
Analyses for Service Interaction Networks with applications to Service
Delivery

S. Kameshwaran ∗ Sameep Mehta † Vinayaka Pandit † Gyana Parija †

Sudhanshu Singh ‡§ N. Viswanadham ∗

October 10, 2008

Abstract
One of the distinguishing features of the services industry
is the high emphasis on people interacting with other peo-
ple and serving customers rather than transforming physical
goods like in the traditional manufacturing processes. It is
evident that analysis of such interactions is an essential as-
pect of of designing effective and efficient services delivery.
The results of analysis can be used to handle various aspects,
e.g., training, team building, risk management etc. In this
work we focus on learning individual and team behavior of
different people or agents of a service organization by study-
ing the historical interaction. Short interactions with a small
factor of repetition of patterns is a characteristic of many ser-
vice delivery scenarios. We introduce the concept of service
interaction networks to study the effect of interactions in ser-
vice delivery. We identify the unique characteristics of ana-
lyzing service interaction networks when compared to tra-
ditional analyses considered in social network analysis. We
establish the need for novel techniques in analyzing service
interaction networks. With this background, we develop a
simulation framework that helps to study service interaction
networks. We propose some initial approaches for analyzing
service interaction networks and discuss promising research
directions in this emerging area in service engineering.

1 Introduction
One of the distinguishing features of the services industry
is the high emphasis on people interacting with other peo-
ple and serving customers rather than transforming physical
goods in the process. The focus of this paper is on analyz-
ing patterns of interactions in services delivery to help un-
derstand the impact of individuals and their interactions on
the quality/effectiveness. A typical service creation can be
thought of as a workflow consisting of various stages of spe-

∗Center for Global Logistics and Manufacturing Systems (GLAMS),
Indian School of Business, Hyderabad

†IBM India Research Laboratory, New Delhi
‡University of North Carolina, Chapel Hill
§The author was with IBM India Research Lab when the work was done.

cialized activities. Therefore, service creation involves peo-
ple, each performing the specialized tasks of the stage that
he or she is responsible for, and communicating with others
who are performing related/dependent activities. We refer to
the people or entities involved in performing different stages
of a workflow as agents. Ideally, the organization should
capture all the details of the execution which includes indi-
vidual agent performance, the quality of interaction among
agents etc. However, due to confidentiality, lack of visibil-
ity and in some cases lack of control e.g. presence of In-
dependent Service Vendors (ISVs) in workflow execution,
makes it improbable (if not impossible) to capture the de-
tails at such micro level. Typically, the organizations only
track macro level features like success/failure, cost etc of
the workflow. Merely aggregating the macro-level measure-
ments offers limited insight into the individual capabilities of
the agents and the effectiveness of their interaction. In this
work, we consider the issue of discovering individual traits
of agents based on measurements at the level of workflows.
Specifically, our goal is to develop techniques that give better
insight than those obtained by simple aggregating across all
workflows. We begin by illustrating some scenarios where
innovation analysis of macro level data can be helpful in ser-
vice delivery.

1.1 Examples Let us consider the case of an orchestrator
of supply chains. Orchestrator is a management literature
metaphor to describe the role of a player who organizes and
manages a set of activities in a network by ensuring value-
creation opportunities in the system and value appropriation
mechanisms for each player. Examples of orchestrators are
Li & Fung (Hong Kong) in retail [6] and Medion (Germany)
in personal computing [18]. Let us consider the case of
Li&Fung, which orchestrates an innovative service supply
chain in apparel industry [10]. In the words of their
group chairman Victor Fung, they “create a customized value
chain for each customer order and orchestrate a production
process that starts from raw materials all the way to the
finished products”. In other words, they seamlessly bring

together the large apparel retailers and a global pool of
apparel-related suppliers and create value without owning
any of the resources used in the production. The key
differentiator that Li&Fung does bring in is the intimate
knowledge of the global service network. Every major order
of a retailer gets executed by creating a customized supply
chain in the global network of suppliers. Each order typically
gets executed by multiple workflows which go through the
complete product cycle and is orchestrated by the domain
experts in Li&Fung. Just the revenue of Li&Fung for the
services offered is USD 11 Billion and the actual value of the
retail good is greater by an order of magnitude. Identifying
the providers for a particular order is based on network
constraints and local economic, political, public policy, and
cost considerations. However, if there is more information
regarding the providers’ success and failure measures and
their interacting capabilities with other providers, then the
orchestrator can choose the providers for an order in a more
optimal fashion which will reduce risk and some part of
management cost. One of the interesting questions that begs
to be answered is, “who will be the Li&Fung of IT service
delivery?”.

Let us now consider the case of distributed software de-
velopment. A typical software service firm delivers its ser-
vices from geographically distributed locations. Teams at
each location possess expertise in different functionalities
from a broad domain. Examples of the domains could be
product design and architecture, development capability in
different technical disciplines, integration, testing, and de-
bugging. Typical projects flow through different functional-
ity modules of these domains at various stages of the project
in a precedence oriented fashion. Parameters associated with
a project such as, overheads incurred, efficiency, success
etc. depend heavily on the team behavioral aspects of the
different teams in distributed locations and effectiveness of
communication/coordination between related modules. Typ-
ically, the project manager ensures that the teams have the
required skill set to successfully complete the project. How-
ever, choosing team with the sole intention of matching skill
set demand may not produce optimal teams. In this scenario,
we can view each project as a workflow and each team as
an agent as it is responsible for basic units of the workflows.
Organizational constraints allow us to measure the effective-
ness of each project only at a macro level rather than at the
level of how individual teams performed at various stages.
A firm can, not only gain better understanding of the team
dynamics, but also arrive at better team compositions in fu-
ture by analyzing the macro level data corresponding to the
agents and the workflows in innovative ways. Recently, sev-
eral research papers in the area of software engineering have
considered these and other related issues in distributed soft-
ware development [21, 20, 22].

1.2 Salient Features At this stage, we would like to high-
light some of the salient features of the examples that we
considered. In the of Li&Fung in which the orchestration
is over thousands of suppliers distributed globally, the team
compositions are not often repeated unlike production envi-
ronments where the team compositions repeat on a routine
basis. The duration of each interaction is also quite short in
comparison to those in production environments. Therefore,
it is essential to take into account the effect of each work-
flow on the effectiveness of the overall service composition
and delivery. We also observe that micro-monitoring of indi-
vidual agents is not possible due to various reasons. In case
of Li&Fung, the agents are independent entities and hence
very difficult to control and monitor at a micro-level. In case
of an intra-organization service chain like the software de-
velopment scenario, micro-monitoring of aspects like effec-
tiveness of communication across two dependent stages of
the project could affect the team morale and also increase
cost of projects. Therefore, we assume that only macro-level
assessment of each workflow is available. Each workflow
could be designated as having met or not met certain accept-
able criteria or there could be a gradation between 0 and 1.

1.3 Contrast with related literature If we view the
agents as entities in a network and each workflow as a re-
lation between entities, the service delivery scenarios look
similar to the traditional social networks. We briefly high-
light the uniqueness of service delivery scenarios as com-
pared to social network analysis (SNA). Traditional SNA
has evolved during the study of networks that arise by so-
cial interactions of people, socio-technological networks like
WWW, and collaboration networks of scholarly articles.
It has mainly concentrated on dyadic relations (sometimes
even reducing relations involving multiple entities to mul-
tiple dyadic relations) and discovering structural properties
of such networks. Firstly, from the point of view of ser-
vice delivery, the relations are either hyper-edges over the
agents or workflows involving multiple agents. Secondly,
the focus of the analysis in service delivery setting is on the
fact that, with each workflow, a measure of its effectiveness
is recorded. The idea is to use the pattern of these interac-
tions and their effectiveness to infer micro-level attributes of
agents and their interactions.

The current problem domain is also significantly dif-
ferent from traditional supply chain processes. What sets
services and industrial/production processes apart are (i) the
degree to which human interactions dominate the total time
and (ii) the degree to which human interactions influence the
overall quality. To understand these differences in details,
especially from the supply chain viewpoint, we point readers
to an excellent survey article by Dietrich and Harrison [8].
They highlight the novelty of the mathematical techniques
required to analyze service delivery.

1.4 Our contribution Informally, service interaction net-
works are networks arising in service delivery, out of agents
and their interactions in executing workflows. As already ex-
plained, they can abstract scenarios from a broad spectrum
of service delivery scenarios. In this paper, we initiate a sys-
tematic study of this topic.

Unlike the well known sources of data for SNA such as
WWW, DB LP etc., data on service interaction networks is
hard to obtain. The main reason is the proprietary nature of
the data. It contains crucial private data of organizations that
cannot be shared externally. Anonymization of the data is
not a solution either. It would reveal confidential informa-
tion about the organization. For example, a company may
not want to reveal that in its private estimate a certain per-
centage of its interactions were unsatisfactory. So, realis-
tic data generation is a major challenge. Note that gener-
ating data by representing simplistic mathematical models
for agent behaviour does not work. This is due to the dom-
inance of human aspects in service delivery. At the same
time, randomized assignment of performance levels for each
interaction is not helpful either. It not only results in highly
inconsistent data, but is also not reflective of real-life sce-
narios. One would like to generate data that is close to real-
life and reasonable level of consistency. Generating such a
data is a research topic by itself. Towards this goal, we have
developed a simulation framework. The framework can be
instantiated to generate data which reflect various real life
scenarios.

Related literature in SNA by computer scientists as
well as sociologists offer starting points for studying service
interaction networks. Particularly, the eigen vector based
approaches seem to be relevant from the point of view of
service interaction networks. We present several ways of
extending this line of work for analyzing service interaction
networks. We discuss the advantages and disadvantages of
each approach.

We also develop an intuitive iterative refinement tech-
nique to compute reputations of agents that overcomes some
of the limitations of simply using the aggregates. We illus-
trate the efficacy of our approach both conceptually and em-
pirically on data generated by the simulation framework. We
also consider the impact of specific “links” on the service de-
livery. For example, agents a and b might be effective agents
individually. But, workflows in which a task performed by
a is followed by b might not be as effective. This suggests
that the collaboration between a and b is not as desirable
and should be avoided in future workflow compositions. Our
work introduces a very important analysis domain for service
delivery and presents several interesting future directions.

2 Analysis Framework
In this section, we formulate the problems considered in this
paper. For ease of exposition, we call an organization re-

sponsible for end-to-end service delivery as the orchestrator.
We call entities (be it individuals, teams or independent ser-
vice providers) that are responsible for independent units of
work as agents.

2.1 Service Interaction Networks In our setting there is
an orchestrator O who can avail the services of a set of N
agents V . The orchestrator O specializes in accomplishing
high-level tasks from a broad domain and the agents provide
the different functionalities to accomplish the high-level
tasks. Given a task t, the orchestrator composes a workflow
consisting of a subset of V to accomplish the tasks. We
assume that the set T = {t1, t2, . . . , T} denotes the set of
tasks performed by the orchestrator over a significant period
of time. In the most general form a workflow Wt can be
represented as a graph Gt(Vt, Et) with vertices Vt ⊆ V
and edges Et between vertices in Vt that model the direct
interactions between any two actors in Vt. However, certain
tasks require repeated interactions which are cumbersome to
represent in terms of direct edges. Therefore, we assume
that each task is accomplished by a workflow which is
represented as a hyper-edge connecting all the involved
agents. Abstractly, the hyper-edge highlights the fact that
an interaction involving its agents took place before the
task could be accomplished. Associated with each hyper-
edge is an outcome which is a measure of the effectiveness
of its execution. In general, the outcome could be a real
number between 0 and 1. But, our main interest will be in
the special case when the workflows are either S-successful
(i.e, 1) or F -failure (i.e, 0). We call the collection of
agents along with the hyper-edges representing the various
tasks and their outcomes as service interaction networks.
An instance of a service interaction network is given by
(V, T ,∪∀t∈T (Wt, Rt)) where the tuples (Wt, Rt) associate
workflows with their outcomes. Figure 1 shows an example
with N = 7 and T = 5.

Typically, workflows are composed by the orchestrator
based on (i) system constraints in terms of capacity and capa-
bilities of the agents, and (ii) social, geographical, political,
and economic factors. In addition, the orchestrator has to
take into account the individual and team dynamics of the
agents. As explained in the examples presented in the intro-
duction, it is not always feasible to micro-monitor the work-
flow executions. So, one of the main themes of analyzing
service interaction networks is to infer useful information
about the agents from the high-level measurements across
workflows. For example,

• How does an agent impact the success of the workflows
in which it is involved?

• What is the impact of involving a specific subset of
agents on an workflow? Specifically, how does the
existence of a link between two agents affect the success

S

1)

Tasks Workflow Outcome

2)

3)

4)

5)

A1 A2

A3

A4

A1

A5

A2

A6

A7

A2

A5

A3

A7
A4

A1

A2

A5

A6

S

F

S

F

Figure 1: An example with N = 7 actors and T = 5
workflows

of workflows in which they are involved?

• Are there any dominant or influential agents emerging
in the network?

Note that an obvious approach to tackle the above

questions is based on aggregating. For example, to measure

the effectiveness of an agent, one could just measure the

fraction of the successful workflows of all the workflows in

which the agent is involved. Similarly, we can extend it to

assess effectiveness of direct links and larger subsets. Some

of the limitations of such an approach are noted below.

Consider a successful and influential super-agent a who
ensures that all the workflows that he is involved in succeed.

Consider an agent b who is failure-prone when teamed with
ordinary agents. Let 80% of the workflows of b also contain
a. Let us further say that a large fraction of the rest of b’s
workflows have failed. The aggregate based approach would

infer that b is a highly successful agent. However, we would
like to infer that b is prone to failures (and may be needs
to be targeted in training programs). A different problem

arises when we use aggregates to make transitive inferences.

Suppose c and d are indeed effective agents. An aggregate
based method would suggest that it is okay to compose a

workflow involving c and d. However, a closer look at direct
interactions between c and d may suggest otherwise.

We consider algorithmic approaches to tackle the above

questions. We would like them to deal with behavioral in-

consistencies of agents, a commonly encountered phenom-

ena in service delivery settings.

2.2 Related Literature In this section, we will summarize

related literature and highlight the uniqueness of our formu-

lations with respect to previous work. Some of the previous

works need to be examined more closely to ascertain their

applicability to our formulations. Section 3 considers some

of the previous works as starting point for representation and

analyses. The purpose here is to briefly highlight the unique-

ness of our work.

The distinction of our setting with the traditional SNA

focusing on structural properties of networks of diadic rela-

tions was highlighted in the introduction. An excellent sur-

vey of the structural analyses in SNA can be found in articles

by Newmann [15, 16, 17]. Some of the well known exam-

ples are the studies on the “small world” phenomena in such

networks [13] and studies on the “shape” of the WWW [5].

Most studies in SNA do not focus on the properties of the

links themselves. Recently, in the context of analyzing tele-

phone call-graphs [19, 14], the weights on the links was used

to discover communities. However, in our case, the label on

the hyper-edge is indicative of the effectiveness of the corre-

sponding workflow. Moreover, we are interested in inferring

reputations of individual agents and their interactions.

If we denote the agents as nodes and the interactions

between them as edges, then we have interaction networks,

much similar to social networks. A concept called centrality

is widely used in social networks in studying structural im-

portance of nodes in the network. For interaction networks,

this translates to quantifying the status of the agents based

on their interactions. However, application of centrality con-

cepts to interactions networks is non-trivial due to the pres-

ence outcomes to each workflow and there exists preferential

relations over the outcomes (S is preferred over F). In the
next section, we show how to construct an interaction net-

work from the workflows and how centrality concepts can

be applied to interaction networks.

3 Interaction Network as Graphs

In this section, we model the interaction networks as social

networks. The basic mathematical structure for visualizing

the social network is a graph. The agents are represented

by nodes with the linkages between the agents as edges.

The linkages could arise due to evaluation of one person by

another (friendship, liking, respect), transfer of material re-

sources (business transactions, lending or borrowing things),

association or affiliation (club membership), behavioral in-

teraction (talking together, sending messages), formal rela-

tions such as authority and biological relationships such as

kinship or descent. A linkage establishes a tie at the most

basic level between a pair of agents. The tie is an inherent

property of the pair. The linkage in a interaction network is

the quantification of the past interactions between any two

agents that happened in the workflows.

Social network analysis is concerned with understand-

ing the linkages among agents and the implications of these

linkages. Some of the popular topics of focus are: (1) quan-

tifying the structural importance of agents in the network;

(2) identifying the cores and peripheral agents; (3) analyzing

groups and sub-groups; and (4) structural measures of so-

cial capital to identify what features of network contribute to

Figure 1: An example with N = 7 actors and T = 5
workflows

of workflows in which they are involved?

• Are there any dominant or influential agents emerging
in the network?

Note that an obvious approach to tackle the above
questions is based on aggregating. For example, to measure
the effectiveness of an agent, one could just measure the
fraction of the successful workflows of all the workflows in
which the agent is involved. Similarly, we can extend it to
assess effectiveness of direct links and larger subsets. Some
of the limitations of such an approach are noted below.

Consider a successful and influential super-agent a who
ensures that all the workflows that he is involved in succeed.
Consider an agent b who is failure-prone when teamed with
ordinary agents. Let 80% of the workflows of b also contain
a. Let us further say that a large fraction of the rest of b’s
workflows have failed. The aggregate based approach would
infer that b is a highly successful agent. However, we would
like to infer that b is prone to failures (and may be needs
to be targeted in training programs). A different problem
arises when we use aggregates to make transitive inferences.
Suppose c and d are indeed effective agents. An aggregate
based method would suggest that it is okay to compose a
workflow involving c and d. However, a closer look at direct
interactions between c and d may suggest otherwise.

We consider algorithmic approaches to tackle the above
questions. We would like them to deal with behavioral in-
consistencies of agents, a commonly encountered phenom-
ena in service delivery settings.

2.2 Related Literature In this section, we will summarize
related literature and highlight the uniqueness of our formu-
lations with respect to previous work. Some of the previous
works need to be examined more closely to ascertain their
applicability to our formulations. Section 3 considers some

of the previous works as starting point for representation and
analyses. The purpose here is to briefly highlight the unique-
ness of our work.

The distinction of our setting with the traditional SNA
focusing on structural properties of networks of diadic rela-
tions was highlighted in the introduction. An excellent sur-
vey of the structural analyses in SNA can be found in articles
by Newmann [15, 16, 17]. Some of the well known exam-
ples are the studies on the “small world” phenomena in such
networks [13] and studies on the “shape” of the WWW [5].
Most studies in SNA do not focus on the properties of the
links themselves. Recently, in the context of analyzing tele-
phone call-graphs [19, 14], the weights on the links was used
to discover communities. However, in our case, the label on
the hyper-edge is indicative of the effectiveness of the corre-
sponding workflow. Moreover, we are interested in inferring
reputations of individual agents and their interactions.

If we denote the agents as nodes and the interactions
between them as edges, then we have interaction networks,
much similar to social networks. A concept called centrality
is widely used in social networks in studying structural im-
portance of nodes in the network. For interaction networks,
this translates to quantifying the status of the agents based
on their interactions. However, application of centrality con-
cepts to interactions networks is non-trivial due to the pres-
ence outcomes to each workflow and there exists preferential
relations over the outcomes (S is preferred over F). In the
next section, we show how to construct an interaction net-
work from the workflows and how centrality concepts can
be applied to interaction networks.

3 Interaction Network as Graphs
In this section, we model the interaction networks as social
networks. The basic mathematical structure for visualizing
the social network is a graph. The agents are represented
by nodes with the linkages between the agents as edges.
The linkages could arise due to evaluation of one person by
another (friendship, liking, respect), transfer of material re-
sources (business transactions, lending or borrowing things),
association or affiliation (club membership), behavioral in-
teraction (talking together, sending messages), formal rela-
tions such as authority, and biological relationships such as
kinship or descent. A linkage establishes a tie at the most
basic level between a pair of agents. The tie is an inherent
property of the pair. The linkage in a interaction network is
the quantification of the past interactions between any two
agents that happened in the workflows.

Social network analysis is concerned with understand-
ing the linkages among agents and the implications of these
linkages. Some of the popular topics of focus are: (1) quan-
tifying the structural importance of agents in the network;
(2) identifying the core and peripheral agents; (3) analyzing
groups and sub-groups; and (4) structural measures of so-

cial capital to identify what features of network contribute to
agents. In this work, our focus is on identifying key agents
based on the past interactions with the other agents, working
as teams. If the interaction network is modeled as a graph
with agents as nodes, then the edges characterize the strength
of the interaction. The key agents can then be identified by
their structural importance in the network.

A relevant stream of research in social network analysis
that measures the structural importance of an agent relative
to that of the others in the network is centrality. There
are numerous standard measures of centrality [23], each
appropriate for different environments. The four popular
centrality measures are degree, closeness, betweenness, and
eigenvector [9, 2].

• Degree: Centrality of an agent is a function of other
agents to which it is adjacent (or directly connected).

• Closeness: An agent that can be easily reached from
other agents is more central.

• Betweenness: An agent that lies on more number of
geodesic paths (shortest paths) between any two agents
in the network has a higher centrality score.

• Eigenvector: The centrality of an agents depends on the
centrality of the agents to which it is adjacent.

The closeness and betweenness measures are appropriate
for networks that model flows and transmissions. Degree
centrality is concerned with how many others an agent is
linked with. For interaction networks, the centrality of an
agent depends on whom he interacts with and how many of
them. Eigenvector centrality [2] is the appropriate measure
for the interaction networks. It takes into account the
centralities of the other agents with which an agent interacts.
This is relevant to our objective of studying the impact that
individuals have in team setting.

Firstly, the interaction network has to be modeled as
a graph from the workflows. A distinct feature of our
problem is the presence of outcomes for the workflows,
which have to be taken into consideration. Given that the
binary outcomes S and F are diametrically opposite in their
values, there are two natural approaches: (1) to construct two
different interaction networks, one for each outcome, and
(2) to construct a signed value graph with positive edges to
denote interactions of S workflows and negative edges for F
workflows. First, we shall adopt both these approaches and
discuss their limitations. Then we propose a novel approach
that can also model workflows with finite discrete outcomes,
rather than just S and F .

Let ∆ = [δij] be the N × N interaction matrix that
captures the strength of interactions between the N agents.
If (i, j) is the edge between i and j in the interaction
network, then δij is the weight on that edge. The ∆ has

to be constructed from the workflows and let us ignore the
outcomes for brevity. With a slight abuse of notation, let δt

ij

denote the strength of interaction between actors i and j in
workflow t. Following are some of the desirable properties
of δt

ij .

1. [No influence] If i /∈ Vt and j /∈ Vt, then δt
ij = 0.

2. [Intra-workflow influence] δt
ij should be function of

the path length between i and j in Gt.

3. [Asymmetry] Based on the relative influence of the
roles of i and j, δt

ij 6= δt
ji.

4. [Past influence] The overall interaction δij can be
derived as:

δij =
∑

t

µtδt
ij , µt ≤ µt+1

The first property is a trivial one that emphasizes the im-
portance of participation in the same workflow as the neces-
sity to qualify the linkage as interaction. The intra-workflow
influence allows to differentiate intra-workflow and inter-
workflow interactions. Let t̀ and t̃ be two different work-
flows. Let

(i, j), (j, k) ∈ Et̀ (i, k) /∈ Et̀(3.1)
(j, l) ∈ Et̃ i /∈ Vt̃(3.2)

The traditional assignment of weights in social networks
emphasizes only on direct interactions:

δt̀
ij = δt̀

jk = 1; δt̀
ik = 0;(3.3)

δt̃
jl = 1; δt̃

il = 0;(3.4)

Intuitively, δt̀
ik > δt̃

il, as i and k have worked on the same
project, whereas i and l have not. Thus the intra-workflow
influence property is desirable if we have to differentiate
above scenarios. The asymmetry property is useful if the
responsibilities of i and j are hierarchically structured. If
i is above j, then influence from i to j will be more
than that of the reverse. The last property is about how
we obtain the overall strength of interaction based on the
individual workflow interactions. The past influence factor
µt can be used to model the relative importance of the
influence with respect to time. One can easily see that by
judiciously choosing µt, we can arrive at various kinds of
past influences: Uniform, sliding window, etc.

We will now explore the approach of modeling the
outcomes using two different interaction networks. Social
networks allow multiple relations to be defined on the same
set of agents. Hence, one can define linkages related to S and
that of related to F workflows. For brevity, we consider them
as two different networks with interaction matrices ∆S and

A1 A2

A3

A4 A5

A7 A6
1

1
1

1
1

3/2

2

1/2
1/2

1/2

1/2 1

1/2

Figure 2: Interaction network constructed from workflows
with outcome S

∆F . We will use the example in Figure 1 to illustrate this
approach. The ∆S is constructed only from S workflows
and we assume symmetry δt

ij = δt
ji. The intra-workflow

influence is modeled as follows:

(3.5) δt
ij =

1
P t

ij

The P t
ij is the shortest path length between i and j in

workflow t, where each edge has unit weight. As the
example has few workflows, the past influence is uniform:
µt = 1.

Figure 2 shows the interaction network of agents mod-
eled from the workflows with S outcomes. Let xj denote the
eigenvector centrality of agent j and ∆S denote the interac-
tion matrix. The eigenvector centrality [2] is given by:

(3.6) ∆Sx = λx

The λ is the largest eigenvalue of ∆S and x is its correspond-
ing eigenvector. In the linear summation form, the above
reduces to:

(3.7) xj =
1
λ

∑
i

δS
ijxj , ∀j

Eigenvector centrality measures the centrality of an agent
as a linear combination of centralities of agents to which it
is connected. Unlike degree, which weighs every adjacent
agent equally, the eigenvector weights adjacent agents ac-
cording to their centralities. The agents can then be ranked
based on the component wise value of the eigenvector: If
xj1 ≥ xj2 ≥ xj3 . . . , then the ranking for the agents are
j1, j2, j3, The idea of using the eigenvector to do rank-
ing dates back to the 1950’s [24, 11], which was also later
used to rank pages in the web.

One can similarly construct an interaction graph for
workflows with F outcomes. The rankings for the interac-
tion matrices ∆S and ∆F are:

∆S : A2, A3, A1, A5, A7, A4, A6
∆F : A5, A1, A6, A2, A7, A4, A3

The above rankings are of little help as one cannot be used
ignoring the other and both together cannot yield consistent
ranking. For example, A1 is preferable to A5, as A1 is
ranked higher than A5 in S ranking and vice versa in F rank-
ing. However, the preference between A1 and A4 cannot be
deduced. Hence, even at the level of pairwise comparisons,
it is not possible to derive preferential rankings.

The second approach is to model the interaction network
as a signed graph with both positive and negative links. The
signed interaction matrix is given by:

(3.8) ∆S −∆F

For handling relations with negative status, eigen vector
based centrality measure was proposed in [4]. However,
it is only applicable to matrices with balanced structure.
If positive edges denote friendship and the negative ones
denote enemity, then the balance structure exists if friend
of friend is a friend, enemy of a friend is an enemy, friend
of an enemy is an enemy, and enemy of an enemy is a
friend. For the signed graphs with balanced structures, the
vertices can be partitioned into two subgraphs such that
the links within each subgraph is positive and the links
between the two graphs is negative. One can extend beyond
balanced structures and consider clusters, with more than
two subgraphs. For our problem, clusters and balance
structures are not applicable as the pairwise interactions
between any two agents cannot be claimed to be positive or
negative based on the outcomes. In the example in Figure 1,
A2 and A6 have directly interacted in one workflow with S
outcome and one with F outcome. Hence, one also directly
cannot use techniques for ranking webpages with negative
links.

The problem with the above modeling approaches is the
implicit assumption that S and F are diametrically opposite
outcomes. In the following, we assume them to be outcomes
with different utilities, including negative. Then the pairwise
interactions cannot be negative by themselves, even if it has
resulted in an F outcome. We propose a novel technique,
where the outcomes {S, F} are included as agents in the
network.

δt
S,j =

{
1 if Rt = S
0 otherwise(3.9)

δt
F,j =

{
1 if Rt = F
0 otherwise(3.10)

The interaction between the outcomes and the agents are

A1 A2

A3

A4 A5

A7 A6
2

1 2

3/2

1

3/2

3

1/2
1/2

1

1/2 1

1/2

1

1

1/2
1

S

F

2

3

2

1

11

1

1
11

1
1

2

Figure 3: Interaction network with S and F as agents

directed:

(3.11) δt
j,Rt

= 0, ∀j, ∀t, ∀Rt

The rationale is that our objective is to rank the agents based
on the outcomes (utilities) and not vice versa. The interaction
matrix ∆ is of order (N + 2)× (N + 2) that is directed and
hence not symmetric:

δij = δij(S) + δij(F), ∀i, j ∈ V(3.12)

δRt,j =
∑

t

δt
Rt,j , ∀j, ∀Rt(3.13)

δj,Rt =
∑

t

δt
j,Rt

, ∀j, ∀Rt(3.14)

The proposed interaction network is shown in Figure 3.
The eigenvalue centrality cannot be directly used for directed
graphs. Eigenvector like centrality measure called as alpha-
centrality was proposed in [3] for directed graphs.

(3.15) x = (I − α∆T)−1e

The vector e is exogenous source of information and parame-
ter α reflects the relative importance of endogenous (∆) ver-
sus exogenous (e) factors in the determination of centrality.
The centrality x is shown to exist for 0 ≤ x < 1/λ, where
λ is the largest eigenvalue of ∆. The e is an external source
of status that is independent of the interactions. Let yij de-
note the entries in the inverse matrix (I−α∆T)−1. Then the
centrality scores are given by:

(3.16) xj =
∑

i

yjiei

α Ranking
1 A3, A7, A4, A5, A2, A1, A6
2 A3, A2, A4, A1, A7, A5, A6
3 A3, A4, A2, A1, A7, A5, A6
6 A3, A4, A2, A1, A7, A5, A6
ej = 1, ∀j; eS = 10; eF = −10; λ = 6.222;

Table 1: Ranking of agents using α-centrality measure

Note that by construction yRt,i = 0, yii = 1, ∀i and
∀Rt. Hence, the centralities of the outcomes are unaffected:
xRt

= eRt
. If the vector e denotes the judiciously chosen

utilities, then the centrality score essentially captures both
the interactions among agents and outcomes, and the utilities
of the outcomes. Following is one possible assignment to e:

ej = 1, ∀j ∈ V(3.17)
eS = −eF(3.18)

All the agents have equal status and the S and F have
opposite status with some high value other that 1. Table
1 shows the rankings obtained for eS = 10, eF = −10,
and for various values of α. The largest eigenvalue of ∆
is λ = 6.222. The α-centrality measure was calculated for
α = 1, 2, . . . , 6. As shown in the table, the rankings were
same for α = 3, . . . , 6. As far as we know, there is no
study on choosing the appropriate α and e. Currently we
are conducting experimental analysis to study the functional
relationship of α and e on final rankings.

The proposed technique of modeling S and F as agents
can easily be extended to finite discrete outcomes with
different utilities. This section dealt with ranking of agents
based on historical interactions and outcomes. In the next
section, we study the contributions of the agents to the
outcomes of the workflows.

4 Iterative updates approach
In this section, we present an iterative approach to infer
useful information regarding the impact of agents on their
workflows.

One of the ways of measuring the impact of an agent is
to assign a weight in the range of [0, 1] that is indicative of the
agent’s contribution towards success/failure of workflows.
Let wa,∀a ∈ V be the assignment of weights to the agents.
Given these weight assignments and a specific workflow
W , let wavg =

P
a∈W wa

|a∈W | be the average weight of the
agents belonging to the workflow. One way to explain
the outcome of the workflow is to compare the average
weight to certain thresholds associated with the outcomes.
For instance, let St and Ft be two thresholds in the range
[0, 1] corresponding to successful and failure workflows
respectively. The assignment of weights is said to explain
the outcome of a successful workflow W if wavg > St.

Similarly, for a failed workflow, we require wavg < Ft.
For simplicity, let us assume that the outcomes Rts

are either 0 (failure) or 1 (success). Our approach extends
directly to the continuous case. Aggregate based method of
assigning weights would average the outcomes of the agent’s

workflows. For an agent a, wa =
P

t:a∈Wt
Rt

|{t:a∈Wt}| . Let f be the
fraction of workflows that are explained by the aggregation
based approach. Our goal is to significantly improve the
fraction of explained workflows in comparison to f .

Our idea is very simple. We start with any valid
assignment of weights to agents. For each workflow that is
not explained by the current assignment, update the weights
of the agents belonging to the workflow in small quantities
in such a way that the gap between the threshold and its
average decreases. Specifically, we iteratively improve the
assignment by considering all unexplained workflows in
each iteration. For each workflow that is not explained, we
update the weights of all the agents involved in its execution
by a very small quantity ε. If a workflow’s outcome is 1 and
it is not explained, we increment the weight of each of its
agents by ε. Similarly, if the workflow’s outcome is 0 and
it is unexplained, then, we reduce the weights of each of its
agents by the same quantity ε. While updating the weights
in this fashion, we restrict them to the [0, 1] range. At all
time, we maintain the best assignment so far. The procedure
is terminated when the fraction of the explained workflows
is above a threshold F (say 0.95) or if the fraction of the
explained workflows by the assignment in the last L rounds
does not increase by a minimum threshold, M . As we can
always begin with aggregate weights,

PROPOSITION 4.1. The assignment returned by the itera-
tive approach is atleast as good as the aggregate based
method.

Our algorithm is also very fast. It is easy to verify the
following:

PROPOSITION 4.2. The running time of the iterative ap-
proach is O(L

M ·|I|) where |I| represents the size of the input.

Our approach is easily extended to infer the impact of
the interactions as follows. Each direct interaction or a link
is modeled as a link agent with a weight associated with it.
The algorithm just presented can now be run on the set of
individual agents and link agents with the outcomes of the
workflows as the input. In fact, when the workflow is a
precedence relationship, it does not even change the running
time. This approach can be extended to larger subsets in
a limited way. For subsets of constant size, say k, we can
consider hyper-edge agents of size k. In this case ofcourse,
the running time would also depend on Nk.

To get an understanding of how our approach helps
us get better explanations, consider the example shown in
Figure 4. In this example, there are four agents, namely,

Our approach is easily extended to infer the impact of

the interactions as follows. Each direct interaction or a link

is modeled as a link agent with a weight associated with it.

The algorithm just presented can now be run on the set of

individual agents and link agents with the outcomes of the

workflows as the input. In fact, when the workflow is a

precedence relationship, it does not even change the running

time. This approach can be extended to larger subsets in

a limited way. For subsets of constant size, say k, we can
consider hyper-edge agents of size k. In this case ofcourse,
the running time would also depend onN k.

100

200

S

200

B
Workflow Compositions

200

200
A

200

S

B
Workflows with Outcomes

200
A Success:

Failure:

200

600

200

600

F F

100

Figure 4: An example that shows the advantage of iterative

approach.

To get an understanding of how our approach helps

us get better explanations, consider the example shown in

Figure 4. In this example, there are four agents, namely,

A, B, F, S. The LHS of the figure shows how a set of 1500
workflows are assigned as edges between two agents. The

numbers on the edges indicate the number of tasks assigned

to the edge. For example, 100 tasks are executed by an
interaction between A and B. The RHS of the figure shows
the outcomes of the workflow executions. The successful

workflows are highlighted by solid lines and the unsuccessful

ones by dotted lines. Agent S is the most effective agent who
is able to ensure success of all the workflows he is assigned.

A naive aggregation approach would assign effectiveness

values of 1.0, 0.6, 0.6, and 0.6 to S, F, A, B respectively.

If we assume that an average above 0.5 is required to explain
success and an average below 0.5 is required to explain
failure, then, these values are able to explain only 1100
workflows. The failed workflows between F, A and F, B
are not explainable. If we keep the value of ε to be 0.0004,
then, just after one iteration, we have the effectiveness to be

eS = 1, eF = 0.34, eA = 0.52, eB = 0.52. It is easy to
check that these values explain all the workflows, including

the failed ones. Thus, our heuristic is designed to capture this

process of readjustment by focusing on workflows that need

explanation. We present the details of our experimentation

with this approach in the next section.

Discussion. Note that the weights of A and B in the

above example is not a good reflection of their abilities.

However, when these weights are used in future assignments,

their true ability will be reflected. Readers familiar with the

multiplicative weights update methods [12, 1] would imme-

diately notice that our updates are additive. The reason for

this is that our notion of explanation is based on averages.

For instance, in the above example, penalizing unexplained

failed workflows by a multiplicative update of (1− δ) would
drive the weights ofA, B, F to very small values, thus wors-

ening the solution. Perhaps, one could change the notion

of explanations to suit the multiplicative updates as well.

Here, we restrict ourselves to average based explanations and

hence additive updates.

5 Computational Results

As mentioned in the introduction, it is difficult to get real-

life data on the effectiveness of the workflow executions

in service delivery. At the same time, modeling agents

and interactions by standard mathematical models is not

useful either as they are not representative of real-life data.

Therefore, it is essential to generate data that is as close to

the real-life data as possible. In context of service delivery

where there is a major fraction of human element involved,

the task of generating realistic data is a challenging research

topic in itself. Techniques for such a simulation framework

is not the main focus of this paper. However, developing

a simulation framework and techniques to generate realistic

data is one of our long-term goals. Here, we present the

current implementation of our simulation platform and how

we use it for our experimental purposes. Our framework

is flexible and easily extensible so that experts with domain

knowledge can quickly transform their experience to usable

models that can be used by the simulator.

5.1 Simulation Platform Put simply, the goal of the sim-

ulation platform is to build a simulation environment con-

sisting of i) a set of agents each of whom is capable of per-

forming a specified set of activities,ii) to generate realistic

workflows requiring different functionalities in the form of

a chain (to begin with), iii) to push the workflows through

the network of agents in which the agent behavior is close to

real-life, and (iv) to measure the outcome of these workflow

executions. In the order of their simplicity in implementa-

tion, this involves three aspects (i) mechanism to create the

network of agents and the set of workflows (ii) modeling the

behaviors of the agents in the face of a sequence of workflow

assignments (iii) ways in which the workflows are assigned

to the agents during the simulation. We present the details of

our platform in this sequence, simple to complex.

The simplest part of the simulation framework is to in-

stantiate it by creating the agents and setting the capacities of

the agents. In our formulation, we mentioned that the work-

flows can be general subgraphs on the set of agents. How-

ever, currently in our framework, we represent workflows as

a precedence driven chains. Each stage of the chain is spec-

Figure 4: An example that shows the advantage of iterative
approach.

A,B, F, S. The LHS of the figure shows how a set of 1500
workflows are assigned as edges between two agents. The
numbers on the edges indicate the number of tasks assigned
to the edge. For example, 100 tasks are executed by an
interaction between A and B. The RHS of the figure shows
the outcomes of the workflow executions. The successful
workflows are highlighted by solid lines and the unsuccessful
ones by dotted lines. Agent S is the most effective agent who
is able to ensure success of all the workflows he is assigned.
A naive aggregation approach would assign effectiveness
values of 1.0, 0.6, 0.6, and 0.6 to S, F, A,B respectively.
If we assume that an average above 0.5 is required to explain
success and an average below 0.5 is required to explain
failure, then, these values are able to explain only 1100
workflows. The failed workflows between F,A and F,B
are not explainable. If we keep the value of ε to be 0.0004,
then, just after one iteration, we have the effectiveness to be
eS = 1, eF = 0.34, eA = 0.52, eB = 0.52. It is easy to
check that these values explain all the workflows, including
the failed ones. Thus, our heuristic is designed to capture this
process of readjustment by focusing on workflows that need
explanation. We present the details of our experimentation
with this approach in the next section.

Discussion. Note that the weights of A and B in the
above example is not a good reflection of their abilities.
However, when these weights are used in future assignments,
their true ability will be reflected. Readers familiar with the
multiplicative weights update methods [12, 1] would imme-
diately notice that our updates are additive. The reason for
this is that our notion of explanation is based on averages.
For instance, in the above example, penalizing unexplained
failed workflows by a multiplicative update of (1− δ) would
drive the weights of A,B, F to very small values, thus wors-
ening the solution. Perhaps, one could change the notion
of explanations to suit the multiplicative updates as well.
Here, we restrict ourselves to average based explanations and
hence additive updates.

5 Computational Results
As mentioned in the introduction, it is difficult to get real-
life data on the effectiveness of the workflow executions
in service delivery. At the same time, modeling agents
and interactions by standard mathematical models is not
useful either as they are not representative of real-life data.
Therefore, it is essential to generate data that is as close to
the real-life data as possible. In context of service delivery
where there is a major fraction of human element involved,
the task of generating realistic data is a challenging research
topic in itself. Techniques for such a simulation framework
is not the main focus of this paper. However, developing
a simulation framework and techniques to generate realistic
data is one of our long-term goals. Here, we present the
current implementation of our simulation platform and how
we use it for our experimental purposes. Our framework
is flexible and easily extensible so that experts with domain
knowledge can quickly transform their experience to usable
models that can be used by the simulator.

5.1 Simulation Platform Put simply, the goal of the sim-
ulation platform is to build a simulation environment con-
sisting of i) a set of agents each of whom is capable of per-
forming a specified set of activities,ii) to generate realistic
workflows requiring different functionalities in the form of
a chain (to begin with), iii) to push the workflows through
the network of agents in which the agent behavior is close to
real-life, and (iv) to measure the outcome of these workflow
executions. In the order of their simplicity in implementa-
tion, this involves three aspects (i) mechanism to create the
network of agents and the set of workflows (ii) modeling the
behaviors of the agents in the face of a sequence of workflow
assignments (iii) ways in which the workflows are assigned
to the agents during the simulation. We present the details of
our platform in this sequence, simple to complex.

The simplest part of the simulation framework is to in-
stantiate it by creating the agents and setting the capacities of
the agents. In our formulation, we mentioned that the work-
flows can be general subgraphs on the set of agents. How-
ever, currently in our framework, we represent workflows as
a precedence driven chains. Each stage of the chain is spec-
ified by a functionality required at that stage. Each agent is
endowed with a set of functionalities that it can perform. So,
the assignment of workflows to agents has to satisfy the fol-
lowing constraints: (i) each stage is assigned to an agent that
can perform the required functionality and (ii) the capacity
constraints of the agents and the links assigned to the work-
flow are not violated. To accomplish this, we instantiate the
agents with individual capacities and a set of functionalities.
There are also capacities on the link between two agents that
capture the operational constraints of interaction between the
two agents. Our simulation framework allows simple text
based initialization of these fields from domain experts. It

can also be initialized based on certain well observed phe-
nomenons like power laws etc. When a workflow execution
is completed, the corresponding agents recover the capacities
reserved for it. All along, we associate a weight qa with each
agent a ∈ V which is independent of the weights assigned
by the algorithm in Section 4. These weights are used in the
simulation.

Modeling the behavior of the agents is a very key aspect
of the simulation. Clearly, it is unreasonable to capture the
human element by simplistic mathematical models. Various
parameters, such as external factors, personal traits of agents
etc. can affect their behavior and are difficult to capture
mathematically. Two different effects of agent behaviour on
the service delivery should be captured as well. Firstly, even
competent agents can feel the monotonicity of similar jobs
and might slip into complacency, especially when repeating
similar tasks on a repeated basis. Secondly, the agents also
have a capability to learn on the job thus making them
decidedly different from machines.

We model the complex patterns of agent behaviour by
starting with simple models and modifying such predictable
behaviour with unpredictable and dynamic aspects. The
simple form of an agent’s behavior is a normal distribution
N(p, v) where 0 ≤ p ≤ 1 is the mean of the weights
it contributes to its workflows, v is the variance of the
contribution. Associated with each agent is a parameter
d, 0 ≤ d ≤ 1 that indicates the probability that the agent’s
performance deviates from expected behavior and takes a
random form. This captures the unpredictability aspect of
an agent.

We extend this simple framework to incorporate differ-
ent aspects of agent behavior as follows. Firstly, we treat
the succession of similar jobs done by an agent as a random
walk with success probability corresponding to its standard
profile. Now, the complacency aspect is introduced by ask-
ing the question, “what is the likelihood of a long walk of
only successes in such a random walk?” Based on this prob-
ability, we introduce complacency at a given stage for a given
agent. The learning aspect is handled as follows. Let us con-
sider a workflow that is assigned to a subset of agents A. Let
the average weight of the agents as maintained by the simu-
lation engine is above St. We treat the workflow as a success.
Even though the workflow was a success, some of the agents
may have a performance model which indicates an expected
response below St. We take this as an instance of the agent
learning on the job. Once an agent gets ticked a certain num-
ber of times, we update his performance model to capture
this learning. Lastly, to simulate scenarios such as the one
illustrated in Section 4, we also add special agents charac-
terized as super-agents and failure-prone agents. The failure
prone agents are superseded by the presence of super-agents.

The trickiest part of the simulation is the assignment
of the workflows to the agents. The assignments affect the

agent behavior in a non-trivial manner as described above.
In our current implementation, we have multiple heuristics
for assigning workflows to the agents and we generate data
corresponding to each of the options. One of the ways of
assigning workflows is to “load balance” the agents in terms
of their capacities. Second is the greedy way: choose that
set of agents which has the required capacity and has best
expected weight of success. Note that this aspect affects the
complacency of the agents and we do not have any means
of controlling it as of now. The third option is to make
random assignment at each stage of the workflows: among
all the agents with surplus capacity and who can perform the
required functionality, choose one randomly.

5.2 Experimental Evaluation We used the simulation
framework to carry out our experiments. We generated in-
stances of service interaction networks by first creating a net-
work of agents and then pushing a certain number of work-
flows through them. The outcome of the workflows was de-
cided by the average of the weights of the assigned agents
(qas maintained by the simulation framework). The iterative
analysis presented in Section 4 was run on the resulting ser-
vice interaction networks. The efficacy of our approach was
measured based on the how it could improve the fraction of
the workflows that were explained by the final weight as-
signment as opposed to the fraction explained by the simple
aggregation method.

Let T be the number of workflows and N be the number
of actors in the service interaction network. We found that
the improvement achieved by the iterative technique is not
uniform for all combinations of T and N . Our experiments
suggest that in a particular range of the ratio of number of
tasks to the number of actors, T/N , the iterative algorithm
seems to do particularly well. We also studied the effect
of the presence of super-agents and failure-prone agents on
the performance of the iterative technique. We generated
instance with varying number of workflows and agents, with
and without the presence of special agents. For assigning the
workflows to the agents, we followed all the three policies
mentioned in the Section 5.1. In our set-up, we used St =
Ft = 0.5, ε = 0.005 and different values of the threshold F ,
the fraction of workflows that need to be explained for the
algorithm to terminate. A summary of the our findings is:

• The performance of the iterative approach is not af-
fected significantly by the presence of special agents.

• The performance of the iterative approach is not af-
fected significantly by the choice of the heuristic for
assigning workflows to the agents. The improvement
is slightly less in the case of greedy assignment.

• In general we are able to improve the fraction of the
explained workflows in the range of 0.20. As expected,
we do special agents when they are present.

#Agents #Workflows % of Ag. Apr. % of Iter. Apr.
250 500 74 90
250 2000 64 81
250 10000 57 77
250 60000 62 78
250 80000 46 61
125 500 67 82
125 1500 62 81
125 5000 63 79
125 10000 66 78
125 30000 44 52

Figure 5: Comparison of the two approaches as T is in-
creased while keeping N constant

As mentioned above, the improvement achieved by the
iterative method is not uniform over different T/N ratios.
One of the patterns we observed is that when the ratio
is close to 1, the improvement is not significant as the
average based approach performs quite well. As the ratio
increases, it improves upto a certain threshold. When the
ratio is very high, say O(N), ie, number of workflows is
O(N2), the improvement is not significant. This is due to
the fact that the complexities introduced by the model make
it very difficult to explain the outcomes by associating a
single weight to the agents. The table in Figure 5 shows
the improvement while keeping the number of actors fixed.
Figure 6 shows an approximate plot of how the T/N ratio
affects the performance. Note that the horizontal axis is not
to scale. The purpose of the figure is to capture the trend at
the two extreme sides of the input sizes.

#Agents #Workflows % of Ag. Apr. % of Iter. Apr.

250 500 74 90

250 2000 64 81

250 10000 57 77

250 60000 62 78

250 80000 46 61

125 500 67 82

125 1500 62 81

125 5000 63 79

125 10000 66 78

125 30000 44 52

Figure 5: Comparison of the two approaches as T is in-

creased while keepingN constant

the fraction of workflows that need to be explained for the

algorithm to terminate. A summary of the our findings is:

• The performance of the iterative approach is not af-
fected significantly by the presence of special agents.

• The performance of the iterative approach is not af-
fected significantly by the choice of the heuristic for

assigning workflows to the agents. The improvement

is slightly less in the case of greedy assignment.

• In general we are able to improve the fraction of the
explained workflows in the range of 0.20. As expected,
we do special agents when they are present.

As mentioned above, the improvement achieved by the

iterative method is not uniform over different T/N ratios.

One of the patterns we observed is that when the ratio

is close to 1, the improvement is not significant as the
average based approach performs quite well. As the ratio

increases, it improves upto a certain threshold. When the

ratio is very high, say O(N), ie, number of workflows is
O(N2), the improvement is not significant. This is due to
the fact that the complexities introduced by the model make

it very difficult to explain the outcomes by associating a

single weight to the agents. The table in Figure 5 shows

the improvement while keeping the number of actors fixed.

Figure 6 shows an approximate plot of how the T/N ratio

affects the performance. Note that the horizontal axis is not

to scale. The purpose of the figure is to capture the trend at

the two extreme sides of the input sizes.

Our experiments with different strategies for assigning

the workflows to agents did not affect the performance of

the approach in any significant way. It only lowered the im-

provement to the range of 0.15. But, the patterns of improve-
ment over different T/N ratios remained same. Therefore,

we present our experimental numbers across all our experi-

ments without making a distinction about the workflow as-

signment method. The table in Figure 7 shows the perfor-

Aggregate Approach

T/N ratio

fr
ac
ti
o
n
o
f
ex
p
la
in
ed
w
o
rk
fl
o
w
s

1 O(N)

1.0

0.5

Iterative Approach

Figure 6: An approximate plot of how the algorithm per-

forms as T/N ratio is varied.

#Agents #Workflows % of Ag. Apr. % of Iter. Apr.

6 10 77 90

10 10 73 91

100 100 69 84

125 1000 62 81

125 5000 63 79

250 500 71 92

250 5000 56 79

250 100000 38 50

Figure 7: Comparison of the two approaches for different

choices of T andN .

mance of the two approaches for different combinations of

T and N . For each combination, we generated many in-
stances and the table captures the average behavior. The

mean and the variance of the improvement obtained by the

iterative method over all the experiments were 0.19 and 0.05
respectively.

6 Discussion and Future Work

Analyzing service interaction networks is one of the impor-

tant aspects of the emerging service engineering discipline.

In this section, we highlight some of the interesting research

problems in this area. We begin by first highlighting some of

the interesting extensions to the work presented here.

One of the reasons for the dip in the performance of

the algorithm as the workflows increase is our attempt to

capture the entire dynamics by a single number. One of

the approaches to deal with this problem is to divide the

workflows temporally into multiple epochs and to maintain

a separate weight for each epoch. This would improve

the performance of both aggregate based method and the

iterative method. Identifying the epochs automatically seems

to be an interesting way to extend our work.

In our current implementation, the workflows are prece-

dence chains. This makes it easier for the iterative approach

to include link agents and get similar performance benefits.

Figure 6: An approximate plot of how the algorithm per-
forms as T/N ratio is varied.

Our experiments with different strategies for assigning
the workflows to agents did not affect the performance of
the approach in any significant way. It only lowered the im-
provement to the range of 0.15. But, the patterns of improve-
ment over different T/N ratios remained same. Therefore,

#Agents #Workflows % of Ag. Apr. % of Iter. Apr.
6 10 77 90

10 10 73 91
100 100 69 84
125 1000 62 81
125 5000 63 79
250 500 71 92
250 5000 56 79
250 100000 38 50

Figure 7: Comparison of the two approaches for different
choices of T and N .

we present our experimental numbers across all our experi-
ments without making a distinction about the workflow as-
signment method. The table in Figure 7 shows the perfor-
mance of the two approaches for different combinations of
T and N . For each combination, we generated many in-
stances and the table captures the average behavior. The
mean and the variance of the improvement obtained by the
iterative method over all the experiments were 0.19 and 0.05
respectively.

6 Discussion and Future Work
Analyzing service interaction networks is one of the impor-
tant aspects of the emerging service engineering discipline.
In this section, we highlight some of the interesting research
problems in this area. We begin by first highlighting some of
the interesting extensions to the work presented here.

One of the reasons for the dip in the performance of
the algorithm as the workflows increase is our attempt to
capture the entire dynamics by a single number. One of
the approaches to deal with this problem is to divide the
workflows temporally into multiple epochs and to maintain
a separate weight for each epoch. This would improve
the performance of both aggregate based method and the
iterative method. Identifying the epochs automatically seems
to be an interesting way to extend our work.

In our current implementation, the workflows are prece-
dence chains. This makes it easier for the iterative approach
to include link agents and get similar performance benefits.
It is not difficult to extend the simulation framework to gen-
erate workflows that are subgraphs on the set of agents. But,
capturing the impact of interaction between subsets of agents
now becomes tricky. The iterative approach does not extend
naturally. We are exploring algorithmic approaches in this
generic scenario.

The eigen vector based approaches have had success in
SNA and in related applications like page ranking. A recent
research paper by Kerchove and Dooren [7] has extended this
approach when negative links are present in the network. We
are exploring the eigen vector based approach further in our

current work.
Let us now highlight other interesting problems in ana-

lyzing service interaction networks. Consider the service in-
teraction network that emerges in the example of Li&Fung.
As the agents in this case are ISVs, they do not possess
the knowledge of the global network. However, as different
workflows are passed through them and they interact with the
other ISVs, they start discovering parts of the network. When
a large number of workflows have been pushed through the
system, an interesting question that emerges is: are there a
small set of agents who, if they combine their local knowl-
edge of the network, can reconstruct a significant portion
of the global network? This seems to be an important as-
pect of risk analysis in moderately sized networks. Even in
intra-organizational networks, such information can be used
to promote the identified agents to achieve better overall co-
ordination. Modeling the problem formally and developing
algorithmic approaches to this problem is a promising re-
search direction.

As highlighted in the introduction, access to real-life
data is a major hurdle for studying service interaction net-
works, especially from the point of view of public dissemi-
nation. Therefore, realistic data generation using novel sim-
ulation techniques and exploiting domain knowledge of ex-
perts is essential for studying service interaction network.
The simulation framework presented here is only a first step
in this direction. We are currently focusing on exploiting a
combination of innovative modeling and integration of do-
main expertise to make our simulation framework richer.

References

[1] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplica-
tive weights update method: A meta algorithm and its appli-
cations. Technical report, The Princeton University.

[2] Philip Bonacich. Factoring and weighting approaches to
clique identification. Journal of Mathematical Sociology,
2:113–120, 1972.

[3] Philip Bonacich and Paulette Lloyd. Eigenvector-like mea-
sures of centrality for asymmetric relations. Social Networks,
23:191–201, 2001.

[4] Philip Bonacich and Paulette Lloyd. Calculating status with
negative relations. Social Networks, 26:331–338, 2004.

[5] Andrei Z. Broder, Ravi Kumar, Farzin Maghoul, Prab-
hakar Raghavan, Sridhar Rajagopalan, Raymie Stata, Andrew
Tomkins, and Janet L. Wiener. Graph structure in the web. In
Proceedings of the nineth international conference on World
Wide Web (WWW), pages 309–320, 2000.

[6] John Seely Brown, Scott Durchslag, and John Hagel. Loos-
ening up: How process networks unlock the power of special-
ization. In The McKinsey Quarterly: Special edition on risk
and resilience. 2002.

[7] Cristobald de Kerchove and Paul Van Dooren. The pagetrust
algorithm: How to rank web pages when negative links are
allowed? In SDM, pages 346–352, 2008.

[8] Brenda Dietrich and Terry Harrison. Serving the services
industry. Operations Research and Management Science
(OR/MS), 33(3), 2006.

[9] Linton C. Freeman. Centrality in social networks: Concep-
tual clarification. Social Networks, 1:215–239, 1979.

[10] John Hagel, Scott Durchslag, and John Seely Brown. Or-
chestrating loosely coupled business processes: The secret
to successful collaboration. Copyright by John Hagel
III, John Seely Brown, and Scott Durchslag; available at
http://www.johnhagel.com/orchestrating collaboration.pdf,
2002.

[11] M. G. Kendall. Further contributions to the theory of paired
comparisons. Biometrics, 11:43, 1995.

[12] Nick Littlestone and Manfred K. Warmuth. The
weighted majority algorithm. Information and Computation,
108(2):212–261, 1994.

[13] Stanley Milgram. The small world problem. Psychology
Today, 2:60–67, 1967.

[14] Amit A. Nanavati, Siva Gurumurthy, Gautam Das, Dipanjan
Chakraborty, Koustuv Dasgupta, Souagata Mukherjea, and
Anupam Joshi. On the structural properties of massive tele-
com call graphs: findings and implications. In Proceedings of
the 2006 ACM International Conference on Information and
Knowledge Management (CIKM), pages 435–444, 2006.

[15] Mark Newman. Scientific collaboration networks: I. Network
construction and fundamental results. Physical Review, 64,
2001.

[16] Mark Newman. Scientific collaboration networks: II. Short-
est paths, weighted networks, and centrality. Physical Re-
view, 64, 2001.

[17] Mark Newman. The structure and function of complex
networks. SIAM Review, pages 167–256, 2003.

[18] Andrea Ordanini and Kenneth L. Kraemer. Medion: the retail
orchestrator in the computer industry. 2006.

[19] Vinayaka Pandit, Natwar Modani, Sougata Mukherjea,
Amit A. Nanavati, Sambuddha Roy, and Amit Agarwal. Ex-
tracting dense communities from telecom call graphs. In
Proceedings of the Third International Conference on COM-
munication System softWAre and MiddlewaRE (COMSWARE
2008), pages 82–89, 2008.

[20] Bikram Sengupta, Satish Chandra, and Vibha Sinha. A re-
search agenda for distributed software development. In 28th
International Conference on Software Engineering (ICSE),
pages 731–740, 2006.

[21] Vibha Sinha, Bikram Sengupta, and Satish Chandra. En-
abling collaboration in distributed requirements management.
IEEE Software, 23(5):52–61, 2006.

[22] Giuseppe Valetto, Mary Helander, Kate Ehrlich, Sunita Chu-
lani, Mark N. Wegman, and Clay Williams. Using software
repositories to investigate socio-technical congruence in de-
velopment projects. In Fourth International Workshop on
Mining Software Repositories (MSR), page 25, 2007.

[23] Stanley Wasserman and Katherine Faust. Social Network
Analysis: Methods and Applications. Cambridge University
Press, New York, 1994.

[24] T. H. Wei. The algebraic foundations of ranking theory.
Cambridge University Press, London, 1952.

