplier (refinery), inbound logistics, manufacturer
(regional depot for LPG), and outbound logistics [9]. We
formulate the six sigma design problem, based on the
concepts developed in earlier sections, for this supply
chain. Then we show how one can allocate variabilities to
lead times of individual stages so as to achieve six sigma
delivery performance. We also show how to compute the
optimal inventory to be maintained at the regional depot
to support six sigma delivery performance.

A. A Four Stage Supply Chain Model with Demand and
Lead Time Uncertainty

1) Model Description: Consider N geographically dis-
persed distribution centers (DCs) supplying retailer de-
mand for some product as shown in Figure 1. The product
belongs to a category which does not make it profitable
for the distribution center to maintain any inventory. An
immediate example is a distributor who supplies trucks
laden with bottled Liquid-Petroleum-Gas (LPG) cylinders
(call these as LPG trucks or finished product now onward)
to retail outlets and industrial customers. In a situation like
this, as soon as a demand for a LPG truck arrives at any
DC, the DC immediately places an order for one unit of
product (in this case, an LPG truck) to a major regional
depot (RD). The RD maintains an inventory of LPG trucks
and after receiving the order, if on-hand inventory of LPG
trucks is positive then an LPG truck is sent to the DC
via outbound logistics. On the other hand, if on-hand
inventory is zero, the order gets backordered at the RD. At
the RD, the processing involves unloading LPG from LPG
tankers into LPG reservoirs, filling the LPG into cylinders,
bottling the cylinders and finally loading the cylinders onto
trucks.
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Fig. 1. A four link linear supply chain model

The inventory at RD is replenished as follows. The
RD starts with on-hand inventory R and every time an
order is received, it places an order to the supplier for one
LPG tanker (called as semi-finished product now onward)
which is sufficient to produce one LPG truck. In this case,
the supplier corresponds to a refinery which will produce
LPG tankers. In the literature such a replenishment model
is known as the < Q,R > model [12] with Q = 1. In such
a model, the inventory position (on-hand plus on-order
minus backorders) is always constant and is equal to R.

The LPG supply chain network is a typical example of a
multi-echelon supply chain network. The four stages could

be described as (descriptions in parentheses corresponds to
the LPG example): (1)Procurement or Supplier (refinery);
(2) Inbound Logistics (transportation of LPG tankers from
refinery to RD); (3) Manufacturing (RD); (4) Outbound
Logistics (customer order processing and transportation
of LPG trucks from RD to a DC).

2) System Parameters: This section presents the nota-
tion used for various system parameters.
Lead Time Parameters:

X1 ∼ N
(
µ1,σ1

2) = Procurement lead time

X2 ∼ N
(
µ2,σ2

2) = Inbound logistics lead time

X3 ∼ N
(
µ3,σ3

2) = Manufacturing lead time

X4 ∼ N
(
µ4,σ4

2) = Outbound logistics lead time
Lm = Time between placement of an order by manufacturer

and receipt of item at the manufacturer
L f = Time between placement of an order by manufacturer

and completion of processing of the item at the
manufacturer

Lc = End-to-end lead time of customer’s order
Lc = An upper bound on Lc(

µm,σm
2) = Mean and variance of Lm(

µ f ,σ f
2
)

= Mean and variance of L f(
µc,σc

2) = Mean and variance of Lc(
µ̄c, σ̄c

2) = Mean and variance of Lc

Demand Process Parameters:

λi = Order arrival rate from ith customer (item/year)

λ =
N

∑
i

λi = Poisson arrival rate of orders at

the manufacturer
R = Inventory level at the manufacturing node
Q = 1 = Reorder quantity of the manufacturer

Mo = Stockout probability at the manufacturing node
E = Average number of backorders per unit time

at the manufacturing node(item/time)
B = Expected number of backorders with the

manufacturer at arbitrary time t (item)

D = Expected number of onhand inventory with
the manufacturer at arbitrary time t (item)

ψm(x) = Steady state probability that the
manufacturer has net inventory equal to x

p(x;λ t) =
exp(−λ t)(λ t)x

x!

P(r;λ t) =
∞

∑
x=r

p(x;λ t)
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Cost Parameters:

K1 = f
1
(µ1,σ1) = Procurement cost ($/item)

K2 = f
2
(µ2,σ2) = Inbound logistics cost ($/item)

K3 = f
3
(µ3,σ3) = Manufacturing cost ($/item)

K4 = f
4
(µ4,σ4) = Outbound logistics cost ($/item)

A = Order placing cost for manufacturer ($/order)
Π = Fixed part of backorder cost($/item)

Π̂ = Variable part of backorder cost($/item-time)
I = Inventory carrying cost ($/time-$ invested)

C = Cost of raw material ($/item)

Cm = Capital tied up with each item ready to be shipped
via outbound logistics($/item)

Delivery Quality Parameters:

Cp,Cpk,Cpm = Supply chain process capability indices for
end-to-end lead time of customer order

(τ ,T ) = Delivery window specified by customer
U = τ +T = Upper limit of delivery window
L = τ −T = Lower limit of delivery window
b = |τ −µc| = Bias for Lc

b̄ = |τ − µ̄c| = Bias for Lc

d = min(U −µc,µc −L)

d̄ = min(U − µ̄c, µ̄c −L)

B. System Analysis

1) Lead Time Analysis of Delivery Process: In this
section we present some results concerning the dynamics
of flow of material in the chain triggered by an end
customer order as well as manufacturer order and compute
the related end-to-end lead times. The proofs are provided
in the detailed report [11]. The theorem is based on the
work of Tackács [12].

Lemma 2.1: An upper bound on end-to-end lead time
(Lc) experienced by an end customer is

Lc = X4 +Mo
(
X1 +X2 +X3

)

where Mo is the stockout probability at the manufacturer.
Theorem 2.1: Let the < Q,R > policy with Q = 1 be

followed for controlling the inventory of a given item at a
single location where the demand is Poisson distributed
with rate λ , and let the replenishment lead times be
nonnegative independent random variables (i.e., orders can
cross) with density g(t) and mean µ . The steady state
probability of having net inventory (on hand inventory
minus backorders) x by such a system can be given by:

ψ(x) =
exp(−λ µ)(λ µ)x

x!

In other words, the state probabilities are independent of
the nature of the replenishment lead time distribution if
the lead times are nonnegative and independent.

Using the results in [12], we can derive expressions
for the stockout probability (Mo), the average number of
backorders per unit time (E), the expected number of
backorders at any random instant (B), and the expected
number of onhand inventory at any random instant (D).
These expressions are listed below.

Mo = P(R;λ µ f ) =
∞

∑
k=R

exp(−λ µ f )(λ µ f )
k

k!

= 1− exp(−λ µ f )
R−1

∑
k=0

(λ µ f )
k

k!
(1)

E = λMo (2)
B = λ µ f P(R−1;λ µ f )−RMo

= Mo

(
λ µ f −R

)
+

exp(−λ µ f )(λ µ f )
R

(R−1)!
(3)

D = R−λ µ f +B (4)

The expression for Mo serves in deriving an important
conclusion about upper bound on end-to-end lead time
for customer (i.e. Lc) which is described (without proof)
in the form of Lemma 2.2.

Lemma 2.2: For a fixed value of R, λ , and µ f , the
upper bound on end-to-end lead time experienced by an
end customer (i.e. Lc) is a normal random variable with
mean µ̄c and variance σ̄c

2 given as follows:

µ̄c = µ4 +Mo
(
µ1 + µ2 + µ3

)
(5)

σ̄c
2 = σ 2

4 +M2
o
(
σ2

1 +σ 2
2 +σ 2

3
)

(6)

where Mo is given by Equation (1).

C. Formulation of IOPT

The objective of the study here is to find out how
variability should be allocated to the lead times of the
individual stages and what should be the optimal value
of inventory level R, such that specified levels of DP
and DS are achieved in the steady state condition for the
customer lead time, in a cost effective manner. We call this
problem as the Inventory Optimization (IOPT) problem
in six sigma supply chains.

1) Constraints :
Observe that Lc is an upper bound on end customer lead
time Lc, so if we specify the constraints which assure to
attain the specified levels of DP and DS for Lc, it will
automatically imply that Lc attains the same or even better
levels of DP and DS than specified. These constraints can
be written down as follows.

DS for Lc ≥ C∗
pm (7)

DP for Lc ≥ θσ (8)
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To express these constraints in terms of decision variables
σi’s, consider the Lemma 2.2 which provides the relation
of variance σ̄c

2 with variances of individual stages, for a
given value of R (note that λ and µ f are anyway known
here). Thus, for a given value of R, σ̄c

2 can be expressed
in terms of Cp and Cpk of Lc in the following manner:

σ̄c
2 =

T 2

9C2
p

=
d̄2

9C2
pk

(9)

where T , the tolerance of customer delivery window, is a
known parameter in the IOPT problem and d̄ is given as
follows.

d̄ = min(U − µ̄c, µ̄c −L) (10)

Substituting the value of µ̄c, from Lemma 2.2 in the above
relation, we get

d̄ = min

([
U −µ4 −Mo

3

∑
i=1

µi

]
,

[
µ4 +Mo

3

∑
i=1

µi −L

])

In the above equation, U,L,µ1,µ2,µ3,µ4 are all known
parameters. Also, Mo, according to Equation (1), depends
only on λ ,R, and µ f . Therefore, for a given value of R,
d̄ is a known parameter. The only unknown quantities in
Equation (9) are Cp and Cpk. Substituting the value of
Equation (9) in Equation (6) we get the following relation
which is the crux of the problem of converting constraints
in terms of decision variables, for a given value of R.

σ2
4 +M2

o
(
σ2

1 +σ 2
2 +σ 2

3
)

=
T 2

9C2
p

=
d̄2

9C2
pk

(11)

D. Solution of IOPT

The optimization problem here is a mixed integer
nonlinear optimization problem. The following provides
a step-by-step procedure for solving the IOPT problem.

1) Fix a value for R and solve the resulting subproblem
to determine optimal values of σi’s to achieve the
optimal COST for that value of R. This requires a
careful study and interpretation of the constraints to
determine the values of Cp and Cpk for a given value
of R. This is discussed in the next subsection.

2) Repeat Step 1 for all practically feasible values of
R > 0.

3) Repeat Step 1 for R = 0. The case R = 0 is a
bit different from that of R > 0 since it leads
to a subtly different objective function and subtly
different constraints (for details, see [11]).

4) Determine the minimum among all such optimal
upper bounds on COST computed above. The corre-
sponding R will give the optimal inventory level to
be maintained and the corresponding σi’s will give
the optimal variabilities to be assigned to individual
lead times..

E. Determining Cp and Cpk for a given Value of R

The unknown pair (Cp,Cpk) in equation (11) is chosen
in a way that it satisfies both the constraints (7) and (8).
The idea behind getting such a pair is detailed in [11].

F. Solution of IOPT for a Specific Instance

Let us consider the LPG supply chain once again and
study the problem in a realistic setting. We have chosen
following values for typical known parameters of the IOPT
problem in the context of the LPG supply chain.
Lead Time Parameters:
µ1 = 1 day,µ2 = 3 days,µ3 = 2 days,µ4 = 7 days
Demand Process Parameters:
λ = 1500 trucks/year
Cost Parameters:
These parameters have been chosen so as to capture the
negative correlation between cost and mean lead time and
between cost and variability of lead time.
K1 = 10

(
1+ exp

(
1

σ1

)
−

µ1
200

)
$/truck

K2 = 100
(

1+ exp
(

1
σ2

)
−

µ2
200

)
$/truck

K3 = 10
(

1+ exp
(

1
σ3

)
−

µ3
200

)
$/truck

K4 = 100
(

1+ exp
(

1
σ4

)
−

µ4
200

)
$/truck

A = 5 $/order; Π = 0 $/truck; Π̂ = 500 $/truck-year;
I = 0.2 $/year-$invested; C = 1000 $/truck
Delivery Quality Parameters
τ = 10 days; T = 10 days
For the sake of numerical experimentations we consider
following four different sets of constraints and solve the
problem under each case.

1) DP=3σ and DS=0.7 for Lc
2) DP=4σ and DS=0.8 for Lc
3) DP=5σ and DS=0.9 for Lc
4) DP=6σ and DS=1.0 for Lc

Assume that it is not possible for the RD to keep more
than 40 LPG trucks ready at any given point of time.

We first describe Step 1 of the procedure to solve IOPT,
discussed in the last section, for this numerical example.
Let us choose Constraint set DP=3σ and DS=0.7 to work
with. Step 2 can be carried out in the same manner for all
the other values of R. Step 3 and Step 4 are also trivial.
The same procedure can be repeated for other constraints
sets also.

To start with, let us fix R = 10. We first compute the
following parameters for the given numerical values.
µ f = 6 days
Mo = 0.999722639663766
E = 1499.583959 trucks/year
B = 14.657947016303742 trucks
D = 0.000412769728402651 trucks
β = 4.983672090063828×106

d̄ = 7.001664162017404 days
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An important problem is to find out values of Cp and Cpk.
This is detailed in [11]. For the present example these
indices are Cp = 1.25057 and Cpk = 0.875609. These Cp
and Cpk can further be utilized to determine the value of
DP and DS at the global minimum point which come out
to be 4.12678σ and 0.83088 respectively. These quality
levels are more than what is desired. Hence, we use Cp and
Cpk as design values. Substituting these in the objective
function gives optimal upper bound on COST (2.5921
million $) of supply chain with R = 10.

Fortunately, in the present situation the global minimum
point becomes a design point so we need not proceed for
any further calculation. But if it is not so, then we will be
required to solve the underlying optimization problem by
the Lagrange multiplier method and get stationary points
which satisfy the necessary conditions.

Note that we have studied an instance of the IOPT
problem assuming R = 10, DP=3σ , and DS=0.7 for Lc.
We obtained the optimal allocation of standard deviations
to achieve a minimum COST. The standard deviations
obtained can be used by a supply chain manager to decide
among alternate logistics providers or alternate suppliers,
etc.

To now obtain the optimal value of R, we repeat the
solution of the IOPT problem for different values of R,
each time computing the optimal upper bound on COST
and the corresponding allocation of variabilities. Detailed
results of the above problem are presented in [11].

IV. SUMMARY AND FUTURE WORK

In this paper, we have presented a novel approach to
achieve variability reduction, synchronization, and there-
fore delivery performance improvement in supply chain
networks. Our approach exploits connections between
design tolerancing in mechanical assemblies and lead time
compression in supply chain networks. The paper leaves
plenty of room for further work in several directions. The
design problem that we studied here is only one of a
rich variety of design optimization problems that one can
address in the framework developed in this paper. Many
other problems, as listed in Section II.F can be studied.
Also, the supply chain example that we have looked at
belongs to the MTO type. Here again, there is no reason
why our approach cannot be applied for coordination types
other than MTO, such as MTS and BTO (Build to Order).
Also, we have assumed presence of inventory at only one
of the stages. Generalizing this to multi-echelon networks
will be extremely interesting.
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